
36 SystemVerilog Assertions Handbook, 4th Edition

2.3.3.4 [*n : $], [*] [+] Repetition range with infinity
& Rule: The [*n:$] constructs is similar to the [*n:m] construct, except that m is infinite,
instead of being bounded by an integer number, and n means that the repetition applies for a
minimum of n cycles. The [*] is an abbreviation for [*0:$]. The [+] is an abbreviation for
[*1:$].

2.3.4 goto repetition, Boolean ([->n], [|->n:m])
& Rule: The goto repetition operator (Boolean[->n]) allows a Boolean expression (and not a
sequence) to be repeated in either consecutive or non-consecutive cycles, but the Boolean
expression must hold on the last cycle of the expression being repeated. The number of
repetitions can be a fixed constant or a fixed range.

Note: b [->m] is equivalent to (!b [*0:$] ##1 b)[*m]

For example:

 (a) |=> (b[->2] ##1 c);

That above property states that if a then, starting from next cycle, there should be two occurrences
of b, which can be consecutive or non-consecutive. However, c must occur in the cycle following
the last occurrence of b. The following example meets an assertion of the above property.
cycle 1 2 3 4 5 6 7 8 9 -- (a) |=> (b[->2] ##1 c));
a 0 1 0 0 0 0 0 0 0
b - - 0 1 0 0 1 - -

c - - - - - - - 1 – // Succeeds

cycle 1 2 3 4 5 6 7 8 9 -- (a) |=> (b[->2] ##1 c));
a 0 1 0 0 0 0 0 0 0
b - - 0 1 0 0 1 - -

c - - - - - - - 0 - // Fails

Consider the following property expression:
 a ##1 b[->1] |-> c; // This is equivalent
 a ##1 !b[*0:$] ##1 b] |-> c;

In this case, for uniqueness, a better approach would be to use an edge detect function on a. A
first_match is not needed in this case because once b==1, there could not be another thread of !b.

% Guideline:
1) Do not use a first_match function in a sequence that is an antecedent that has a goto

repetition operator unless that sequence has other expressions that are multi-ranged (with a

delay or a repeat). Thus,

 a ##1 b[->1] |-> c; // ü first_match is not needed here

 first_match(a ##1 b[->1]) |-> c; // DD // first_match not needed

 first_match(a[*1:2] ##1 b[->1]) |-> c; // ü first_match needed

2) Avoid using the goto repetition operator on a first term of an antecedent. That creates
unnecessary computations because every false value of the first term starts a new attempt,
instead of making the assertion vacuous.

a[->1] |-> b; // DD is equivalent to
!a[*0:$] ##1 a | -> b; // Successful attempt at every clocking event

$rose(a) |-> b; // üü (Need to evaluate the applicability of the $rose)

3) Avoid consequents that can never fail, and consider rewriting in a style where it can fail.
For example, in the following property statement specification, if a occurs and then b is not
followed by c, then another search for a successful consequent is initiated.

b[->1] is equivalent to:
!b[*0:$] ##1 b

b[->2] is equivalent to:
!b[*0:$] ##1 b ##1 !b[*0:$] ##1 b

Understanding Sequences 37

 $rose(a) |-> ##[0:$] b ##1 c ; // is same as
 $rose(a) |-> (##0 b ##1 c) or (##1 b ##1 c) or (##2 b ##1 c) or ..(##n b ##1 c);

 // where n is infinity, and "or" is the sequence or operator.

 Instead of the above, use the following property statement specification because it can fail:

 $rose(a) |-> b[->1] ##1 c; // The first occurrence of b and then 1 cycle later c.

 // That can fail if c is false after b.

 4) Qualify consequents with the strong operator if they may never reach success. This may
occur if not enough test cases were exercised. Thus,
 $rose(a) |-> strong(b[->1] ##1 c); // will fail if b==1'b0 during the simulation

2.3.5 Non-consecutive repetition, Boolean([=n], [|=n:m])
& Rule: The sequence non-consecutive repetition operator ([=n]) is similar to the consecutive
repetition operator, in that the Boolean expression is repeated in either consecutive or non-
consecutive cycles. However, the non-consecutive repetition operator imposes no restriction on
the relationship between the last cycle of the Boolean expression and the next expression. Thus,
there are exactly n (or a range of) repetitions in a path of length k, where k can be greater than n.
The number of repetitions can be a fixed constant or a fixed range. The item being repeated must
be a Boolean, it cannot be a sequence.

