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6.1 Traditional Design Process  

The traditional front-end design process consists of the following steps for each design or IP:  

1) A requirement specification (with potentially some algorithms in a high-level language) written 

in a natural language (e.g., English); 2) An architectural plan that represents the high level 

implementation approach; 3) A verification and test plan that addresses the testbench and 

verification approach and classes of tests; 4) The RTL design and synthesis; 5) The design 

verification with details about the testbench and automatic verification; and 6) The final design 

documentation and delivery.   

The traditional design process relies too much on a natural language, such as English, as a mean 

of communication for the definition of requirements and verification and test approaches; that can 

often lead to several misunderstandings.  In addition, that process does not use an executable, or 

provable method, to characterize design requirements and restrictions. 

6.2 Design Process with SVA  

Figure 6.2-1 represents a typical design process with SVA  (also see Figure 7.1-1 for the typical 

verification design flow).  All designs must have requirements documentation.  The requirements 

can be classified as system-level and module-level.  The requirements document can be 

supplemented with SystemVerilog Assertions to avoid ambiguities caused by a natural language 

description.   

 

Figure 6.2-1 Typical Design Process with ABV Using SVA 
 

6.2.1 System-level Assertions  
SystemVerilog properties can be used to capture system/subsystem level requirements, and those 

properties can then be reused in a testbench environment, later in the design cycle.  System-level 

requirements can have the following classifications:  

· Functional: This represents the purpose of the design.  

· Performance: That consists of items such as baud-rate, frequency, capacity, speed, 

throughput, and latencies.  

· Interface: Since the design under consideration may interface to existing busses, and 

connections to other subsystems, the requirements document needs to include software, 

hardware, and communications interfaces. That should also include expected modes of 

operations and restrictions (e.g., parity type, frame size, master, slave).  

· Safety: Many designs are subject to security and safety issues to insure safe operations 

under certain conditions or failures (e.g., during reset, power down, power-up, hot 

plugging, bus or unit failure).  
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· Operational: Some designs are subject to user interfaces for commands, configurations, 

or maintenance. 

· Resource: Resources are requirements that are critical to a design, and include items 

such as power, memory, form-fit factor (i.e., size), etc.  

The performance, interface, and safety classifications can be expressed in SystemVerilog 

Assertions using libraries defined in checkers or in modules.  It is important to note that 

requirements are independent of the architecture and implementation.  However, the architecture 

and implementations are a result of the requirements.   

The following sub-sections demonstrate with a few examples, how SystemVerilog Assertions can 

be used in the definition of system-level requirements. 
 

6.3 Requirements 

Requirements are typically defined in a document (see Section 6.3 for an example of such a 

document).  The "design requirements" should be free of implementation.  The following 

subsections address types of requirements that can be supported by SVA to clarify the intent.  

6.3.1   Cause and effect class of requirements 
Many system-level requirements can usually be represented as cause-effect relationships.  In 

SystemVerilog, the “cause” is called the antecedent, and the “effect” is called the consequent.  

For example:  

Requirement: If the design is subjected to a command to fire the pyro X then within 5 cycles the 

pyro X relay shall be activated.  

 

SVA property definition:  

property pFirePyro;   // use of the clock is important only if it adds significance 
    @ (posedge clk) xaction.Fire_PyroX_CMD==FIRE  |->   
                    ## [1:5]  pyro_sub.PyroX_relay==ACTIVATED; 
endproperty : pFirePyro 

When properties of the requirements are expressed in a precise and an easy to read manner, such 

as with SVA, the review process of those properties tends to bring out important issues that may 

not have surfaced.  For example, for this property safety is an important issue as it would be 

inappropriate to have an early misfire.  With added safety, one could enrich this property with 

safety preconditions:      
property pFirePyroSafe; 

   @ (posedge clk) xaction.Fire_PyroX_CMD==FIRE &&  
    pyro_sub.power_stable  &&  
    pyro_sub.reset_cycle== DONE &&  

   pyro_sub.armed == OK  |->  
          ##[1:5] (pyro_sub.PyroX_relay==ACTIVATED; 

endproperty : pFirePyroSafe 
The xaction is a definition of the origin of the command.  It may be a CPU command that can be 

emulated in a testbench by a transactor module.  The Fire_PyroX_CMD is an identification of 

the instruction used to identify the command in a transactor testbench model.  FIRE, DONE, and 

OK are states of various conditions.  ACTIVATED is a state of the relay, and pyro_sub is the Pyro 

submodule.   The pFirePyroSafe property states that if there is a command to fire the 

pyrotechnics, and the submodule power is stable, and the reset cycle is completed, and the 

pyrotechnics hardware is armed, then within 5 cycles the pyrotechnics relay must be activated.   

