
Understanding Sequences 47

This rule is important because unexpected result may occur. This is also particularly true when
multiple threads update a common local variable as each thread carries its own set of local
variables. Those issues are explained, with examples, in Section 2.7.9.
The first_match() DOES NOT NECESSARILY GUARANTEE EXCLUSIVITY IN FIRST MATCHES

Guideline: Avoid unnecessary successful start of attempts by ensuring that the start of the
triggering condition is unique. Use the $changed, $rose, or $fell functions when appropriate If
an antecedent sequence can spawn multiple threads, and it is desired to ensure a unique first
match, use the first_match operator. This guideline also applies to circumstances where the
consequent of the first antecedent is a property that itself has an antecedent sequence with
multiple matches. For example,

a ## 1 b[*1:2] ##1 c |=> ##[0:$] d |-> e [*2:3] ##1 f; //

For uniqueness, use the first_match and edge detect function such as: //
first_match($rose(a) ## 1 b[*1:2] ##1 c) |=>

first_match(##[0:$] d) |-> e [*2:3] ##1 f;
Also, see guidelines for the goto repetition operator in Section 2.3.4.

2.5.2 End point of sequences, .triggered
Rule: [1] The end point of a sequence is reached whenever the ending clock tick of a match

of the sequence is reached, regardless of the starting clock tick of the match. The reaching of the
end point can be tested by using the method triggered. The syntax of the triggered method is as
follows: sequence_instance.triggered, where triggered is a method on a sequence. The result
of its operation is true or false. When method triggered is evaluated in an expression, it tests
whether its operand sequence has reached its end point at that particular point in time. The
result of triggered does not depend upon the starting point of the match of its operand sequence.

Thus, an end point of a sequence is a Boolean expression (True/False) that represents the
evaluation of a thread of a sequence at its last cycle. Every time a thread of sequence completes it
represents an endpoint for that thread. Thus, a multi-threaded sequence can have multiple
endpoints. The value of sequence method (triggered) would be true at these endpoints.
Applying a first_match method on a sequence_instance.triggered does not make sense, and is
equivalent to sequence_instance (see guidelines below for an example).

An end point can be used as a seed to test other assertions, as a reset / accept / reject of a property,
or as a trigger to a procedure. For example, with the requirement that once a fetch from main
memory is completed (end point here) data must be sent to the slave unit via a handshaking
mechanism. This can be expressed as follows, ignoring the data values.

default clocking cb_clk @ (posedge clk); endclocking
sequence get_main_mem; // clocking event needed because of end point

first_match(@(posedge clk) rd ##[1:10] valid); endsequence
ap_mem2slave: assert property(// sequence infers clocking event rom the context

get_main_mem.triggered |=> bus_req ##1 ack ##2 done);

2nd antecedent

1st antecedent,
a sequence

1st consequent,
a property

2nd consequent

48 SystemVerilog Assertions Handbook, 4th Edition

Rule: An assertion sequence can infer a clock in other contexts, such as from a default
clocking or from a procedural clocking event if the sequence is used inside a procedure (e.g.
always_ff). Thus, sequence declarations need not have the clocking event specified in the
declarations. In addition, the triggered and matched sequence methods could be used on
instances of sequences

Guideline: Until tools support this new feature, sequence declarations that will be used with a
.triggered or .matched methods should have the clocking event specified inside the declarations.
Thus, the above sequence should be declared as:

sequence get_main_mem; @ (posedge clk)first_match(rd ##[1:10] valid); endsequence

Rule: An end point of a sequence is obtained through the use of the .triggered method.27 If an
assertion directive has a sequence with a .triggered method applied to it, then the end point of
the sequence is computed as follows:
1. At every clocking event an evaluation start of that sequence is performed.

a. If at the start of the evaluation there is no match (i.e., first element of sequence is zero)
then the sequence is discarded from consideration for an end point, since there is no
possibility of a match.

b. However, if at the start of the evaluation the first term is a match, and if the sequence is
multi-threaded (see 2.3.2), then each thread of the sequence is separately evaluated until
it reaches its ending clock tick; thus, there could be multiple end points.

c. If at any cycle during the evaluation of a thread there is no match then that thread is
discarded from consideration for an end point.

2. If at the ending of a thread of a sequence there is a match, then that thread is considered as an
end point (i.e., method returns true).

3. If at the ending of a thread of a sequence there is no match, then that thread is not considered
as an end point (i.e., method returns false)..

4. If at the clocking event there is no end point from any thread, then .triggered returns false.
5. If at the clocking event there is an end point from any thread, then .triggered returns true.

Guideline: To avoid unexpected results when end points are used in an antecedent or in a wait
statement (see 2.5.4.3), apply the first_match function in the declaration of the sequence that is
multi-threaded. This is because a .triggered or .matched function on a sequence that is multi-
threaded will produce multiple points, each of which is generated at the termination of each
thread with a Boolean evaluation of true or false. Do not use the first_match method on a
sequence that has the triggered method applied to it. For example:
//1) end point of a first match of a sequence (ch2/2.5/s1c_ep.sv, s1c_ep.jpg)

sequence q_ab; @ (posedge clk) a ##[1:3] b; endsequence
sequence q_abFM; @ (posedge clk) first_match(a ##[1:3] b); endsequence
ap_q_abFM_triggered: assert property(@ (posedge clk) q_abFM.triggered |=> 1);

// 2) first match of end points of a sequence
ap_FMq_ab_triggered: assert property(@ (posedge clk)

first_match(q_ab.triggered) |=> 1); // first_match of end points is meaningless
// (q_ab.triggered) |=> 1) // SAME AS ABOVE

27 The usage of ended function is deprecated in IEEE 1800-2009 because the triggered meets the
ended and triggered

DO NOT USE THIS