Note: b[=m] is equivalent to (b [->m] ##1 !b [*0:$])
For example:

property pREPT_EQUAL;
 (a) |=> (b[=2] ##1 c);
endproperty : pREPT_EQUAL

That property states that if a then, starting from next cycle, there should be two occurrences of b

either consecutive or non-consecutive, and then some time later (i.e., next cycle or later) c occurs.
The following examples satisfy the above property.
cycle 1 2 3 4 5 6 7 8 9 A (a) |=> (b[=2] ##1 c));
a 0 1 - - - - - - -

b - - 0 1 0 0 1 0 0 - path of length k==10 has n==2 repetitions
c - - - - - - - 0 0 1

cycle 1 2 3 4 5 6 7 8 9 (a) |=> (b[=2] ##1 c));
a 0 1 - - - - - - -

b - - 0 1 0 0 1 0 1 // A 3rd b without a c

c - - - - - - - 0 0 // M Fails

Note: if after the second occurrence of b a new b occurs (and NO c), the property fails.
However, if after the second occurrence of b, c occurs anytime before a new b, or at the same
time as the last b, then the property succeeds.
% Guideline:
1) In an antecedent, DO USE a first_match function in a sequence with a sequence non-

consecutive repetition operator. This guideline is because this operator can cause multiple
threads. For example:

 a ##1 b[=1] ##1 c |-> d; // DD is equivalent
 a ##1 !b[*0:$] ##1 b ##1 !b[*0:$] ##1 c |-> d ;
 // The (!b[*0:$] ##1 c) can cause multiple threads

 first_match($rose(a) ##1 b[=1] ##1 c) |-> d; // üü (evaluate applicability of $rose)

b[=1] is equivalent to:
!b[*0:$] ##1 b ##1 !b[*0:$]
b[=2] is equivalent to:
!b[*0:$] ##1 b ##1 !b[*0:$] ##1 b ##1 !b[*0:$]

38 SystemVerilog Assertions Handbook, 4th Edition

2) Avoid using the sequence non-consecutive repetition operator on a first term of an
antecedent. That creates unnecessary computations because every false value of the first term
starts a new attempt, instead of making the assertion vacuous. This can be a large performance
overhead for a simulator to track, and it makes the coverage statistics less meaningful.

 b[=1] ##1 c |-> d; // DD is equivalent

 !b[*0:$] ##1 b ##1 !b[*0:$] ##1 c |-> d ; // DD antecedent is multi-threaded

 first_match($rose(b) ##1 !b[*0:$] ##1 c) |-> d; // üü

 // (Evaluate the applicability of the $rose)

2.4 Sequence composition operators

Sequences are one of the more powerful features of SystemVerilog Assertion. Basic protocol
verifiers can easily be built using these sequences. However, complex protocols/scenarios
require the ability to describe or specify interactions between sequences, such as choice or
inclusion of sequences, and the use of local variables that are exclusively reserved for each
attempt of the sequence. SystemVerilog provides sequence composition operators to combine
individual sequences in a variety of ways that enhance code writing and readability. The
sequence composition operators specify the relationships between sequences. These operators
include:

� ## : sequence concatenation

o ##0 sequence overlapping concatenation (a.k.a. fusion). The ##0 constructs a
sequence in which two sequences overlap by one cycle. Note: the ##0 operator

fuses sequences, meaning that the last term of the left sequence is immediately (in the
same cycle) followed by the first term of the right sequence. If those sequences are

Boolean, many users use the logical && operator instead. However, though equivalent in
functionality, the "Boolean_expression && Boolean_expression" has a different

connotation than the "Boolean_expression ##0 Boolean_expression"; the &&

operator has a combinational logic inference, whereas the ##0 has a sequential inference

(e.g., occurring after). Consider the following example where a new "a" must be
repeated "g" times, where "g" is a module variable of type int:
property p_g; //
 int v; //
 ($rose(a),v=g)|->(a==1'b1, v=v-1'b1)[*1:$] ##0 v==1'b0 ##0 a==1'b1;
endproperty

 To assure a possible pass, consider using the first_match() operator, specifically:
 ($rose(a),v=g)|-> first_match((a==1'b1, v=v1'b1)[*1:$] ##0 v==1'b0)
 ##0 a==1'b1;

o ##n fixed cycle delay. The next subsequence follows the preceding one after n
cycles (e.g., a ##2 b); this is equivalent to (a ##1 1'b1 ##1 b).

o ##[m:n] range cycle delay. The next subsequence follows the preceding one
after a minimum of m and a maximum of n cycles until the first element of the
next subsequence is true (e.g., a ##[2:5]b). A range cycle delay can start
multiple threads;

 (a ##[2:5] b) is equivalent to
(a ##2 b) or (a ##3 b) or (a ##4 b) or (a ##5 b).

� or : sequence ORing (a.k.a. disjunction). The sequence or operator constructs a
composite sequence that holds true if either of the two operand sequences hold at the

current cycle. A sequence or operator between two sequences starts two concurrent
threads, one for each sequence; each sequence in turn can be mulit-threaded.

