
Advanced Topics for Properties and Sequences 153

4.3.2 Clocking Rules in Assertions
Rule: Clocking in a property propagates to verification directives: A clocking event specified

inside a PROPERTY declaration is propagated to the enclosing verification directive (e.g., assert,
cover, assume). Thus,
property p_with_one_clock; @(posedge clk) a |=> b; endproperty : p_with_one_clock
ap_with_one_clock : assert property (p_with_one_clock); //

4.3.3 Clock Flow
Rule: Flow through |->, |=> : When no explicit clock event is specified in an implication

operator, the clock from the end point of the antecedent is understood to flow across the operator.
Thus, the following to property expressions are identical:

@(posedge clk0) a0 |-> @(posedge clk0) a1 ##1 @(posedge clk2) a2; //
@(posedge clk0) a0 |-> a1 ##1 @(posedge clk2) a2; //

Rule: The clock definition can change when crossing |->, |=> operators.
@(posedge clk0) a0 |-> @(posedge clk2) a1; //
@(posedge clk0) a0 |=> @(posedge clk2) a1; //

Rule: Clock flow can change in conditional branch of if: A property expression of the form
if (expression_or_dist) property_expr [else property_expr]

Clock flow can change in the conditional branch of if property operator (i.e., from the Boolean
condition in the if statement to the beginnings of the if and else clause properties). Thus:

ap_ifOK: assert property (@ (posedge clk)
if (a) @ (posedge clk1) b|=> c // b, c tested at clk1
else d ##1 e); //

ap_ifOK2: assert property (@ (posedge clk)
if (a) b|=> @ (posedge clk1) c // a tested @ (posedge clk)
else d ##1 @ (posedge clk2) e); // (posedge clk1), e @ (posedge clk2),

Rule: [1] A clocking event in the declaration of a sequence or property does not flow out of an
instance of that sequence or property. However, the clock flows across elements of same
sequence

clk trapped in sequence

Clocking event within
sequence or property
does NOT flow out

For example, assuming no default clocking:
sequence q_ef; @ (posedge clk) e ##[1:5] f; endsequence : q_ef
ap_q_ef_a: assert property (q_ef ##1 a); //

// (i.e., no clocking event).
ap_ok: assert property(@ (posedge clk)

e ##[1:5] f ##1 a); // clock flows across elements of same sequence
ap_error: assert property (not q_ef); // Illegal. Clocking event does not flow out of an

// instance of the sequence q_ef. Thus, the not property operator has no leading clocking event.
ap_qWith_one_clock : assert property (q_ef); // leading clocking event specified inside a

// named sequence is propagated to the enclosing assertion statement

clk0 implicitly flows across the
implication operator. a1 is clocked with

clk

154 SystemVerilog Assertions Handbook, 4th Edition

Rule: Clocking event is trapped in parenthesized sequence: [1] The scope of a clocking event
flows into parenthesized subexpressions and, if the subexpression is a sequence, also flows left-to-
right across the parenthesized subexpression. However, the scope of a clocking event does not
flow out of enclosing parentheses. The standard also states that when sequence instances are
flattened, the resulting expression that is returned is enclosed in parenthesis; therefore clocks do
not flow out of sequence instances either. In the following example, the parentheses are within a
sequence:
External clocking event
flows in

clk2 trapped in the
parentheses

Clocking event within
parentheses does
NOT flow out

@(posedge clk1) w ##1 (r ##1 @(posedge clk2) y) |=> m;

Is equivalent to:

@(posedge clk1) w ##1
(@(posedge clk1) r ##1
@(posedge clk2) y |=>

@(posedge clk1) m;

w, r, m are clocked at posedge clk1 and y is clocked at posedge clk2. Clock posedge clk1 flows
across ##1, over the parenthesized subsequence (r ##1 @(posedge clk2) y), and across the non-
overlapping implication |=> operator. Clock posedge clk1 also flows into the parenthesized
subsequence, but it does not flow through @(posedge clk2). Clock posedge clk2 does not flow
out of its enclosing parentheses; thus it does not flow into m.

Consider the following example where the parentheses are within a property:

@ (posedge clk1) w |=> (r ##1 @(posedge clk2) y) and (m ##1 n)

w, r, m, n are clocked at posedge clk1, and y is clocked at posedge clk2. Clock clk1 flows across
the non-overlapping operator |=>, distributes to both operands of the property and operator, and
flows into each of the parenthesized subexpressions. Within (r ##1 @(posedge clk2) y), clk1
flows across ##1 but does not flow through @(posedge clk2). Clock posedge clk2 does not flow
out of its enclosing parentheses. Within (m ##1 n), posedge clk1 flows across the ##1 delay.

Same clocking event , posedge clk1

Same clock event, clk1

clk2 trapped in the parentheses
clk2

clk2

