
Understanding Assertion Processing Within a Time Step

1.0 INTRODUCTION

An interesting issue came up in the VerificationAcademy forum where an assertion leading clocking (LC) is one

of those signals modified in the NBA or Reactive regions instead of the traditional posedge clk. For example,

what is the difference between (@(sig) b|-> c;) and (@(posedge clk) b|->c;) when sig is a signal modified in the NBA

or Observed, or Reactive region of the (posedge clk) time step? Another question related to regions: how is the

disable iff handled when the disabling condition is updated in any of the SystemVerilog regions? Referring to the

SystemVerilog evaluation regions, I must admit that using a signal modified in the Observed or Reactive region

as the LC of an assertion or a disabling condition is not the common or recommended usage of assertions.

Evaluation regions within a time step.

This paper goes into detail about how these regions should be handled by a simulator as described in the

SystemVerilog LRM; this should give you a better understanding of how assertions work. The paper makes two

important points: 1) Clocking events occurring in the same time step in different regions (e.g. Active, NBA,

Observed, and Reactive) are indistinguishable due to the sampling of signals. 2) Upon entry or reentry into

the Observed region, a scheduled assertion will be disabled with a disable iff(signal) if that signal was true

before it entered that evaluation region. Recommendations for handling this type of coding style are also

provided.

2.0 Discussion

2.1 Assertion in a time step

In SystemVerilog, a time step is considered an activity at a time unit when an event or action that requires some

processing occurs. For example, with a statement like (always #5 clk=!clk), at every 5 time units there is an action

that the simulator must handle. 1800’2017: 4.5 SystemVerilog simulation reference algorithm addresses the

execution simulation, time slot, and regions where processing occurs within a time step.

Consider the following code where we have three assertions each with a different leading clock occurring in the

same time step (full code: https://www.edaplayground.com/x/qt9d).

bit [4:0] a;

bit clk, b=0, c, k, w;

initial forever #5 clk = !clk;

always @(posedge clk) begin a <= a + 1; b<=!b; c <= 0; end // a, b, c modified in the NBA region

ap_1: assert property (@(posedge clk) b |-> c) // Leading clock (LC) in Active region

 else begin

 k=!k; // k is modified in the Reactive region

 $display("%t ap_1 @posedge clk FAIL sampled b= %b sampled a=%d Reactive b=%b Reactive a=%b Reactive

k=%b", $realtime, $sampled(b), $sampled(a), b, a, k);

 end

 ap_2: assert property (@(a) b |-> c) // LC is in NBA region of same time step.

 else $display("%t ap_2 @aFAIL sampled b= %b a=%d $sampled(a)=%d", $realtime, $sampled(b),a, $sampled(a));

 ap_3: assert property (@(posedge k) a < 4 ##0 b |-> c) // LC in Reactive region of same time step

 else begin

 w=1;

 $display("%t ap_3 @posedge clk FAIL sampled(k)= %b k=%b sampled(a)=%d a=%d",

 $realtime, $sampled(k), k, $sampled(a), a);

 end

Simulation results for assertions at 15 ns

15 ap_1 @posedge clk FAIL sampled b= 1

 sampled a= 1 Reactive b=0 Reactive a=00010

 Reactive k=1

15 ap_2 @aFAIL sampled b= 1 a= 2 $sampled(a)= 1

15 ap_3 @posedge clk FAIL sampled(k)= 0

 k=1 sampled(a)= 1 a= 2

Waveforms

Let’s analyze the processing of these assertions within the 15ns time step. The code is displayed without the

$display statements for brevity.

https://www.edaplayground.com/x/qt9d

// test code

 int a=0; bit b=0, c=0, k=0, w=0;

 always @(posedge clk) begin a <= a + 1; b<=!b; c <= 0; end

 ap_1: assert property (@(posedge clk) b |-> c) else k=!k; // Leading clock (LC) in Active region

 ap_2: assert property (@(a) b |-> c); // LC is in NBA region of same time step.

 ap_3: assert property (@(posedge k) a < 4 |-> c) else w=1; // LC in Reactive region of same time step

Evaluation regions of one time step as it traverses those regions

1) ACTIVE Region:

 always @(posedge clk) begin a <= a + 1; b<=!b; c <= 0; end

* The clk change starts the evaluations for that time step. If this is a posedge of clk, the Preponed values

of the variables used in the assertions are saved. In that case, that would be the “a, b, c, k, w".

* The simulator schedules the future values of "a, b, c" to be updated in the NBA region.

* The simulator detects the ap_1 assertion because the (posedge clk) is a leading clock and schedules ap_1

to be processed in the Observed region.

2) NBA Region

* Values of a, b, c are updated to a==2, b==0, c==0.

* Since "a” has a change in value, then the simulator detects the @(a) which is the LC of ap_2, and it

schedules ap_2 to be processed in the Observed region.

3) Observed Region

* ap_1 and ap_2 are evaluated because they were previously scheduled. The assertions use the Preponed

values of the variables (i.e., a==1, b==1, c==0).

* ap_1 has an action block, but its evaluation is delayed to the Reactive region.

4) Reactive Region

* ap_1 action block is evaluated and k is changed to 1.

