DYNAMIC DATA STRUCTURES IN ASSERTIONS
BEN COHEN SYSTEMVERILOG.US

Introduction

The integration of dynamic data structures such as queues and associative arrays into SystemVerilog assertions has
been a topic of ongoing discussion in the hardware verification community. While these constructs offer powerful
capabilities for complex assertion writing, their implementation and support across various Electronic Design
Automation (EDA) tools have been inconsistent. This paper addresses the challenges arising from the lack of
uniform support for dynamic structures in SVA among tool vendors.

This paper examines the current landscape of assertion support in major EDA tools, highlighting the disparities in
handling queues and associative arrays within assertions. This inconsistency raises important questions about the
necessity and practicality of using such complex dynamic structures in assertions. Are these constructs truly
indispensable for effective assertion-based verification, or do they introduce unnecessary complexity?

Despite these concerns, the potential benefits of using queues and associative arrays in certain verification scenarios
cannot be ignored. Therefore, this paper explores various methods to support these data structures in assertions,
even when direct tool support is lacking. | investigate techniques to implement efficient support logic, allowing
verification engineers to leverage the power of queues and associative arrays in their assertions without sacrificing
portability or performance. | demonstrate these techniques with a simulateable example using a queue and an
associative array.

Furthermore, | explore the use of synthesizable logic as an alternative approach, which is particularly well-suited
for formal verification environments. This method offers a more robust and tool-independent solution, potentially
bridging the gap between simulation-based and formal verification methodologies.

1.1 ARE DYNAMIC DATA STRUCTURES USEFUL FOR SVA VERIFICATION?

In the verification of real-world designs using SVA, are there cases where dynamic data structures are truly
necessary? There are indeed real design and system-level scenarios where using dynamic arrays, associative arrays,
and/or gqueues in assertions can be valuable. For example:

1. Protocol Verification: In complex protocols with variable-length packets or out-of-order transactions, queues,
or dynamic arrays, or associative arrays can help track and verify sequences of events.

2. Cache Coherency Checks: Associative arrays can model cache lines, allowing assertions to verify cache
coherency protocols in multicore systems.

3. Resource Allocation Verification: Associative arrays can model resource pools (e.g., memory buffers,
communication channels) to assert proper allocation and deallocation.

4. Scoreboarding: In testbenches, queues can efficiently implement scoreboards for tracking and checking multiple
outstanding transactions. Queues are most versatile there due to many built-in methods.

Note that the aforementioned list of potential applications is more related to system-level performance analysis than
to RTL design verification. However, one could argue that complex RTL design verification environments need
these features. There are important considerations when using these dynamic structures, including:



1. Tool Support: Not all simulation tools fully support these structures in assertions, potentially limiting portability
(See 1.2.3).

2. Performance Impact: The complexity is related to the processing required to obtain the sampled values from
these complex data structures for use in assertions. This may significantly reduce simulation speed, especially for
large designs.

3. Complexity vs. Clarity: Using complex data structures might make concurrent assertions harder to understand,
debug, and maintain. However, smaller immediate assertions throughout scoreboards are easier to understand and
maintain.

4. Alternative Approaches: In many cases, simpler assertions combined with auxiliary logic in the testbench might
be more efficient and clearer.

1.2 QUEUES AND ASSOCIATIVE ARRAYS IN ASSERTIONS

1.2.1 What is a queue?

A queue is a variable-size unpacked array that supports constant-time insertion and removal at both the beginning
and end of the array. Constant-time operations take the same amount of time regardless of the size of the data
structure. Additionally, queues provide constant-time access to all their elements. Like classes, queues in
SystemVerilog are statically declared in terms of their type and identifier. However, unlike class instances which
require dynamic instantiation with the new keyword, queues do not need dynamic allocation. Queues are static in
declaration but dynamic in size, meaning they can grow or shrink at runtime based on the elements added or
removed. Their sizes can be expanded or reduced through method calls or assignments as defined in
1800°2023:7.10. For example:

