

Figure 6.1.1-14 RTL View of Absolute Model (Synplicity/Synplify Pro)
The question often arises as to the whether the NUMERIC_STD or NUMERIC_UNSIGNED package should be used when operating on UNSIGNED objects defined as STD_LOGIC_VECTOR types. Die-hard users who like to emphasize the language strong typing characteristics prefer to restrict the modeling with the NUMERIC_STD only. An explicit type conversion is needed as shown in the previous models. However, users with either a Verilog background, or who prefer to maintain code compactness without violating the strong typing rules would prefer to use the NUMERIC_UNSIGNED package.

6.2 VERILOG ARITHMETIC

Verilog 1364-1995 arithmetic operations were upgraded in the 1364-2001 Language Reference Manual. As of the date of this publication, all HDL synthesis companies support the Verilog 1364-1995 with the synthesis restrictions. However, a few companies are beginning to support many of the features of the 2001 LRM, and it is anticipated that all synthesis companies will fully embrace the new standard. In addition, the Verilog Synthesis Interoperability Working Group of the Design Automation Standards Committee ${ }^{50}$ is currently refining the IEEE P1364 Standard for Verilog Register Transfer Level Synthesis. This standard describes a standard syntax and semantics for Verilog HDL based RTL synthesis. It defines the subset of IEEE 1364-2001 (Verilog HDL) that is suitable for RTL synthesis and defines the semantics of that subset for the synthesis domain.

This section is divided into two subsections. Subsection 6.2.1 addresses the arithmetic operations with the 1995 LRM, whereas subsection 6.2 .2 provides some of the new arithmetic features of Verilog 2001. This section is not intended to describe Verilog 2001, as this is fully documented in the IEEE Standard Hardware Description Language Based on the Verilog Hardware Description Language.

6.2.1 Verilog 1364-1995 Arithmetic

6.2.1.1 Understanding Types and Numbers

Verilog defines two data types: nets(or wire) and reg. A net represents a physical connection between structural entities and is of a resolved data type, meaning that the final value will be the resolution of all the sources (i.e., drivers) asserting a value onto the net. A net object is treated as an UNSIGNED number object and loses the significance of the SIGN bit.

A reg is an "abstraction of a data storage element" and may store a value. For synthesis, a reg type includes the reg and integer declarations. An object asserted a value in an always or initial block must be of type reg (synthesis ignores the initial statement). In addition, a local object of a task or function must also be of type reg. A reg object is unresolved and can be assigned a value from different always or initial blocks. However, for synthesis, a reg type can only be assigned in only one always block (excluding task and function). A reg object can be a discrete one bit, or a vector (e.g., an array of bits), or a memory (i.e., onedimensional array of vectors).

An object of type reg is processed by Verilog as an UNSIGNED number, however, it can be assigned a negative constant. Negative numbers are represented in 2's complement form. A reg object loses the significance of the SIGN bit. An object of type integer is processed by Verilog as a SIGNED number and retains the significance of the sign. The difference between SIGNED and UNSIGNED number is in SIGN or ZERO extension of the left most bits when arithmetic and logical operations are performed. Section 4.4.1 of the Verilog LRM specifies the rules for expression bit lengths. For "+-/\%\&|^^~~^" arithmetic operations, and for " $===!====!=\& \& \| \gg=\ll="$ logical operations, the number of bits used in the expression evaluations is the maximum of the length of the left operand and the right operand. Remember that an integer value is a 32-bit value, whereas a sized value is defined by the value of the size. Decimal numbers are signed. Based-numbers (e.g., 4'h21) are unsigned. An UNSIZED value (e.g., ' $h 5$) is 32 bits. Unsized unsigned constants, where the high order bit is unknown (e.g., X or x) or tri-state (Z or z), are extended to the size of the expression containing the constant. If the size of the unsigned number is smaller than the size specified for the constant (e.g. intA32bits $=\mathrm{hF}$;), the unsigned number is padded to the left with zeros (e.g., intA32bits = 32'h0000_000F;). If the leftmost bit in the unsigned number is an x or a z, then an x or a z is used to pad to the left respectively. These concepts are demonstrated in Figure 6.2.1.1-1 and 6.2.1.1-2. Table 6.2.1.1 provides an explanation of the results for the simulation of Figure 6.2.1.1-1.

```
module arith2;
    integer intA;
    reg [15:0] regA;
    always @ (intA or regA)
        $display($time, ' intA = %h, regA= %h', intA, regA);
    initial
```

```
    begin
        #50 intA = -4'd12;
    #50 regA = intA / 3; // expression result is -4,
    // intA is an integer data type, regA is 65532
    #50 regA = -4'd12; // regA is 65524
    #50 intA = regA / 3; // expression result is 21841,
    // regA is a reg data type
    #50 intA = -4'd12 / 3;// expression result is 1431655761.
    // -4'd12 is effectively a 32-bit reg data type
    #50 regA = -12 / 3; // expression result is -4, -12 is effectively
    // an integer data type. regA is 65532
    #50 regA = 'h1z;
    #50 intA = 'h1z;
    #50 regA = 'hz;
    #50 intA = 'hz;
    #50 regA ='hf;
    #50 intA = 'hf;
#500 regA = 'h0;
end
endmodule //
/* -----V----- EXCLUDED -----V-----
NC-Sim> run 1 us
    50 intA = fffffff4, regA= xxxx
    100 intA = fffffff4, regA= fffc
    150 intA = fffffff4, regA= fff4
    200 intA = 00005551, regA= fff4
    250 intA = 55555551, regA= fff4
    300 intA = 55555551, regA= fffc
    350 intA = 55555551, regA= 001z
    400 intA = 0000001z, regA=001z
    450 intA = 0000001z, regA= zzzz
    500 intA = zzzzzzzz, regA= zzzz
    5 5 0 ~ i n t A ~ = ~ z z z z z z z z , ~ r e g A = 0 0 0 f ~
    600 intA = 0000000f, regA=000f
-----^----- EXCLUDED -----^----- */
```

Figure 6.2.1.1-1 Numbers on Registers and Integer Objects (ch6/arith2.v)
Table 6.2.1.1 Register and Integer Objects

OPERATION	VALUE	COMMENTS
integer intA; reg [15:0] regA;	IntA is 32 bits regA is 16 bits	Object decalration
int $\mathrm{A}=-4 \mathrm{~d} 12$;	intA = FFFF_FFF4	$\begin{array}{\|l} \hline 4 \text { 4'd } 12=0000 _000 \mathrm{C} / / \text { unsigned number in hex, } \\ \text { extended } \\ \text { // to 32 bits because it will be assigned onto a } \\ \text { // a 32-bit vector } \\ -4 \text { 'd12 } \\ =2 \text { 's complement of the } 32 \text {-bit vector } \\ =2 \text { complement }\left(0000 _000 \mathrm{C}\right)=\text { FFFF_FFF4 } \\ \hline \end{array}$
$\operatorname{reg} \mathrm{A}=\operatorname{int} \mathrm{A} / 3 ;$	regA= FFFC	int A is a SIGNED integer number intA / 3 = FFFF_FFFC // regA is a 16-bit UNSIGNED register regA $=\operatorname{intA}[15: 0]=$ FFFC
regA $=-4$ d $12 ;$	regA $=$ FFF4	$\begin{array}{\|c} \hline 4 \text { 'd } 12=000 \mathrm{C} / / \text { unsigned number in hex, extended } \\ \text { // to } 16 \text { bits because it will be assigned onto a } \\ \text { // a } 16 \text {-bit vector } \\ -4 \text { 'd12 } \end{array}$
intA $=$ regA $/ 3 ;$	intA = 0000_5551	// regA is UNSIGNED FFF4 or 65524, positive number regA $/ 3=$ FFF4 $/ 3=5551$ $/ /$ regA is zero extended to 32 bits because it will be // assigned onto a 32 -bit register. Thus, intA $=0000 _5551$
intA = -4'd12 / 3;	intA = 5555_5551	```4'd12 = 0000_000C // unsigned number in hex, extended // to 32 bits because it will be assigned onto a // a 32- bit vector -4'd12 = 2's complement of the 32-bit vector = 2's complement(0000_000C) = FFFF_FFF4 -4'd12/3 = FFFF_FFF4/3 = 5555_5551```
$\operatorname{reg} \mathrm{A}=-12 / 3$	regA $=$ FFFC	$/ /-12$ is an integer 32-bit number -12 = FFFF_FFF4 (in hex) $-12 / 3=$ FFFF_FFFC
regA = 'h1z;	$\mathrm{regA}=001 \mathrm{z}$	//regA is 16 bits. 'h1z = 0001_zzzz, zero extended
int $\mathrm{A}=\mathrm{h} 1 \mathrm{z}$;	intA $=0000001 \mathrm{z}$	//intA is 32 bits. 'h1z = 0001_zzzz, zero extended
regA = 'hz;	regA $=$ zzzz	Automatic left padding $\{16\{1 \mathrm{hz}\}\}$
int ${ }^{\text {a }}$ = 'hz;	intA = zzzzzzzz	Automatic left padding \{ 32 \{ 1 hz$\}\}$
regA ='hf;	regA $=000 \mathrm{f}$	Unsized padding, zero padding
int $\mathrm{A}=\mathrm{hf}$;	intA $=0000000 \mathrm{f}$	Unsized padding, zero padding

```
module why ;
wire [7:0] level;
wire [7:0] size;
reg [1:0] level_eq_size;
assign level = 8'b11111111;
assign size = 8'b00000000;
always @(level or size)
    begin
        if (level == size - 1 ) begin // FALSE
        #10;
        level_eq_size <= 2'b01;
        #10;
        end
    if (level == size - 1'b1 ) begin // TRUE
        #10;
        level_eq_size <= 2'b10; // 2 at time 10
        #10;
    end
    if (size-1'b1 == size - 1) begin //TRUE
        #10;
        level_eq_size <= 2'b11; // 3 @ time 30
    end
    end
endmodule
```


