
62 SystemVerilog Assertions Handbook, 4th Edition

bit clk, a=1;
int unsigned k=16'hF0F0, m;
initial forever #10 clk=!clk;
default clocking cb_clk @ (posedge clk); endclocking
sequence q_with_default(

logic w, untyped d=16'h0000, int unsigned x, y=16'hFF00);
w ##2 x==y ##1 x==d;

endsequence : q_with_default
ap_q_with_default: assert property(q_with_default(a, , k));

2.7 Local variables in formal arguments and in sequence and property
declarations

A powerful feature of SystemVerilog Assertions is the ability to declare dynamically created
variables local to properties and sequences. Some simple examples were already demonstrated
and additional examples in the application of local variables in sequences and properties are also
demonstrated throughout this book (see index). SystemVerilog allows individual copies of those
local variables for each successful attempt of the asserted property. The local variables can be
initialized, assigned (and reassigned) a value, operated on, and compared to other expressions.
However, because complex sequences and properties are often composed of simpler sequences
and properties, it is often necessary to interconnect those local variables among those sequences
and properties. This methodology facilitates the construction of assertion statements as it provides
for a divide-and-conquer approach to the problem

Rule: There are two positions where local variables can be declared:
1. In the assertion variable declaration section of a property or sequence
2. In the sequence_port_list or property_port_list as formal arguments.

This section provides the rules in applying local variables in properties and sequences. It then
addresses the rules in applying local variables defined in formal arguments. The syntax of a
sequence with formal arguments and local variables is shown below.

property property_identifier
[([property_port_list])] ;

{ assertion_variable_declaration }
[clocking_event] [disable iff (expression_or_dist)]

property_statement
endproperty [: property_identifier]

sequence sequence_identifier
[([sequence_port_list])] ;
{ assertion_variable_declaration }
sequence_expr ;

endsequence [: sequence_identifier]

property_port_list ::= property_port_item {, property_port_item}
property_port_item ::=

{ attribute_instance }
[local [property_lvar_port_direction]] property_formal_type
port_identifier {variable_dimension} [= property_actual_arg]

property_lvar_port_direction ::= input

Local variables declared and
optionally initialized (with some
restrictions) here.
Direction for properties is limited to
input only.

If local or untyped
argument then treated
as formal variable
arguments.

Understanding Sequences 63

sequence_port_list ::= sequence_port_item {, sequence_port_item}
sequence_port_item ::=

{ attribute_instance }
[local [sequence_lvar_port_direction]] sequence_formal_type

port_identifier {variable_dimension} [= sequence_actual_arg]
sequence_lvar_port_direction ::= input | inout | output
assertion_variable_declaration ::=

var_data_type list_of_variable_decl_assignments ;

Rule: [1] In general, a local variable formal argument behaves in the same way as a local
variable declared in an assertion_variable_declaration. Thus, the rules for the variables declared
in the assertion_variable_declaration region (Section 2.6) also apply to those variables declared
as formal arguments. cal variable
formal argument or a local variable declared in the assertion_variable_declaration.

Rule: A non-local formal argument is by default of direction input, and can have a default
value; however, a non-local formal argument cannot be written into it and is not considered a
local variable. In the following example, formal arguments i and j are of direction input, and
cannot be written into them. Their values are samples in the Preponed region.

sequence q_non_local_formal_arguments(int i=0, bit j);
// (a, i=9, j=b) ##1 c==1 && j==c; // Illegal, i and j are not local variables
i>10 ##1 j; // i and j are inputs

endsequence

Rule: A local variable formal argument acts as a local variable of the sequence or property.
It can be exported out only if direction inout or output (in sequence declarations only, and not in
property declaration). An untyped formal argument cannot have a direction or a type; it can be
treated as a local formal argument of direction input or output depending on how it is used
within the sequence or property. An untyped formal argument can also be treated as a non-local
formal argument if it is not assigned a value in the body of the sequence or property in which it is
used. For example (Ch/2.7/type_m.sv)

bit clk, a, b, c;
default clocking cb_clk @ (posedge clk); endclocking
sequence q_local_formal_arguments2(

local input int i=0,
untyped j, k,
local output bit t);

(i>10, j=i) ##1 (1, j=data, t=1'b1) ##1 k;
endsequence
property p_test_untype;

int x, z; // local variable
bit r; // local variable

(a, x=10) ##1 q_local_formal_arguments2(
.i(x), .j(z), .k(a), .t(r)) ##1 x==z ##0 r;

endproperty : p_test_untype
ap_test_untype: assert property(p_test_untype);

Rule: A local formal argument can be of any type provided it is used such that the
resulting expression results in a type that is cast compatible with an integral type. [1] The term
integral is used throughout the standard to refer to the data types that can represent a single
basic integer data type, packed array, packed structure, packed union, enum variable, or time
variable. Therefore, a local formal argument can be of types int, bit, byte, vectors (e.g.,
logic[15:0]), shortreal, real, realtime, packed array, packed structure, packed union,
dynamic arrays, queues, and associative arrays, enum. The following example demonstrates legal
assertion constructs.

If local then treated
as formal variable
arguments.
Direction for
sequences can be
input | inout |
output

j is treated as an output formal
argument because it is assigned
in the sequence matched item.
k is treated as non-local formal
argument. k is never assigned.