module m;
bit valid, clk, a; // Stimeformat(units, precision, suffix_string, min_field_width)
int q[$], data; // units = -9 means time in nanoseconds
initial begin // precision = 2 means two decimal places
Stimeformat(-9, 2, " ns", 10); // <--—--——-{ //suffix_string =" ns" is appended after the time
q={2,4,81}; //queueisinitialized // min field width = 10 specifies minimum width of time disolav

data=0;
Sdisplay("%t q[0] 0x%0h, q[$] 0x%0h", Srealtime, q[0], q[S]);
// 0.00 ns q[0] 0x2, q[S] Ox8 // first element, last element
g.push_front(data+1); // Adds an element to the beginning of the queue
#1 Sdisplay("%t q[0] 0x%0h, q[$] 0x%0h", Srealtime, q[0], q[S$]);
// 1.00 ns g[0] Ox1, q[S] Ox8 // q[0] updated with the q.push_front(data+1
@(posedge clk) data = g.pop_back(); // Removes and returns the last element of the queue.
// data==8
Sdisplay("%t q[0] 0x%0h, q[$] 0x%0h", Srealtime, q[0], q[$));
// 10.00 ns q[0] 0x1, q[S] Ox4 // The 2nd element is now the last item in the queue
#1 q[0] = data+2; // q[0]==8+2
Sdisplay("%t q[0] 0x%0h, q[$] 0x%0h", Srealtime, q[0], q[$]);
// 11.00 ns q[0] Oxa, q[S] Ox4
#10 Sfinish();
end
initial forever #10 clk=!clk;
endmodule



1.2.2 What is an associative array?

An associative array implements a lookup table of the elements of its declared type. The data type to be used as an
index serves as the lookup key. An associative array is statically declared (unlike a class element with a new), but it
is dynamically expanded or reduced in size through method calls or assignments as defined in 1800°2023:7.8. For
example:

module memory_data_integrity_check ( input bit write, bit read, bit[31:0] wdata,
bit [31:0] rddata, bit[31:0] addr, bit reset_n, clk);

default clocking cb_clk @ (posedge clk); endclocking
int mem_aarraylint]; // associative array (AA) with typed-index to be used by property
bit [31:0] raadata; // data read from AA
always@ (posedge clk) begin

if (reset_n==1'b0) mem_aarray.delete; // Clears AA elements

else if (write) mem_aarray[addr] = wdata; // store data
end

// Using an associative array to store the last data written
// If aread and data exists at that address, then input rddata==expected_data (in the array)
property p_read_after_write;
(read && mem_aarray.exists(addr) |=> // @read and data there at same written addr
rddata==mem_aarray[addr]; // read data from 10 is same as what was written
endproperty : p_read_after_write
endmodule : memory_data_integrity_check

1.2.3 What does IEEE 1800 say about dynamic structures in SVA?

16.6 Boolean expressions: “Elements of dynamic arrays, queues, and associative arrays that are sampled for
assertion expression evaluation may get removed from the array or the array may get resized before the assertion
expression is evaluated. These specific array elements sampled for assertion expression evaluation shall continue to
exist within the scope of the assertion until the assertion expression evaluation completes.”

What does that mean?

This statement describes an important behavior of SystemVerilog assertions when dealing with dynamic data
structures like dynamic arrays, queues, and associative arrays. Though most/all of the following points apply to
simpler structures (e.g., bit, int) they represent a higher level of complexity unigue to dynamic structures.

1. Sampling: When an assertion involves elements from dynamic data structures, the simulator takes a
"snapshot" of the relevant elements at the sampling point (typically at a clock edge).

2. Persistence: Even if the original data structure is modified after sampling (e.g., elements are removed or the
array is resized), the original sampled values are preserved for the assertion evaluation.

3. Scope: These sampled values are kept in a separate, temporary scope that exists only for the duration of the
assertion evaluation.

4. Evaluation integrity: This mechanism ensures that the assertion is evaluated based on the state of the data
structures at the time of sampling, regardless of any changes that occur between sampling and evaluation.

The simulator doesn't necessarily make a full copy of the entire data structure. Instead, it likely maintains references
or copies of only the specific elements needed for the assertion. This approach allows for accurate and consistent
assertion checking, even when dealing with dynamic data structures that might change during simulation. This
behavior is crucial for maintaining the correctness and predictability of assertions, especially in complex designs
where data structures may be modified frequently or asynchronously with respect to the assertion evaluation.



