SystemV erilog Assertions Dictionary

325

The other solution is to use coverpoints, such as:
covergroup a_is_x_cg;

type_option.merge_instances = 9;
option.per_instance = 1;

option.get_inst_coverage = 1;

cp_unknown: coverpoint $isunknown(a)==0;

// ($isunknown ==0) i.e. true then no X or Z
cp_with_countbits: coverpoint countbits(a) ==0 ;
cp_with_countbits_axz: coverpoint $countbits (a,
// ($countbits (a, 'x, 'z) ==0) then no X or Z

v

X,

endgroup

Simulation results:

** Error: Assertion error.

#

Time: 30 ns Started: 30 ns

$isunknown(a)==0

'z) ==0; // 1800-2012

Scope: coverx.ap_aNoXZ File: coverx.sv Line: 15 Expr:

Mame |Cu‘uerage |Gual | %% of Goal |51311.IS |Merg
=+ & TYPEa_is_x_cg 100.0% 100 100.0% [DDO

— gl OVPa_is_x_cg::cp_with_countbits 100.0% 100 100.0% [

=@ INST \feoverxft cg 100.0% 100 100.0% [

= g VP cp_with_countbits 100.0% 100 100.0% (DN

[E] bin auto[1] true, NoXorZ — 92 1 100.0% [

.EI bin auto[0] false, Has XorZ — 1 1 100.0% D]

= & VP p_unknown 100.0% 100 100.0% [

[E] bin auto[1] true, NoXorZ — g } 1 100.0% [

_E] bin auto[0] false. Has XorZ — 1 1 100.0% D]
— a_is_x_cg::cp_unknown 0% 0%
CVPa_i kn 100, 0% 100 100.0%

Annotated coverpoint results

10.26 Uniquenessin attempted threads -- the FIFO

Requirement: Need to assure that each started assertion from start to completion is unique; this
means that if multiple assertions are started at different cycles because of a successful antecedent,
a successful consequent should not terminate all those assertions,

The following problem demonstrates the issue:
in_data is pushed into a FIFO upon apush control signal, datais popped out as out_data Upon a
pop Signal. There can be multiple pushes prior to a pop.

Problematic assertion: A solution that appears plausible, but has severe issues, is the following:

module fifo_aa; // /chile/10.26/fifo_aa.sv
bit clk, push, pop;

int ticket, now_serving;
bit [7:0] in_data, out_data;
initial forever #5 clk=!clk;

property p_data_chk_bad; //
bit [7:0] push_data;
@(posedge clk) (push, push_data=in_data[7:0])

Problem is lack of

uniqueness, one pop can
terminate all threads

|-> ##[1:10] pop ##0 (out_data == push_data);

endproperty
ap_data_checker_bad: assert property(p_data_chk_bad);

326 SystemV erilog Assertions Handbook, 4™ edition

The problem with this assertion for the fifo is uniqueness. Specifically, apop can complete 2
separate threads, as shown in the simulation resultsfor ap_data_checker_bad where one pop
terminates both threads.

Figure 10.26 demonstrates the simulation result for this assertion. Note that after 2 push controls
with the same value of data, both assertion threads terminate with a single pop; thisis obviously
not desired.

| gm| Wave - Dafzult

- 0 sy]
W 4 [ffo_safap_dats_chec<er_bad 7 | O R . O

4 ffifo_zajde
£ [fifo_s=jpush
-4 jfifo 2ain data

J’4 [fifo_sa/pop
A il _aafiil lala

ﬁ—A ActiveCount

A solution: What is desired for this FIFO assertion is the exclusivity
or uniqueness of each attempted thread sequences, meaning that one
successful consequent does not terminate all concurrent attempts
waiting for that consequent.

To accomplish this, one could use concepts of a familiar model seen
in hardware stores in the paint department. There, the store provides
a spool of tickets, each with a number. As a customer comes in, he
takes a ticket. The clerk serving the customers has a sign that reads
"NOW SERVING, TICKET #X". The customer that has the ticket
gets served, the others have to wait. When done, the number X in
incremented, and the next in-line customer gets served.

The assertion code could then be written asfollows:

module fifo_aa; support variable to achieve attempted j

bit clk, push, pop; thread uniquness
int ticket, now_serving;

bit [7:0] in_data, out_data;
initial forever #5 clk=!clk;

Function needed to increment the ticket
spool in the sequence_match_item
function void inc_ticket();

ticket = ticket + 1'b1;
endfunction

property p_data_unique;

bit [7:0] push_data;

int v_serving_ticket;

@(posedge clk) (push, push_data=in_data[7:0],

v_serving_ticket=ticket, inc_ticket())
|[-> ##[1:10] pop && now_serving==v_serving_ticket
##0 (out_data == push_data);

endproperty

SystemV erilog Assertions Dictionary 327

now_serving tag
incremented at conclusion
of assertion for pass or fail

ap_data_unique: assert property(p_data_unique)
now_serving =now_serving+1;
else now_serving =now_serving+1;

4. fifo_sa/ap_data_unique
< fifo aafdk
A Iifo_aafoush
-4 Hifo_saftag_in
ﬁ—ﬂ‘? Jifo_aafn_data
4 Hifo_safop

" Mito_saftag out
Hfo_safout dats

Simulationn results with code uniqueness

NOTE: If amodule variableisupdated through afunction cal in asequence _match_item, then
do not read that same module variable in the same time step. Thisis because all module variables
areread in the Preponed region, and any update through the function call will be missed in the

same cycle. For example,
module m_var;
bit clk, a, b, reset_n;
int count=9;
default clocking @(posedge clk); endclocking
function void upcount(int v);
count = v;
endfunction

count hasthe
sampled value, not

the updated valuein
the function call.

property p_bad_style; // for demo

int v;

($rose(a), upcount(2)) |-> count==2;
endproperty
ap_bad_style: assert property(p_bad_style)

else $display("count= $d", $sampled(count));

10.27 Exclusive consequent once antecedent istrue

Requirement: Check that for one start-of-frame (sof), there should be only one end-of-frame
(eof).

Solution: The solution depends on the interpretation of the requirements. If the requirement is
uniqueness in attempted threads, then Section 10.26 addresses a methodology. If the requirement
isthat a sof must be ended with an eof, and until then, all other sof are ignored, then one could
set avariable (e.q., busy_eof) that gets set upon afirst arrival of sof (through afunction in the
sequence_match_item), thus rejecting other sof. When that thread is done it resetsthat variable
(through afunction in the action block). Another assertion states that aslong asthat variableis
set, there should never be a sof.