Figure 6.2.1.1-2 Comparison Operations on Registers and Integer Objects (ch6/why.v)

6.2.1.2 Signed Operations with Unsigned Registers

As mentioned in previous subsections, Verilog'95 does not support SIGNED registers, but current synthesis tools do support the Verilog'95 HDL. When SIGNED numbers need to be used, the users have two options:

1. Use Integer type: This approach is only available for numbers whose vector equivalent can be represented in 32-bit numbers extending in range from -2^{31} to $+\left(2^{31}-1\right)$.
2. Use reg type with caution: reg vectors can be of any size, and are not limited to 32 bits. Since the interpretation of reg types is UNSIGNED, users must perform all sign extensions and must modify the comparison operators to properly interpret the signs of the numbers. For example, $a=4^{\prime} b 0101$; // $+5, \quad b=4^{\prime} b 1011$; // -5 , if $(a>b)$ will be FALSE since a and b are UNSIGNED reg, an error if the user's interpretation of a and b are SIGNED numbers.

Figure 6.2.1.2-1 represents a model of a multiplier that checks signs of operands before performing the multiplication.

```
module signmult95cc (k_64c, k_32a, k_32b);
    output [63:0] k_64c;
    input [31:0] k_32a, k_32b;
    reg [63:0] k_64c;
    reg [31:0] op32a, op32b;
    reg neg_product;
    // (1) if only one of the operand MSBs is set,
    // the product will be negative.
    // (2) generate the absolute value of each multiplicand.
    // (3) generate the appropriate positive or
    // negative signed output product
    always @(k_32a or k_32b) begin
        neg_product = (k_32b[31] ^ k_32a[31]);
    if (k_32a[31]) op32a = -k_32a; // absolute value
    else op32a = k_32a;
    if (k_32b[31]) op32b = -k_32b; // absolute value
    else op32b = k_32b;
    if (neg_product) k_64c = -(op32a * op32b);
    else k_64c = (op32a * op32b);
    end
endmodule
// Cliff Cummings Sunburst Design, Inc.
// cliffc@sunburst-design.com
```

Figure 6.2.1.2-1 Model of a Multiplier (ch6/signmult95cc.v)
Figure 6.2.1.2-2 represents a trivial testbench to quickly evaluate the multiplier. Figure 6.2.1.2-3 shows the test results.

```
module signmult95_tb;
    parameter SIZE = 32;
    wire [2*SIZE-1:0] k_64c;
    reg [SIZE-1:0] k_32a;
    reg [SIZE-1:0] k_32b;
    signmult95cc signmult95ce(
\begin{tabular}{ll} 
// Outputs & \\
.k_64c & \(\left(k_{-} 64 c[2 *\right.\) SIZE-1:0] \()\), \\
// Inputs & \\
.k_32a & \(\left(k_{1} 32 a[\right.\) SIZE-1:0] \()\), \\
.\(k \_32 b\) & \(\left.\left(k \_32 b[S I Z E-1: 0]\right)\right)\),
\end{tabular}
```

 initial begin
 \#40;
 k_32a <= 5;
 k_32b <= 6;
 \#50;
 k_32a <= 32'hFFFF_FFFB;
 k_32b <= 32'h0000_0004;
 \#50;
 k_32b <= 32'hFFFF_FFFC;
 \#50;
 end
 always @ (k_32a or k_32b or k_64c)
 \$display (\$time, " k_32a=\%h; k_32b=\%h; k_64c=\%h", k_32a, k_32b, k_64c);
 endmodule // signmult95_tb

