
SystemVerilog Assertions Dictionary 315

An alternative to the ORing of the properties would be to use the sync_accept_on.
property pReadSchedule2;
 @ (posedge clk) sync_accept_on (interrupt)
 $rose(read) |-> (##[1:5] rd_served);
endproperty : pReadSchedule2

property pWriteIntrpt ; // Property passes if interrupt or wr_served
 @ (posedge clk) sync_accept_on (interrupt)
 ($rose(write)) |-> (##[1:5] (wr_served));
endproperty : pWriteIntrpt

You can also use the disable iff clause to cause the property to be cancelled when an

interrupt occurs. However, in this case, since an interrupt is a normal operating condition,

this may not be desired.
property pReadSchedule3; // Property cancelled if interrupt, passed if rd_serve
 @ (posedge clk) disable iff (interrupt)
 $rose(read) |-> (##[1:5]rd_served);
 endproperty : pReadSchedule3

property pWriteIntrpt2; // Property cancelled if interrupt, passed if wr_served
 @ (posedge clk) disable iff (interrupt)
 ($rose(write)) |-> (##[1:5] (wr_served));
endproperty : pWriteIntrpt2

The following coverage provides information about the occurrences of sequences (see 4.5.1.4

for more information on the statistics obtained with the cover statement).
cq_read_no_intrpt: cover sequence ($rose(read) ##[1:5]rd_served);
cq_read_intrpt: cover sequence ($rose(read) ##[1:5] interrupt && !rd_served);
cq_write_no_intrpt: cover sequence ($rose(write) ##[1:5]wr_served);
cq_write_intrpt: cover sequence ($rose(write) ##[1:5] interrupt && !wr_served);

10.15 Data Integrity in memory: data read from memory should be same as what
was last written

Given a large memory (or a port), the following properties must be verified:

* Data should never be read before it is first written; thus only valid data must be read.

* Data read from the memory is what was last written into it.

Data integrity can easily be checked using a scoreboard that emulates the behavior of the DUT’s

memory, and then compare the read data results of both memories. However, because the DUT
memory is very large, using a memory for the scoreboard can be expensive in terms of resources

Assertion suceeds

vacuously if interrupt==1

Assertion suceeds

vacuously if

interrupt==1

Assertion cancelled if

interrupt==1

Assertion cancelled if

interrupt==1

316 SystemVerilog Assertions Handbook, 4
th
 edition

used by the simulator. In this solution, an associative array is used to maintain the scoreboarding

because it is more efficient. This model also brings up some interesting issues in the construction

of properties.

File ch10/memory_data_integrity_check.sv provides the complete model and the testbench. The

figure below represents the architecture of the design, verification model, and the testbench.

module memory_data_integrity_check (// /ch10/10.15/memory_data_integrity_check.sv

 input bit write, // memory write

 input bit read, // memory read

 input bit[31:0] wdata, // data written to memory

 input bit [31:0] rdata, // data read from memory, next cycle as read

 input bit[31:0] addr, // memory address -- small for simulation

 input bit reset_n, // active low reset

 input bit clk); // clock

 timeunit 1ns; timeprecision 100ps;
 default clocking cb_clk @ (posedge clk); endclocking
 int mem_aarray[*]; // associative array (AA), stores address
 bit [31:0] r_aadata, r_aadata_dly; // data read from memory
 bit mem_aarray_exists; // exists at specified address

 assign mem_aarray_exists = mem_aarray.exists(addr);
 always_comb
 if(mem_aarray_exists)
 r_aadata = mem_aarray[addr]; // debug

 always@ (posedge clk)begin
 if (reset_n==1'b0) mem_aarray.delete; // Clears AA elements
 else if (write) mem_aarray[addr] = wdata; // store data
 r_aadata_dly <= r_aadata;
 end

ch9/OKmemory_data_integrity_check.sv

scoreboard,
supports

assertions

SystemVerilog Assertions Dictionary 317

 property p_read_after_writes;
 (read && mem_aarray_exists) |=>
 rdata==r_aadata_dly;
 endproperty : p_read_after_writes
 ap_read_after_writes : assert property (p_read_after_writes);

 // never a read on an non-written address
 ap_read_before_write : assert property (not (read && !mem_aarray_exists));
endmodule : memory_data_integrity_check

10.16 Data integrity in queues. interface data written must be properly transferred
to the receiving hardware

The data received from an interface (with wr_33 control) must be properly transferred to the

receiving hardware (with rd_25 control). The data is sourced at a 33 MHz rate and is extracted at
a 25 MHz rate. The data extracted by the receiver (rdata) is in the same order that it was

transmitted. The following figure shows a block diagram of the verification environment and the

timing diagram for the interface.

1. DUT has internal asynchronous FIFO to
provide this data transfer.

2. Checker uses a SystemVerilog queue

instead.
3. Checkers verifies for illegal conditions,

such as a read with no data in the queue or

write on a full queue.

4. Checker assumes a queue size of 1024
5. checker verifies that data read from the

queue (i.e., the expected result) is same as

output data from DUT.

For this problem, it is important to verify that the data inserted into the FIFO at the 33 MHz rate

is correctly read from the memory at the 25 MHz rate. It is also important to verify that there is
no data overrun on the write of data (i.e., the FIFO data exchange does not exceed the size of the

FIFO – capacity exceeded, more data written than read).

Key notes about this model are addressed below. The simplest solution to express this

verification is to create a verification module or checker, which can be instantiated or bound to a

verification module. In this model, a SystemVerilog queue is used to store data at the 33 MHz

rate upon a wr_33 signal. The declaration int dataQ [$] declares an unbounded queue. Data is
stored into the queue with the push_front method. A rd_25 signal, synchronous to the 25 MHz

clock, causes data to be popped into a variable rdata_from_q from the queue, using the pop_back

method. In this model, it is understood that the data is extracted by the receiver (rdata) in the
cycle following the rd_25 control. With the use of the queue, and queue management code, the

verification logic needs not be concerned with the synchronization between the two clocks. That

simplifies the definition of the verification properties. In fact, one property is needed to verify the

data integrity:

