
166 SystemVerilog Assertions Handbook, 4th Edition

example, suppose that a cache controller performs behavior A when there is a cache hit (e.g., fetch
data from the cache), or performs behavior B when there is a cache miss (e.g., invalidate cache
entry, fetch data from main memory through an interface, store data into the cache, supply the
needed value). To simplify the problem for the formal verification tool, one could constrain or
restrict the problem to one of the two cache modes. Thus, the following can be written in one

set of scenarios:
 restrict property (@(posedge clk) cache_hit ==); // cache miss scenario
Another formal verification session could use this restriction:
 restrict property (@(posedge // cache hit scenario

Another example of a restrict statement is the reset -
(i.e., one-time) that has a specific behavior during initialization. In this case, one needs to restrict
the signal reset_n to low for 1 to 100 cycles, and then to high forever. Thus,:

 initial
 ap_reset_then_hi : assume property (@ (posedge clk)
 !reset_n[*1:100] ##1 reset_n |=> always (reset_n));

This is a good use of the restrict because it is never illegal for reset_n to go active, but it is a
common scenario to limit possible scenarios.

In formal tools, you can typically re-qualify each assertion as assume, assert, or cover because the

system you are currently examining with formal. However, there is no need for the same re-
qualification for the restrict statements - they mean one and only one thing, and the restrict
should not be used as an assert or assume statement..

 Guideline: Use assume to define legal input states that prevent false failures. Use restrict in
formal verification when you are just trying to reduce the state space by limiting a test to one of
several legal scenarios.
4.5.1.4 cover statement
There exist three categories of cover statements, cover sequence and cover property, immediate
cover. The cover sequence statement specifies sequence coverage, while the cover property
statement specifies property coverage. The syntax for the cover statement is:

 cover_property_statement::=

 cover property (property_spec) statement_or_null

 cover_sequence_statement::=
 cover sequence (
 [clocking_event] [disable iff (expression_or_dist)]
 sequence_expr) statement_or_null

 simple_immediate_cover_statement ::=
 cover (expression) statement_or_null
 deferred_immediate_cover_statement ::=
 cover #0 (expression) statement_or_null
 | cover final (expression) statement_or_null
Note: During simulation, it is possible to detect that a property is covered by querying

the vpi_get() function with the vpiAssertSuccessCovered argument (see 6.2.7.2). For
simulation efficiency, one can then turn off the assertion_identifier for the coverage (e.g.,
$assertoff(1, cp_q_abc)) when coverage is reached.

 Rule: The pass statement in the action block must not include any concurrent assert, assume

or cover statement. Coverage results are divided into two: coverage for properties, coverage for
sequences.

statement_or_null is executed every time a
property attempt succeeds nonvacuously

statement_or_null is executed every
time a sequence thread succeeds. Use
first_match (seq_expression) if
interested in one match

13109
Highlight

Advanced Topics for Properties and Sequences 167

[1] The results of coverage statement for a property contain:

 Number of times attempted
 Number of times succeeded
 Number of times succeeded because of vacuity

The following files represent an example of the cover property and the resulting statistics:
ch4/implication.sv, implication.bmp, implication.jpg, implication_assertion_report.txt,
implication_fcover_report.txt.

[1] Results of coverage for a sequence include:

 Number of times attempted
 Number of times matched (each attempt can generate multiple matches) (see 1.3.2 and

2.3.2). In addition, statement_or_null gets executed for every match. If there are multiple
matches at the same time, the statement gets executed multiple times, one for each match.

[1] The immediate cover statement specifies that successful evaluation of its expression is a
coverage goal.
The results of coverage for an immediate cover statement shall contain the following:

 Number of times evaluated
 Number of times succeeded

A pass statement for an immediate cover may be specified in statement_or_null. The pass
statement shall
be executed if the expression evaluates to true. The pass statement shall be enabled to execute
immediately
after the evaluation of the expression of the immediate cover.
4.5.1.4.1 Understanding coverage
Difference between assertion and coverage?
Assertion and coverage have different significance in simulation versus formal verification (See
Chapter 7).

 Assertion in simulation: In simulation an assertion states that under the set of stimuli
provided by the testbench the underlying property must hold; if there is a test sequence
that causes the assertion to fail, then an error message is provided. If a test sequence
causes the assertion to succeed, a count that keeps tracks of those successes.

 Assertion in formal verification : In formal verification an assertion states says that all
combinations of all inputs and sequences do not cause a failure of the underlying property.