6.3.2 Latencies  
Latencies are critical in a requirements document since they identify a response time.  For 

example:  

Requirement:  A 256 word AHB_bus transfer clocked with the AHB clock shall be relayed onto 

the PCI_bus within 100 to 500 cycles of the PCI clock 
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SVA property definition: 
     property pAhb2PCIxfr; 
       @ (posedge ahb_clk)  (xaction.send256to_pci) |=>   
                @ (posedge pci_clk)  ## [100:500] (pci_start_xfr); 
     endproperty : pAhb2PCIxfr 

The above property states that after the command send256to_pci from an AHB bus interface 

synchronized to the ahb_clk, there must be a start of data transfer (signal pci_start_xfr) within 

100 to 500 cycles, synchronized to the pci_clk. 
 

6.3.3  Definition of Processing Algorithms 
Processing algorithms are often specified in a requirements document with the algorithm captured 

as pseudo-code in a modeling language such as SystemC.  For example:  

Requirement: When the CPU commands a Filter operation, the image processing subsystem 

shall perform the Filter algorithm on the loaded image, as described by the function Filter, 

identified in the requirements document.   The Filter operation on a frame size of 384x288 pixels 

shall be performed in less than 1000 cycles.   Figure 6.2.1.3 is a view of a required image 

processing. 

Figure 6.2.1.3 Sample Image Processing 

SVA property definition: 
 property pFilterProcessing; 
    xaction.do_Filter_cmd && image_processor.scene_loaded |->  
          ## [*0:1000]  image_processor.done_Filter; 
endproperty : pFilterProcessing 
property pFilterProcessingCheck; 
        image_processor.done_Filter  |->  
               image_processor.Filter_scene ==  Filter(xaction.sent_scene);  

endproperty : pFilterProcessingCheck 
property pHotPointResults; 
       xaction.get_Filter_hotpoints_cmd |-> ## [0:100] 
             Filter_compare (results.hotpoints_array,                    

                                 Filter_hotpoints(xaction.sent_scene));                                           

endproperty : pHotPointResults 

In these property descriptions, image_processor represents an image processor subsystem; Filter 

represents a function; sent_scene is an image to be submitted for processing that was sent to the 

memory; Filter_scene is the result of the Filter operation on the image; Filter_hotpoints is 

another function that identifies the compression algorithm of the detected hot points from the 

scene; Filter_compare is a function that compares array objects.  Note that these functions can be 

written in C, as the SystemVerilog Direct Programming Interface (DPI) allows direct inter-

language function calls between SystemVerilog and any foreign programming language with a C 

function call protocol and linking model.  Functions implemented in C and made available with 

the import declarations in SystemVerilog can be called from SystemVerilog; such functions are 

referred to as imported functions. 
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The property pFilterProcessing states that if there is a filter processing command, and the image 

scene is loaded into the image processor memory, then within 1000 cycles, the image processor 

completes the filter algorithm on that image.  The property pFilterProcessingCheck compares the 

actual results of the filter operation performed on the image processor against the expected 

results, per the algorithm defined in the requirements document.  The property pHotPointResults 

states that upon the initiation of a command to read the hot points, the results of another algorithm 

are compared against expected results.   
 
 

6.3.4 Interface Assertions 
Interface assertions represent in a formal manner the properties of the interfaces and black-box 

protocols.  The assertions of a common interface should be grouped in a checker to facilitate 

reuse (see Chapter 5).  These assertions not only help in the documentation, understanding, and 

clarification of the interfaces, but also provide a verification mechanism of the design at the I/O 

interface level.  Ideally, those properties need to be defined by a verification engineer from the 

requirement documents, rather than by the RTL designer.  This avoids possible misunderstanding 

of the requirements made during the implementation.  However any unique assumptions (e.g. use 

of a subset of the interface) should be captured as interface assumptions.  While integrating the 

different blocks of RTL, these block-level assumptions can act as “guardian” for the individual 

block’s behavior.   Another very important aspect to be considered while dealing with interfaces 

is the interface functional coverage as that ensures that various sequences and properties are 

tested during simulation.  An added benefit of adding interface assertions is that in a system-level 

simulation, they speed up debug of any failing simulations as they tend to be the closest to the 

block boundary where the problem originates (assuming that the problem is due to an interface 

protocol related issue).49  Section 6.3 provides a complete SystemVerilog FIFO interface example 

with assertions.50 
 

6.4 Architectural Plan   

Architectures represent not only a top-level basis of the design, but also information about the 

registers, interface cycle timing, design assumptions, and restrictions, along with rationale for 

those decisions.51  The architectural plan is the forefront to implementation and verification of the 

design.   
 