Figure 6.2.1.2-2 Simple Multiplier Testbench (ch6/signmult95_tb.v)

```
NC-Sim> run 1 us
    40 k_32a=00000005; k_32b=00000006; k_64c=xxxxxxxxxxxxxxxx
    40 k_32a=00000005; k_32b=00000006; k_64c=000000000000001e
    90 k_32a=fffffffb; k_32b=00000004; k_64c=000000000000001e
    90 k_32a=fffffffb; k_32b=00000004; k_64c=ffffffffffffffec
    140 k_32a=fffffffb; k_32b=fffffffc; k_64c=ffffffffffffffec
    140 k_32a=fffffffb; k_32b=fffffffc; k_64c=0000000000000014
Ran until 1 US + 0
NC-Sim>
```

Figure 6.2.1.2-3 Multiplier Test Results (with Cadence NC-Sim)
Figure 6.2.1.2-4 is an RTL view of the synthesized multiplier. The two's complement inverters, multiplexers, and multipliers are clearly demonstrated with this vectored SIGNED multiplier defined in Verilog'95.

Figure 6.2.1.2-4 Synthesized Multiplier RTL View (with Synplicity Synplify Pro)

6.2.2 Verilog 1364-2001 Arithmetic

Many new features were added in Verilog 2001 version to support arithmetic operations. These are summarized below. New Verilog 2001 are summarized in the reference shown in the footnote, and of course, are defined in the Language Reference Manual.

- Verilog 2001^{51} added the concept of SIGNED registers and nets:

> reg signed [63: 0] data;
> wire signed $[11: 0]$ address;

- Function returns can be declared as signed:
function signed [128: 0] function signed [128: 0] alu;
- Literal integer numbers can be declared as signed:

16'shC501 // a signed 16- bit hex

- New arithmetic shift operators (<<<< and >>>) maintain the sign of a value.
- New \$signed() and \$unsigned() system functions can "cast" a value to signed or unsigned: data_signed = \$signed(data_unsigned);

[^0]- Automatic Width Extension Past 32 bits:

1. In Verilog- 1995:

- Verilog assignments zero fills when the left-hand side is wider than the right- hand side
- Unsized integers default to 32- bits wide; therefore, the widths of integers must be hard-coded
Verilog- 1995
parameter WIDTH = 64;
reg [WIDTH- 1: 0] data;
data = 'bz; // fills with 'h00000000zzzzzzzz
data $=64$ 'bz; // fills with 'hzzzzzzzzzzzzzzzz

