62 SystemV erilog Assertions Handbook, 4™ Edition

bit clk, a=1;

int unsigned k=16'hFOFQ, m;

initial forever #10 clk=!clk;

default clocking cb_clk @ (posedge clk); endclocking

sequence g_with_default(
logic w, untyped d=16'h0000, int unsigned x, y=16"'hFF00);
W ##2 x==y ##1 x==d;

endsequence : q_with_default

ap_g_with_default: assert property(q_with_default(a, , k));

// The “y” actual takes the default value of 16’ hFF00

2.7 Local variablesin formal arguments and in sequence and property
declarations

A powerful feature of SystemVerilog Assertions is the ability to declare dynamically created
variables local to properties and sequences. Some simple examples were already demonstrated
and additional examples in the application of local variables in sequences and properties are also
demonstrated throughout this book (see index). SystemVerilog allows individual copies of those
local variables for each successful attempt of the asserted property. The local variables can be
initialized, assigned (and reassigned) a value, operated on, and compared to other expressions.
However, because complex sequences and properties are often composed of simpler sequences
and properties, it is often necessary to interconnect those local variables among those sequences
and properties. This methodol ogy facilitates the construction of assertion statements as it provides
for a divide-and-conquer approach to the problem

Q] Rule: Therearetwo positions where local variables can be declared:
1. Intheassertion variable declaration section of a property or sequence
2. Inthesequence port_list or property port_list asformal arguments.
This section provides the rules in applying local variables in properties and sequences. It then
addresses the rules in applying local variables defined in formal arguments. The syntax of a
sequence with formal arguments and local variables is shown bel ow.
property property_identifier
[([property_port_list])];
{ assertion_variable declaration }
[clocking_event] [disableiff (expression or_dist)]
property_statement
endproperty [: property_identifier]

A A

sequence sequence_identifier «— | Local variables declared and
[([sequence port list])]; optionally initialized (with some
{ assertion variable declaration} €] restrictions) here.
Sequence_expr , N Direction for propertiesis limited to
endsequence [: sequence _identifier | inout onlv.

property_port_list ::= property_port_item {, property_port_item}

property port_item ::=

i i If local Of untyped
{ attribute_instance } ocal Of untype

_— argument then treated
[local [property_lvar_port_direction]] property_forma_type asformal variable
port_identifier {variable_dimension} [= property_actual_arg] arguments.

property_Ivar_port_direction ::= input

Understanding Sequences 63

sequence port_list ::= sequence_port_item {, sequence _port_item}

sequence_port_item ::= If local then treated
{ attribute_instance } asformal variable
[local [sequence lvar_port_direction]] sequence_formal_type arguments.
port_identifier { variable_dimension} [= sequence_actual_arg | Direction for
sequence _lvar_port_direction ::= input | inout | output sequences can be
assertion_variable declaration ::= input | inout |
var_data typelist_of variable decl_assignments; output

L Rule: [1] In general, a local variable formal argument behaves in the same way as a local
variable declared in an assertion_variable declaration. Thus, the rules for the variables declared
in the assertion_variable declaration region (Section 2.6) also apply to those variables declared
as formal arguments. From here on, the term “local variable” shall mean either a local variable
formal argument or alocal variable declared in the assertion_variable declaration.

1 Rule: A non-local formal argument is by default of direction input, and can have a default
value, however, a non-local formal argument cannot be written into it and is not considered a
local variable. In the following example, formal arguments i and j are of direction input, and
cannot be written into them. Their values are samples in the Preponed region.

sequence g_non_local_formal_arguments(int i=0, bit j);
I (3, 1=9, j=b) ##1 c==1 && j==c; // " lllegal, i andj are not local variables
i>1e ##1 j; // v'iandj areinputs

endsequence

1 Rule: A local variable formal argument acts as a local variable of the sequence or property.
It can be exported out only if direction inout or output (in sequence declarations only, and not in
property declaration). An untyped formal argument cannot have a direction or a type; it can be
treated as a local formal argument of direction input or output depending on how it is used
within the sequence or property. An untyped formal argument can also be treated as a non-local
formal argument if it is not assigned a value in the body of the sequence or property in whichiit is
used. For example (Ch/2.7/type_m.sv)

bit clk, a, b, c;

default clocking cb_clk @ (posedge clk); endclocking

sequence g_local_formal_arguments2(

local input int i=0 ..
untyped ?, K, ’ /Jls treated as an output formal

local output bit t); argument because it is assigned
(i>10, j=i) ##1 (1, j=data, t=1'bl) ##1 k; in the sequence matched item.
endsequence k is treated as non-local formal

property p_test_untype;
int x, z; // local variable
bit r; // Llocal variable
(a, x=10) ##1 g_local_formal_arguments2(
Li(x), .j(z), .k(a), .t(r)) ##1l x==z ##0 r;
endproperty : p_test_untype
ap_test_untype: assert property(p_test_untype);

argument. k is never assigned.

[d Rulee A loca formal argument can be of any type provided it is used such that the
resulting expression results in a type that is cast compatible with an integral type. [1] The term
integral is used throughout the standard to refer to the data types that can represent a single
basic integer data type, packed array, packed structure, packed union, enum variable, or time
variable. Therefore, a local formal argument can be of types int, bit, byte, vectors (e.g.,
logic[15:0]), shortreal, real, realtime, packed array, packed structure, packed union,
dynamic arrays, queues, and associative arrays, enum. The following example demonstrates legal
assertion constructs.

64 SystemV erilog Assertions Handbook, 4™ Edition

byte ql[$], y1=3, y2; // ql1 is a queue of bytes
sequence g_test(byte q[$]); // (Ch/2.7/type m.sv)
byte v_q[$];
($rose(a), v_q.push_back(yl)) ##1 q[@]==v_q.pop_front();
endsequence
ap_q: assert property(q_test(ql));
/] ===
string s1="TEST", s2="test";
ap_test: assert property(sl==s2.toupper());
/] ===
typedef enum {BK_RED , BK_GREEN, BK_BLUE } colors_e;
colors_e color;
ap_colors: assert property(color==BK_BLUE);
/] ===
int mem_aarray[*]; // associative array
ap_test : assert property (mem_aarray[addr]==rdata);
/] ===
real r1=1.03, r2=1.03;
shortreal sril, sr2;
int data;
realtime rtl1=101.11, rt2;
sequence d_r(real ra, rb, realtime rt);
ra==rb ##1 rt > rti;
endsequence
ap_g_r: assert property(q_r(rl, r2, rt2));
always @ (posedge clk) rt2<= $realtime;
ap_test: assert property(sl==s2);

1 Rule: Table 2.7 summarizes the rules in the use of local variables. Further explanation on
theserulesis provided afterwards. The table uses the following abbreviations:

o FA standsfor formal arguments.

e MT stands for empty.

e AVD stands for assertion variable declaration section (the region inside the property or

sequence (and not in the port list) where variables can be declared.
e LV standsfor local variable, including thosein FA and in AVD.
o Notation: Local variablesin theformal argument region are prefixed with v
Local variablesinthe AVD region are prefixed with v.