Creating snapshots to obtain sampled values from dynamic data structures demonstrates the complexities inherent
in simulation tools. This process not only highlights the sophisticated mechanisms required but also raises concerns
about performance impacts, especially when dealing with large data structures.

Many vendors were slow to adopt this IEEE 1800 requirement. Several imposed restrictions on the use of queues
and associative arrays within assertions, and some prohibited them entirely, likely due to performance concerns.
These dynamic structures are fully adopted for SystemVerilog (non-SVA) applications, but nonblocking
assignment is restricted by some tools. Types of error messages observed when they are used is assertions include:
int q[S] ={2, 4, 8}, data=0; // queue
int mem_aarray[int]; // associative array (AA) to be used by property (See note 3).
e Srose(a) |-> q[$]==8'h08;
ERROR: this context is not supported.
e  (Srose(a), v=Db) |->##[3:10] q[v];
ERROR: Expressions involving real, string, event, tagged union and dynamic
SystemVerilog types are not allowed in Boolean expressions in properties and sequences.
e  (Srose(a) |-> (q.pop_back == 8'h08)
ERROR: The method 'pop_back' is not allowed in assertions as it has side effects
Expressions involving real, string, event, tagged union and dynamic
ERROR: SystemVerilog types are not allowed in Boolean expressions in properties and sequences.
e |Initial g[0] <= 12;
ERROR: Non-blocking assignment to elements of dynamic arrays is not currently supported
e mem_aarray[10] <= 32'hFFFFO000;
ERROR: Non-blocking assignment to elements of associative arrays is not currently supported.
e  ((valid, v_err=mem_aarray.exists(addr))
ERROR: Expressions involving real, realtime, string, event and dynamic
SystemVerilog types including virtual interface references are not allowed
in local variable assignments in properties and sequences
e  assign mem_aarray_exists = mem_aarray.exists(addr) ; // should be legal
ERROR: Associative array may not be used in non-procedural context.
Note: the tool accepted the following instead
always_comb mem_aarray_exists = mem_aarray.exists(addr); // OK too

1.2.4 Static structures versus dynamic structures in assertions

As of today, formal tools do not support dynamic storage such as dynamic arrays, associative arrays and queues.
Typically, these structures are heavily used for simulation in class-based testbenches where concurrent assertions
are illegal. In simulation, the use of dynamic structures in assertions is not without challenges:

1. Asignificant issue, as mentioned earlier, is the lack of uniform support across simulation tools. This
inconsistency potentially limits code portability and may introduce compatibility issues in multi-vendor
verification environments. To mitigate these issues and reduce the likelihood of bugs caused by tool
inconsistencies, users should consider adopting a "Build Your Own Linter" (BYOL) approach. Open-
source initiatives can lead the way in this area, potentially offering more flexible and customizable
solutions than commercial EDA tools. This approach allows verification teams to create tailored lint rules
that enforce consistent coding practices across different tools, thereby improving code portability and
reducing the risk of tool-specific errors.

2. The use of dynamic structures can impact simulation performance, especially when dealing with large-
scale designs or extensive test suites.

Given these considerations, two alternative approaches warrant exploration:
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1.2.4.1 Static Structures Replacing the Dynamic Structures:
For assertions, instead of relying on dynamic structures within assertions, would it be more effective to utilize static
structures? Thus, instead of a dynamic array, use a static fixed-sized memory. Also, instead of a queue, use a fixed-
sized FIFO. This method would involve constraining the model to an acceptable set of parameters, carefully chosen
to represent the most critical scenarios without compromising verification integrity. This method also creates a
synthesizable environment suitable for formal verification. Key considerations include:

- Determining the optimal size for static structures to balance coverage and performance

- Developing strategies to ensure that the constrained model adequately represents the full range of system
behaviors.

- Assessing the impact on verification completeness and the potential need for additional test cases.