2. Verilog- 2001 automatically extends a logic Z or X to the full width of the left-hand side
Verilog- 2001
parameter WIDTH = 64;
reg [WIDTH-1: 0] data;
data = 'bz; // fills with 'hzzzzzzzzzzzzzzzz
More on CADENCE Signed Objects ${ }^{52}$
Cadence $N C$-Sim currently supports SIGNED objects and SIGNED arithmetic. The values of signed quantities are represented with two's complement notation. A signed value will not cross hierarchical boundaries. If a signed value is needed in other modules of a hierarchy, then it must be declared in each of the modules where signed arithmetic is necessary. The following example shows some sample declarations.
wire signed [3:0] signed_wire; // range -8 <-> +7
reg signed [3:0] signed_reg; // range -8 <-> +7
reg signed [3:0] signed_mem [99:0] // 100 words range -8 <-> +7
function signed [3:0] signed_func; // range -8 <-> +7
A based constant can be typed by prepending the letter s to the base type as shown in Figure 6.2.2.1-1.
[^1]```
module test_signed1;
 reg signed [3:0] sig_reg;
 reg [3:0] unsig_reg;
 initial
 begin
 #10 sig_reg = -4'd1;
 unsig_reg = -4'd1;
 #1 $display ($time,,'sig_reg=%d unsig_reg=%d (-4'd1)=%d (-4'sd1)=%d',
 sig_reg, unsig_reg, -4'd1, -4'sd1);
 #10 sig_reg = 4'sd1;
 unsig_reg = -4'sd1;
 #1 $display ($time,,'sig_reg=%d unsig_reg=%d (-4'd1)=%d (-4'sd1)=%d",
 sig_reg, unsig_reg, -4'd1, -4'sd1);
 end
endmodule
```

Figure 6.2.2.1-1 Aplication of SIGNED Type (Ch6/test_signed1.v)
The simulation output with Cadence $N C$-Sim is:
11 sig_reg= -1 unsig_reg=15 (-4'd1)=15 (-4'sd1)= -1
22 sig_reg= $=1$ unsig_reg=15 (-4'd1)=15 (-4'sd1)= -1
The following rules determine the resulting type of an expression:

- The expression type depends only on the operands. It does not depend on the left-hand side (LHS) (if any).
- Decimal numbers are signed.
- If any operand is real, the result is real.
- If all operands are signed, the result is signed, regardless of operator.
- The following list shows objects that are unsigned regardless of the operands:
- The result of any expression where any operand is unsigned
- Based numbers
- Comparison results $(1,0)$
- Bit select results
- Part select results
- Concatenate results
- If a signed operand is to be resized to a larger signed width and the value of the sign bit is x or z , the resulting value will be a bit filled with an x value.
- If any non-logical operation has a bit with a signed value of $x$ or $z$, then the result is $x$ for the entire value of the expression.
Nets as signed objects only have significance in an expression, in which case the entire expression is considered a signed value.
Expressions on ports are typed, sized, evaluated, and assigned to the object on the other side of the port using the same rules as expressions in assignments. Verilog-XL uses the following steps for evaluating an expression:

1. Determine the right-hand side (RHS) type, then coerce all RHS operands to this type.
2. Determine the largest operand size, including the LHS (if any), then resize all RHS operands to this size.
3. Evaluate the RHS expression, producing a result of the type found in step 1 and the size found in step 2.
4. If there is a LHS,

- Resize the result to the LHS size.
- Coerce the result to the LHS type.

Figure 6.2.2.1-2 provides an example of a counter with SIGNED ports and registers.

```
module signed_counter (
 // Outputs
 count_out, termcount,
 // Inputs
 clk, rst_n
);
parameter SIZE = 4;
output signed [SIZE - 1:0] count_out;// out : counter output
output termcount;
input clk; // in : system clock
input rst_n; // in : reset, active hi
reg signed [SIZE-1:0] count_out;
reg termcount;
wire signed [15:0] regS;
assign regS = -5;
always @ (posedge clk)
 begin
 if (! rst_n) begin
 count_out <=regS ;
 termcount <= 1'b0;
 end
 else begin
 count_out <= count_out - 1;
 if (count_out == -1)
 termcount <= 1'b1;
 else
 termcount <= 1'b0;
 end
 $display($time,,"rst_n = %b, termcount=%b, count_out=%h',
 rst_n, termcount, count_out);
 end
endmodule // signed_counter
module signed_counter_tb;
wire signed count_out; // From signed_counter of signed_counter.v
wire termcount; // From signed_counter of signed_counter.v
reg clk;
reg rst_n;
```

signed_counter \#(4) signed_counter(
// Outputs
.count_out(count_out),
.termcount(termcount),
// Inputs
.clk (clk),
.rst_n (rst_n));
endmodule // signed_counter_tb

```
```

```
initial begin
```

```
initial begin
 clk = 1'b1;
 clk = 1'b1;
 forever #50 clk = ~clk;
 forever #50 clk = ~clk;
end
end
initial begin
initial begin
 #10 rst_n = 1'b1;
 #10 rst_n = 1'b1;
 #100 rst_n = 1'b0;
 #100 rst_n = 1'b0;
 #100 rst_n = 1'b1;
 #100 rst_n = 1'b1;
end
```

end

```

Figure 6.2.2.1-2 Counter and Testbench with SIGNED Ports and Registers (ch6/signed_counter.v)