$display in the action block:

15 ap_1 @posedge clk FAIL sampled b= 1 sampled a= 1 Reactive b=0 Reactive a=00010 Reactive k=1

15 ap_2 @aFAIL sampled b= 1 a= 2 $sampled(a)= 1

* Since k has changed in value, the @(k) is the LC of ap_3 and ap_3 is scheduled to be processed in the

 Observed region in the loopback.

5) Observed Region, loopback

* ap_3 is evaluated.

* ap_3 has an action block, but its evaluation is scheduled for the Reactive region.

6) Reactive Region, loopback

* ap_3 action block is evaluated and w is changed to 1.

$display in the action block:

15 ap_3 @posedge clk FAIL sampled(k)= 0 k=1 sampled(a)= 1 a= 2

2.2 Asynchronous disable iff

Upon entry or reentry into the Observed region, a scheduled assertion will be disabled with a disable

iff(signal) if that signal was true before it entered that Observed evaluation region. If the disabling condition

of an assertion is not already set when it enters the Observed region, then a scheduled assertion cannot disable

itself. A function call or action block setting the disable condition will not affect an ongoing assertion evaluation.

However, once the disable signal is set and another assertion is evaluated in the loopback then that other assertion

will be disabled. The following examines different cases all occurring in the same time step.

 Source of the disabling condition Assertion enabling/disabling

Disabling condition is set in the Active of NBA

regions before entering the Observed region

Assertion will be disabled in that time step

Disable signal is set in the

Observed region

Disable signal is set in the

action block region

Scheduled assertions will NOT be disabled

https://www.edaplayground.com/x/Vyfr

ap_1 is NOT disabled at that time step

Scheduled assertions were already executed

https://www.edaplayground.com/x/LmqC

ap_1 and ap_3 are NOT disabled

at that time step

The disable signal is set before a reentry

into the Observed region because of loopback.

Scheduled assertions will be disabled

https://www.edaplayground.com/x/Vyfr

 ap_3 is disabled at that time step

https://www.edaplayground.com/x/Vyfr
https://www.edaplayground.com/x/LmqC
https://www.edaplayground.com/x/Vyfr

3.0 Conclusions and recommendations

SystemVerilog is a very powerful and flexible design and verification language, thus allowing users to come up

with very creative approaches to applying the language; sometimes way too creative! These undisciplined

applications of SVG are minefield guarantees to result in mistakes that are tricky to debug and may most

definitely not synthesize. This paper covered examples of non-conventional applications such as using signals

updated in regions outside the Active or NBA as assertion leading clocks and resets. This paper explained how

assertions are processed within a time step so that users appreciate that good design disciplines are mandatory.

Below is a summary of the processing of assertions within a time step and guidelines necessary for a better

discipline in applying SVG with SVA.

3.1 Time step processing summary

SytemVerilog uses regions within a time step to correctly simulate concurrency because the simulation program is

sequential. Clocking events occurring in the same time step in different regions (e.g., Active, NBA,

Observed, Reactive) are indistinguishable in concurrent assertions due to the sampling of signals. In other

words, if @(a) and @(posedge clk) occur in any order in the same time step, then assert property (@(a) x ##0

@(posedge clk) y) and assert property(@(posedge clk) x ##0 @(a) y) are indistinguishable. However, this is not to be

relied on because the design would have to guarantee that both events do always happen in the same time step;

someone could change the design without respecting this assumption.

Upon entry or reentry into the Observed region, a scheduled assertion will be disabled with a disable

iff(signal) if that signal was true before it entered that Observed evaluation region. Be aware of disabling

conditions set in the Observed or Reactive regions as they will not take effect in the same time step.

3.2 Recommendations

3.2.1 Signals to use as leading clock of assertions

Avoid using signals assigned outside the Active or NBA regions as leading clocks or resets

This can be misleading and often may not meet the requirements For example, consider this variation of ap_1

and ap_2 assertions listed above:

 ap_1b: assert property (@(posedge clk) b |-> ##1 c); // Preferred approach for LC

 ap_2b: assert property (@(a) b |-> ##1 c); // May not be synthesizable

Here, ap_1b is not the same as ap_2b because ap_2b is equivalent to:

 ap_2b_equiv: assert property (@(a) b |-> @(a) ##1 c); //c is evaluated at changes in "a"

 If @(a) does not change at every posedge clk, then these two assertions behave differently. The intent may be

that "c” is evaluated at the posedge of clk.

If you do choose a signal for the LC of an assertion, then within the property adjust the clocking events to the

one(s) used to modify the variables of that property; For example:

 for ap_2b, write instead:

 ap_2b_better: assert property(@(a) 1 ##0 @(posedge clk) b |-> ##1 c); // multiclocking

The two assertions ap2b and ap_2b_better are different; make sure you meet the requirements.

3.2.3 Signals to use for disabling assertions

3.2.3.1 Using signals

For synchronous disabling of assertions, use signals updated in the NBA (or loopback from the NBA)

region; the loopback is into the Active region. For example:

 always @(posedge clk) if(sig) reset<=1'b1; else reset <= 1'b0; // Do this for the reset

 ap_do: assert property(@(posedge clk) disable iff(reset) prop);

A corollary to this, do not use signals updated in assertions or sequences. Two reasons for this recommendation:

1) Because a reset issued from an assertion is not synthesizable.

2) Because a reset issued from an assertion will NOT take effect in the same time step; this may be unexpected.