1.2.4.2 Support Logic with Static Variables Replacing Function Calls

Alternatively, we could still use the dynamic structures within the testbench, but we would implement dedicated
support logic to address the issue of using the needed elements of those structures in the assertions. This approach
involves creating a mechanism to copy the results from functions that access dynamic structures into static
variables. These static variables would then serve as proxies for the dynamic data in our assertions. The process
would work as follows:

1. Define static variables that correspond to the key data points we wish to use in the assertions.

2. In support logic, use the dynamic structures’ functions to update the static variables accordingly.
3. Use the static variables in assertions instead of directly referencing the dynamic structures.
For example,

SUPPORT LOGIC EXAMPLES

logic[31:0] raadata; // data read from AA // Instead of

bit aa_exists; // exists at specified address aa.exists(addr) |-> aa[addr]==data;
logic[31:0] g_size;

logic[31:0] q_front, g_back; // USE

aa_exists |-> raadata==data;
always @(addr) begin
aa_exists = aa.exists(addr);
if (aa_exists) begin
raadata = aa[addr];
end
end

int q_size, q_data; // Updated with support logic
// instead of

Srose(a) |-> ##1 q.size() |= 0 && q[$]==data;
// USE
Srose(a) |-> ##1 q_size != 0 && q_back==data;

always @(posedge clk) begin
if(pop && !push) begin
g_back=qg.pop_back();
g_size = q.size();
end

By employing these approaches, we can circumvent tool issues related to having dynamic structures within the
assertions while still maintaining the ability to verify their behavior in both simulation and formal verification.

These alternative approaches aim to address the challenges posed by dynamic structures while maintaining robust
verification capabilities. By exploring these options, we can potentially develop more portable, efficient, and
widely compatible assertion-based verification strategies.



1.3 AVOIDING QUEUES AND ASSOCIATIVE ARRAYS IN ASSERTIONS

To limit the size and scope of the testbenches, several alternatives to dynamic structures are used. They are
presented here because they offer effective techniques for addressing the challenges. It's a different way of looking
at and processing the verification environment.

1. Using Arrays Instead of Associative Arrays:
Section 1.2.4.1 addressed the case of using fixed-size arrays with a known index range. This is synthesizable and
can be used in formal verification. For simulation, dynamic structures are preferred

2. Using Encoders/Decoders:
Encoders and decoders can be used for verification in the following ways:

1. Testbench Components:

You can create encoder and decoder modules as part of your testbench to generate stimulus and check responses.
For example, you could use an encoder to convert test vectors into a more compact form for input to your DUT, and
a decoder to expand the DUT output for easier comparison with expected results.

2. Self-Checking Testbenches:
Implement complementary encoder-decoder pairs in your testbench. Use an encoder to generate inputs for your
DUT, then use a decoder on the DUT output and compare it with the original input to verify correct functionality.

Here is an example to map certain select integer values to encoded numbers.
module string_to_value_mapper(
input logic [7:0], int addr_key // need to select up to 256 addr values
// for the TB instead of all 2731 possible values
output logic [3:0] value);
always_comb begin
case (addr_key)
32°hoo00_0000: value = 4'do;
32°h1111_1111: value = 4'd1;
32°hFOF@_FOFO: value=4’d2;
32°hOFOF_oFOF: value=4’d3;

// ... more mappings ...
default: value = 4'd15; // Unknown key
endcase
end
endmodule

3. Using Look-Up Tables (LUTSs):

For small mappings, you can use LUTs implemented as ROM.
module lut_mapper( input logic [3:0] key,
output logic [7:0] value);
logic [7:0] lut[16];
initial begin
lut[@] = 8'h12;
lut[1] = 8'h34;
// ... initialize other values ...
1ut[15] = 8'hFF;
end
assign value = lut[key];
endmodule



These approaches have some limitations compared to associative arrays:

- Fixed size: You need to know the maximum size in advance.
- Less flexible: Adding new mappings may require modifying the RTL.
- Potentially larger hardware: For sparse mappings, you might use more resources.

However, they offer the advantage of being synthesizable and usable in formal verification environments. This
method offers a more robust and tool-independent solution, potentially bridging the gap between simulation-based
and formal verification methodologies. The choice between these methods and associative arrays depends on your
specific verification needs, the size of the data set, and whether synthesizability is a requirement.