The results of \(N C\)-Sim simulation is show in Figure 6.2.2.1-3 and Figure 6.2.2.1-4.
\begin{tabular}{|c|c|}
\hline NC-Sim> run 10 us & 1000 rst_n = 1, termcount \(=0\), count_out \(=4\) \\
\hline 0 rst_n = x, termcount \(=x\), count_out \(=x\) & 1100 rst_n \(=1\), termcount \(=0\), count_out \(=3\) \\
\hline 100 rst_n \(=1\), termcount \(=0\), count_out \(=x\) & 1200 rst_n = 1, termcount \(=0\), count_out=2 \\
\hline 200 rst_n \(=0\), termcount \(=0\), count_out \(=x\) & 1300 rst_n = 1, termcount=0, count_out=1 \\
\hline 300 rst_n \(=1\), termcount \(=0\), count_out=b & 1400 rst_n = 1, termcount \(=0\), count_out \(=0\) \\
\hline 400 rst_n \(=1\), termcount=0, count_out=a & 1500 rst_n = 1, termcount=0, count_out=f \\
\hline 500 rst_n \(=1\), termcount \(=0\), count_out \(=9\) & 1600 rst_n = 1, termcount \(=1\), count_out=e \\
\hline 600 rst_n \(=1\), termcount \(=0\), count_out \(=8\) & 1700 rst_n = 1, termcount=0, count_out=d \\
\hline 700 rst_n \(=1\), termcount=0, count_out=7 & 1800 rst_n = 1, termcount \(=0\), count_out=c \\
\hline 800 rst_n \(=1\), termcount \(=0\), count_out \(=6\) & 1900 rst_n = 1, termcount=0, count_out=b \\
\hline 900 rst_n \(=1\), termcount \(=0\), count_out \(=5\) & \\
\hline
\end{tabular}

Figure 6.2.2.1-3 Signed Counter Simulation Results (Cadence NC-Sim)

Figure 6.2.2.1-4 Signed Counter Simulation (Cadence \(\boldsymbol{N C}\)-Sim)
The arithmetic shift operators (<<< and >>>) work the same as regular shift operators on unsigned objects. However, when used on signed objects, the following rules apply:
1. Arithmetic shift left ignores the signed bit and shifts bit values to the left (like a regular shift left operator), filling the open bits with zeroes.
2. Arithmetic shift right propagates all bits, including the signed bit, to the right while maintaining the signed bit value.
Figure 6.2.2.1-4 illustrates the Verilog 2001 shift concepts. Figure 6.2.2.1-5 demonstrates the simulation results.
```

module signed_shift;
reg signed [3:0] start, result;
initial
begin
$monitor($time,,"start=%b, result=%b", start, result);
\#10 start = -1; // Start is 1111
\#10 result = (start <<< 2); // Result is 1100
\#10 result = (result <<< 1); // Result is 1000
\#10 start = 5; // Start is 0101
\#10 result = (start <<< 2); // Result is 0100
\#10 start = -3; // Start is 1101
\#10 result = (start >>> 1); // Result is 1110
\#10 result = (result >>> 1); // Result is 1111
\#10 result = (result >>> 1); // Result is 1111
\#10 start = 3; // Start is 0011
\#10 result = (start >>> 1); // Result is 0001
\#10 result = (result >>> 1); // Result is 0000
end
endmodule //signed_shift

```

Figure 6.2.2.1-4 Verilog 2001 Shift Concepts (ch6/signed_shift.v)
\begin{tabular}{|c|l|l|}
\hline 0 start \(=x x x x\), result \(=x x x x\) & 40 start \(=0101\), result \(=1000\) & 80 start \(=1101\), result \(=1111\) \\
10 start \(=1111\), result \(=x x x x\) & 50 start \(=0101\), result \(=0100\) & 00 start \(=0011\), result \(=1111\) \\
20 start \(=1111\), result \(=1100\) & 60 start \(=1101\), result \(=0100\) & 10 start \(=0011\), result \(=0001\) \\
30 start \(=1111\), result \(=1000\) & 70 start \(=1101\), result \(=1110\) & 20 start \(=0011\), result \(=0000\) \\
\hline
\end{tabular}

Figure 6.2.2.1-5 Simulation Results (Cadence \(\boldsymbol{N C}\)-Sim)```

[^0]: 51 The IEEE Verilog 1364-2000 Standard, What's New, and Why You Need It, Stuart Sutherland, Sutherland HDL, Inc., Presented at the HDLCON- 2000 Conference March 10, 2000 San Jose, California (http://www.sutherland-hdl.com)

[^1]: ${ }^{52}$ NC-Sim Reference, Product Version 3.2 Cadence Design Systems, Inc. http://www.cadence.com This arithmetic is complient to Verilog 2001