 Coverage in simulation: In simulation, coverage provides feedback information about
how well the design was exercised with sequences of inputs needed to verify that the
design meets the requirements, which can be verified with assertions or supporting logic.
Coverage can also be used to measure how well the design reacts to the stimulus
environment; specifically, coverage can be used to measure latencies from inputs to points
of interest in the design (e.g., outputs or internal states and using delay ranges in the cover,
e.g., cover sequence(a ##[10:15] b);).

 Coverage in formal verification: Cover property simply states that there exists ONE way
to satisfy the property in other words it is reachable, it is not DEAD code.

Should all threads of an input sequence be covered?

most cases, checking for just a successful match of a
thread is sufficient because that is often difficult to reach. An acceptable alternative is to check for
the boundaries (or corner cases). Consider a requirement with the following assertion where req
and rdy are inputs and ack is an output:

default clocking @(posedge clk); endclocking
cp_ab: cover property(a |=> b);

cq_ab: cover sequence(a ##1 b);

c_ab: cover (a && b);

168 SystemVerilog Assertions Handbook, 4th Edition

 default clocking cb_clk @ (posedge clk); endclocking
 ap_req_rdy_ack: assert property(
 first_match($rose(req) ##[1:5] rdy) |-> ##[1:2] ack);
In this example, the input sequence is specified by the requirements and consists of five possible
threads: ($rose(req) #1 rdy, $rose(req) #2 rdy, .., $rose(req) #5 rdy). The latency
between req input and the ack output ranges between 2 to 7, and between a successful antecedent
to the output of 1 to 2. The question then becomes: do we need to verify that the test environment
subjects the design to all possible input threads for this assertion, or is it sufficient to ensure that
just a successful antecedent thread is sufficient, or can just the boundaries in the delays be verified
(in this case ($rose(req) #1 rdy) and ($rose(req) #5 rdy)? As a general case, not all threads of
an input sequence need to be covered if the following conditions are true:

 The generation of the sequence is controlled within the specified range; for example:
class C;
 rand byte dly; // cycle delay between req and rdy
 constraint req2rdy_cst { dly > 0 && dly <= 5 ;}
endclass : C

 The design is not sensitive to this constraint; for example, there is no timeout clock that
measures this delay and reacts accordingly. Thus, this constraint on the input sequence is
more of a system requirement that is not checked in the RTL implementation.

 The FSM implementation for this requirement is autonomous, meaning that the RTL has
a single FSM that waits on the occurrence of a signal before proceeding to the next state
(such as waiting for the rdy signal).

Now consider a requirement with the same assertion ap_req_rdy_ack,where req, rdy, and ack are
internal to a design, and are not input requirements as they emanate from independent FSMs. As a
general case, all threads, or at least the boundaries of the input sequence delays, need to be
covered if any of the following conditions are true:

 The design is sensitive to the constraints of the antecedent; for example, there is a timeout
clock that measures this delay between req and rdy, and the FSM reacts accordingly.

 The FSM implementation for this requirement is generated with multiple coupled FSMs;
thus the design may be sensitive to the cycle delays in the antecedent (such the delay
between req and rdy signal).

Note: Typically, the implementation is not known or need not be considered in defining coverage.
What is important are the requirements and a compromise between depth of coverage and
simulation performance.

Which cover statement is needed: cover property or cover sequence?
The cover statement is similar to the assert statement with the main exception that the cover
statement does not fail when the property is false, and thus does not report errors. Simulation tools
typically provide coverage on assert property by reporting the number of successes and failures;
thus, from a coverage perspective there is less of a need to ever use cover property. This is very
useful from a performance perspective because it is not necessary to duplicate assert property
and cover property statements. However, the coverage reporting can be misleading, regardless
of the source of the reporting (i.e., from the cover or the assert statement). This is because a
reported high coverage may not necessarily mean that all threads of the test sequences needed to
verify the DUT (per the assertions) were indeed exercised. The example discussed previously can
have the following coverage statements:

Advanced Topics for Properties and Sequences 169

cp_req_rdy: cover property(
 $rose(req) ##[1:5] rdy);
cq_req_rdy: cover sequence (
 $rose(req) ##[1:5] rdy);

Applicable when any match of the
sequence is sufficient for verification.

cq_req1_rdy: cover sequence ($rose(req) ##1 rdy);
cq_req2_rdy: cover sequence ($rose(req) ##2 rdy);
cq_req3_rdy: cover sequence ($rose(req) ##3 rdy);
cq_req4_rdy: cover sequence ($rose(req) ##4 rdy);
cq_req5_rdy: cover sequence ($rose(req) ##5 rdy);

Applicable when all matches of the
sequence are needed for verification;
thus all threads need to be checked for
their occurrences.