1.4 Associative Array Application EXAMPLE
The purpose of this example is twofold:

1. To show how associative arrays can be used in assertions using native features. Note that these features
may not be supported by all vendors.

2. To demonstrate an alternative approach using support logic that is compatible with all vendors because it
uses support logic to replace the dynamic structures' built-in features. In Figure 1, we present a transaction
model for a memory device. This model incorporates the following elements:

A write command (wr), a 32-bit data (data) to be written, and a 32-bit address (addr). The data is stored in an RTL
memory within a Device Under Test (DUT). The DUT memory is smaller in size compared to the associative array
used for verification.

The verification process includes two optional assertions:
1. An assertion utilizing built-in associative array functions.
2. An assertion employing support logic to store necessary associative function data in module variables.
The second option enhances portability by directly using these variables in the assertions. The requirements for this
assertion include:
1. Write-Read Consistency: If data is written to an address, any subsequent read from that address should
return the same data.

2. Multiple Write Handling: If a second write occurs to the same address before a read operation, the most
recent write should be considered for evaluation.

This example demonstrates how support logic can be used to replace the built-in features of associative arrays. By
storing the required information in module variables, the assertions become more portable and can be easily
adapted to different verification environments.



Verification

SVA Using
Associative Array

MEM ARRAY

' —_— DUT (RTL) g
bit clk, wr; logic[31:0] mem[255:0];
logic[31:0] addr, data;

. ] [

Transactlons C].k_, Wr'_,addr'_, data L
Model Associative
Array

/

Support logic
logic[31:@] raadata;

bit aa_exists; // exists at specified address
always @(posedge clk) begin raadata
if(wr) begin .

X1
aa[addr] = data; mem[addr] <= data; aa_exists
raadata <= 32'hxxxx_xxxx; aa_exists <= 0; -—"'

end

else begin
raadata <= aa[addr];
rmemdata <= mem[addr];

aa_exists <= aa.exists(addr);

end
end

// data read from AA

logic[31:0] aa[int];

/

SVA Using Support
Logic

Figure 1. Associative Array Model for SVA Testing

1. Assertion using associative array information:

property p_aawr;
int vaddr;
@ (posedge clk)

(wr, vaddr=addr) #i#1
(!(addr==vaddr)[*0:$] ##1 (!wr & addr==vaddr))

| ->

##1 aa.exists(vaddr) && aa[addr]==mem[addr];

endproperty

The property states:
1.
2.

a.

If wr, store the address into local variable vaddr
If that same address occurs then it is a read or a write.
If it is a write then this property is vacuous. Another thread

will be initiated for that 2™ write.

b.

If it is a read, the associative array for that written item

exists and its content is what is expected.

property p_aawr2;
int vaddr;
@ (posedge clk)
(!(addr==vaddr

(wr, vaddr=addr) ##1

)[*0:$] ##1 (!wr & addr==vaddr)) |->

##1 aa_exists && raadata==mem[addr];

endproperty

Figure 2. SVA Code
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Using support logic to extract the associative array information into the module variables.
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property p_aawr; property p_aawr2;
int vaddr; int vaddr;
@ (posedge clk) (wr, vaddrraddr) ## @ (posedge clk) (wr, vaddr=addr) ##1
(addr=2vaddr)[*0:§] ##1 (lwr &8 addr=zvaddr)) ||-> (\(addr==vaddr)[0:3] ##1 (lwr && addr==yaddr)) |>
##1 aa.exists(vaddr) && aa[addr]==mem([addr]; ##1 aa_exists && raadata==mem[addr]|

endproperty endproperty

J [l

Figure 3. Simulation Results for Associative Array Application



1.5 QUEUE APPLICATION EXAMPLE

This example demonstrates the applications of queues within assertions. Since not all tools support these dynamic
structures, supporting logic demonstrates available options. In this example, we have a FIFO RTL driven by an
external source with push and pop commands. The assertions use a queue to emulate the FIFO.

Requirements: If the RTL FIFO receives a push and no pop, or a pop and no push, then the RTL FIFO is operating
correctly and is in sync with a pseudo-random mix of pushes and pops. These requirements are limited in this paper
because the goal is to demonstrate concepts in utilization and not the verification of the FIFO.