The sequences, properties, and assertions statements clarify architectural issues and design 

assumptions.  The SystemVerilog properties and assertions are very useful for reviews, and for 

the engineers who will implement and verify the design.  Any property and assertion code written 

during the architecture planning stage can be reused during the verification phase of the design.  

Advanced ABV methodology recommends that any register definition shall also contain 

necessary functional coverage requirements on the individual fields and the cross of various fields 

(the individual fields may be spread across various registers).  The cross coverage can be done 

with assertions or with SystemVerilog covergroups (see 5.6.3 for an example).   
 

                                                      
49 Prior to the popularity of assertions, the authors have experienced cases where several interface errors were carried 

all the way through chip manufacturing.  These errors ranged from something as trivial as the polarity of an interface, 

to misunderstandings in the protocols.  Assertions based on requirements, and followed through by designers to the 

RTL and testbench phases could have avoided those errors.  

50 Also available in the downloadable files /ch6/*.sv. 

51 The use of term "Architecture" in this section is synonymous to “Micro-Architecture” used by design teams. 
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6.5 Verification and test Plan 

The terms "verification" and "test" are often interchanged because they both deal with the concept 

of checking that the item in question is operational as intended.   However, those two terms have 

different connotations as verification deals with the "what" to verify, and test deals with the 

"how" to implement the verification.  Thus,  

· A verification plan addresses the items to be verified, but without addressing the methodologies.  For 

example, a verification plan for a CPU will address that the items to be verified include the ISA, 

the IOs, environment (e.g., ISA mix, memory types (fast/slow), application software written in X 

language, etc). 

· A Test plan addresses how the items that need to be verified will be checked. For the CPU example, 

the test methodology may include simulation, emulation, use of assertions, use of UVM, constrained 

random tests, types of mixes, test application code, tools, instruments, etc. 
 

The verification plan is a specification for the verification effort.  It provides a strawman 

document that can be used by the design community to identify, early in the project, what needs 

to be verified.  Early mistakes in the verification approach can be identified and corrected.  A 

byproduct of the verification plan exercise is the revisit of the requirements.  This enforces the 

process of verifying those requirements, thus helping in the identification of poorly specified or 

ambiguous requirements.    

A test plan is a document that defines the following:  
 

1. The verification technologies.  The plan identifies the verification technologies that 

will be used for the project.  These technologies include assertions, verification libraries, 

functional coverage, cross coverage, linting, code coverage, frameworks (e.g., UVM), 

simulators, emulators, formal verification, and tools.  It should also identify how these 

technologies are used.  For example, formal verification may be used at the subblock 

level, while simulators may be used at the chip level, and emulators may be used at the 

system / software verification level.       

2. Verification environment for the design-under-test.  This includes the structure of the 

testbench, and special instructions.  The structure encompasses the component models 

(at the interface level), packages (at the declaration or higher level), and file structures.  

The verification environment will also include verification units to insure that the actual 

results produced by simulation of the design meet the expected results. 

3. Tests or transactions applied to the design.  These tests are used to verify the design’s 

functional correctness as specified in the requirements specification.  This includes tests 

at the top-level of the design as well as the subblocks.  SystemVerilog Assertions can be 

used to specify assumptions about inputs, and transactions at the interfaces, along with 

expected results within a range of cycles, to allow for variations in the DUT cycle 

timing.  Many of these transactions can be extracted from the requirements documents 

(system and architecture).  A current trend in verification is to automatically generate 

stimulus/tests using the SystemVerilog Assertions and assumptions as a base for the 

definition of the constraints.       

4. Exit criteria. These criteria identify when verification is complete, or at least achieved 

the goals.  They may include code and functional coverage, as well as passing all tests 

and lint checks, etc.  Code coverage may include line, branch, condition, toggle, path 

and FSM.52  Functional coverage represents a user-defined model of functionalities of 

the design that the verification process should address.  SystemVerilog has a rich set of 

constructs to capture the coverage model.   

                                                      
52 Verification Methodology Manual   http://vmmcentral.com/ 