Note: For the cq_req_rdy sequence coverage, a tool will identify number of times attempted and
the number of times matched, but it will not identify which sequence matched or did not match.
This is why it is necessary to write (or generate) a coverage for each delay. This can be done with
the generate statement, as shown below, instead of the individual cover sequence statements.
 generate for (genvar i=1; i<=5; i++)
 cq_aib: cover sequence ($rose(req) ##i rdy);
 endgenerate

4.5.1.4.2 Using covergroup for data coverage
An alternative to measuring the input sequences is to use the covergroup with bins. This
methodology is fairly tedious and is demonstrated in file ch4/4.5/bining.sv, bining.jpg. Consider
the following property that has range delays:
 property l2_cache(N,M);
 int v_a;
 @(posedge clk) (c_miss, v_a = c_a) |-> (##[N:M] mm_rd && m_a==v_a);
 endproperty
 cp_l2_cache: cover property (l2_cache(2,10));
In this subsystem, a cache miss (c_miss) at the cache address (c_a) must be followed in N to M
cycles by a memory read (mm_rd) at the memory address (m_a) that corresponds to the initial
cache miss address (i.e., the original c_a). The cp_l2_cache cover property described above does
what is intended. However, the coverage result would only identify how many times that property
was covered, but it would not identify how many of the ranges 2 to 10 were covered. To provide
more details, binning of that range using a cover property can be used. The key elements of this
methodology include:

1. The declaration of an integer-like variable to be used for coverpoint:
bit[3:0] l2_cache_miss_delay;

2. Definition of a sequence that updates the value of the coverpoint variable based on the
number of cycles necessary to complete the sequence:
sequence event_after_range_shift_bin_sample(N,M,e); // ch4/4.5/bining.sv

 int m_delay = 0;
 @(posedge clk) ##N (!(e) , ++m_delay) [*0:M-N]
 ##1 (e , temp_bin_sample(N+m_delay));

 endsequence

Function call to update the
covergroup variable
(l2_cache_miss_delay) and then
sampling of this covergoup (t_cg).

170 SystemVerilog Assertions Handbook, 4th Edition

 // -------------------- cover with temporal binning applied -----
 property l2_cache_bin_sample(N,M);
 int v_a;
 @(posedge clk) (c_miss, v_a = c_a)
 |->
 event_after_range_shift_bin_sample(N,M,(mm_rd && m_a==v_a));
 endproperty
 cp_cache: cover property (l2_cache_bin_sample(2,10));

3. Declaration and instantiation of a covergroup and the sampling for the covergroup.

covergroup temp_cg;
 type_option.merge_instances = 0;
 option.per_instance = 1;
 option.get_inst_coverage = 1;
 coverpoint l2_cache_miss_delay;

 endgroup
 temp_cg t_cg = new; // instantiation of covergroup
 function void temp_bin_sample(int M);
 l2_cache_miss_delay = M; // update of covergroup variable
 t_cg.sample(); // Sampling of covergoup
 endfunction

 Guideline: If it is necessary to ensure that coverage of separate threads are performed in a
simulation write separate cover sequence statements for those sequences; a generate statement
may be useful (Section 4.5.1.4.1). Relying on a property or cover statement of a multi-threaded
property can lead to misleading coverage reporting, as explained above. Another option is to use a
covergroup to measure the various covered delays, but this approach requires more supporting
code and might be labor and simulation intensive.

4.5.1.5 Expect construct

 Rule: The expect
statement about what should be done with a property in terms of verification. However, the
expect statement makes use of a property. Specifically, [1] The expect statement can appear
anywhere a wait statement can appear (e.g., always procedure, task (but not in classes!!!)). The
expect statement is a procedural blocking statement that allows waiting on a property evaluation.
The expect statement accepts the same syntax used to assert a property.
 expect_property_statement ::=
 expect (property_spec) action_block
An expect statement causes the executing process to block until the given property succeeds or
fails. The statement following the expect is scheduled to execute after processing the Observed
region in which the property completes its evaluation.

When the property succeeds or fails, the process unblocks, and the property stops being evaluated
(i.e., no property evaluation is started until that expect statement is executed again). When
executed, the expect statement starts a single thread of evaluation for the given property on the
subsequent clocking event, that is, the first evaluation shall take place on the next clocking event.
If the property fails at its clocking event, the optional else clause of the action block is executed. If
the property succeeds, the optional pass statement of the action block is executed. The execution of
pass and fail statements can be controlled by using assertion action control tasks.

Thus, the expect statement is a blocking statement that includes inline a property, and an action is
executed based on the result of the evaluation of the property. Because it is a blocking statement,
the property can refer to automatic as well as static variables. For example, the task below waits
between 1 and 10 clock ticks for the variable data to equal a particular value, which is specified