Verification
(RTL) fifol data_outl
logic[31:0] mem [8]; >

bit clk, push, pop; | logic [2:0] wr_ptr, rd_ptr; >

logic[31:0] data_in; logic [3:@] count; SVA Using Support

I " push, pop Logic

ransactions ’
—-
[ ] [
Model
DYNAMIC QUEUE .
lo ic[31-e? [$1; SVA Using
/ g ol al»ls » SV Queue functions
Support logic —
logic[31:0] data_in, data_outl, data_outq;
logic[31:@] q[$];// queue
logic[31:0] q_size=0; data_outl
logic[31:0] q_front, q_back; q_size
always @(posedge clk) begin logic q_front

if(push) q.push_front(data_in); q_back

if(pop) data_outq=q.pop_back();
q_size = q.size();
q_front = g[e];
q_back = q[$];
end

Figure 4. Queue Model for SVA Testing
// requirements: If a push then at the next cycle q[@]== pushed rtl pushed value
// Also, the RTL fifo size is operational as expected, i.e., if push and no pop then
// its size increases by 1. If a pop and no push then its size decreases by 1.
ap_gpush@: assert property(@ (posedge clk) push & !pop]|->
##1 gq.size()==fifol.count ##0 q.size()>0 ##0 fifol.empty==
##0 q[@]==fifol.mem[fifol.wr_ptr-1]);

ap_gpushl: assert property(@ (posedge clk) push & !pop|->
##1 gq_size==fifol.count ##0 q_size >0 ##0 fifol.empty==0
##0 $past(data_in)==fifol.mem[fifol.wr_ptr-1]);

ap_qpop@: assert property(@ (posedge clk) Ipush && pop|->
##1 gq.size()==fifol.count ##0 $past(q.size()) > ©
##0 $past(q[$])==data_outl );

ap_gpopl: assert property(@ (posedge clk) Ipush && pop|->
##1 q_size==fifol.count ##0 $past(q_size) > 0
##0 data_outq==(data_outl));

Figure 4. SVA Code
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Figure 5. Simulation Results for Queue push
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Figure 6. Simulation Results for Queue pop

1.6 CONCLUSION

While there are legitimate use cases for dynamic data structures in assertions, their use should be carefully
considered. The decision should balance the need for complex checking against factors like performance, tool
support, and maintainability. In many cases, a combination of simpler assertions and well-designed testbench logic
may provide a more robust and efficient solution. Ultimately, the goal is to create effective, efficient, and
maintainable verification environments. Dynamic structures in assertions can be powerful tools when used
judiciously, but they should not be employed without careful consideration of alternatives and potential drawbacks.
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Notes, links, and afterthoughts

Code:
https://systemverilog.us/vf/queue 1027b.sv
https://systemverilog.us/vf/aa test1022c.sv
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Afterthoughts
Industry can benefit by doing custom Lint around such issues. AsFigo Al is will soon have SVAL.int in limited
form available as opensource. Sites of interest:
https://asfigo.com/products
https://asfigo.blogspot.com/2023/10/dont-go-wild-with-associative-arrays-in.html
https://github.com/AsFigo/SVALint/issues

Good examples of assertion usage using Qs.

https://github.com/lowRISC/opentitan/blob/master/hw/vendor/lowrisc ibex/dv/uvm/icache/dv/env/ibex_icache sco
reboard.sv
https://github.com/lowRISC/opentitan/blob/10flee5d5ad80de5eeh9f7¢c37dd58b6ble2a600a/hw/vendor/lowrisc ibe
x/dv/uvm/icache/dv/env/ibex_icache scoreboard.sv#L162

The OVL library of assertion checkers has useful information. It is intended to be used by design, integration, and
verification engineers to check for good/bad behavior in simulation, emulation, and formal verification. The OVL
standard includes the OVL V2 Library Reference Manual.

https://www.accellera.org/downloads/standards/ovl|

You may also be interested in papers and books that | wrote, many are now donated. These address design
methodologies in the field of documentation and planning, VMM, and SVA understanding and utilization.
http://systemverilog.us/vf/Cohen_Links to papers_books.pdf
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