
Arithmetic Machines 329

Figure 6.1.1-14 RTL View of Absolute Model (Synplicity/Synplify Pro)

The question often arises as to the whether the NUMERIC_STD or NUMERIC_UNSIGNED
package should be used when operating on UNSIGNED objects defined as
STD_LOGIC_VECTOR types. Die-hard users who like to emphasize the language strong
typing characteristics prefer to restrict the modeling with the NUMERIC_STD only. An
explicit type conversion is needed as shown in the previous models. However, users with
either a Verilog background, or who prefer to maintain code compactness without violating
the strong typing rules would prefer to use the NUMERIC_UNSIGNED package.

6.2 VERILOG ARITHMETIC

Verilog 1364-1995 arithmetic operations were upgraded in the 1364-2001 Language
Reference Manual. As of the date of this publication, all HDL synthesis companies support
the Verilog 1364-1995 with the synthesis restrictions. However, a few companies are
beginning to support many of the features of the 2001 LRM, and it is anticipated that all
synthesis companies will fully embrace the new standard. In addition, the Verilog Synthesis
Interoperability Working Group of the Design Automation Standards Committee50 is
currently refining the IEEE P1364 Standard for Verilog Register Transfer Level Synthesis.
This standard describes a standard syntax and semantics for Verilog HDL based RTL
synthesis. It defines the subset of IEEE 1364-2001 (Verilog HDL) that is suitable for RTL
synthesis and defines the semantics of that subset for the synthesis domain.

This section is divided into two subsections. Subsection 6.2.1 addresses the arithmetic
operations with the 1995 LRM, whereas subsection 6.2.2 provides some of the new arithmetic
features of Verilog 2001. This section is not intended to describe Verilog 2001, as this is fully
documented in the IEEE Standard Hardware Description Language Based on the Verilog
Hardware Description Language.

6.2.1 Verilog 1364-1995 Arithmetic

50 http://www.eda.org/vlog-synth/ IEEE PAR 1364.1

330 Real Chip Design and Verification
Using Verilog and VHDL

6.2.1.1 Understanding Types and Numbers

Verilog defines two data types: nets(or wire) and reg. A net represents a physical connection
between structural entities and is of a resolved data type, meaning that the final value will be
the resolution of all the sources (i.e., drivers) asserting a value onto the net. A net object is
treated as an UNSIGNED number object and loses the significance of the SIGN bit.

A reg is an "abstraction of a data storage element" and may store a value. For synthesis, a reg
type includes the reg and integer declarations. An object asserted a value in an always or
initial block must be of type reg (synthesis ignores the initial statement). In addition, a local
object of a task or function must also be of type reg. A reg object is unresolved and can be
assigned a value from different always or initial blocks. However, for synthesis, a reg type
can only be assigned in only one always block (excluding task and function). A reg object
can be a discrete one bit, or a vector (e.g., an array of bits), or a memory (i.e., one-
dimensional array of vectors).

An object of type reg is processed by Verilog as an UNSIGNED number, however, it can be
assigned a negative constant. Negative numbers
reg object loses the significance of the SIGN bit. An object of type integer is processed by
Verilog as a SIGNED number and retains the significance of the sign. The difference
between SIGNED and UNSIGNED number is in SIGN or ZERO extension of the left most
bits when arithmetic and logical operations are performed. Section 4.4.1 of the Verilog LRM
specifies the rules for expression bit lengths. For "+ - / % & | ^ ^~ ~^" arithmetic operations,
and for "=== !== == != && || > >= < <=" logical operations, the number of bits used in the
expression evaluations is the maximum of the length of the left operand and the right operand.
Remember that an integer value is a 32-bit value, whereas a sized value is defined by the
value of the size. Decimal numbers are signed. Based-numbers (e.g., 4'h21) are unsigned.
An UNSIZED value (e.g., 'h5) is 32 bits. Unsized unsigned constants, where the high order
bit is unknown (e.g., X or x) or tri-state (Z or z), are extended to the size of the
expression containing the constant. If the size of the unsigned number is smaller than the size
specified for the constant (e.g. intA32bits = 'hF;), the unsigned number is padded to the left
with zeros (e.g., intA32bits = 32'h0000_000F;). If the leftmost bit in the unsigned number is
an x or a z, then an x or a z is used to pad to the left respectively. These concepts are
demonstrated in Figure 6.2.1.1-1 and 6.2.1.1-2. Table 6.2.1.1 provides an explanation of the
results for the simulation of Figure 6.2.1.1-1.

module arith2;
integer intA;
reg [15:0] regA;

always @ (intA or regA)
$display($time, " intA = %h, regA= %h", intA, regA);

initial

Arithmetic Machines 331

begin
#50 intA = -4'd12;
#50 regA = intA / 3; // expression result is -4,
// intA is an integer data type, regA is 65532

#50 regA = -4'd12; // regA is 65524

#50 intA = regA / 3; // expression result is 21841,
// regA is a reg data type

#50 intA = -4'd12 / 3;// expression result is 1431655761.
// -4'd12 is effectively a 32-bit reg data type

#50 regA = -12 / 3; // expression result is -4, -12 is effectively
// an integer data type. regA is 65532

#50 regA = 'h1z;
#50 intA = 'h1z;

#50 regA = 'hz;
#50 intA = 'hz;

#50 regA ='hf;
#50 intA = 'hf;

#500 regA = 'h0;
end

endmodule //

/* -----\/----- EXCLUDED -----\/-----
NC-Sim> run 1 us

50 intA = fffffff4, regA= xxxx
100 intA = fffffff4, regA= fffc
150 intA = fffffff4, regA= fff4
200 intA = 00005551, regA= fff4
250 intA = 55555551, regA= fff4
300 intA = 55555551, regA= fffc
350 intA = 55555551, regA= 001z
400 intA = 0000001z, regA= 001z
450 intA = 0000001z, regA= zzzz
500 intA = zzzzzzzz, regA= zzzz
550 intA = zzzzzzzz, regA= 000f
600 intA = 0000000f, regA= 000f

-----/\----- EXCLUDED -----/\----- */

Figure 6.2.1.1-1 Numbers on Registers and Integer Objects (ch6/arith2.v)
Table 6.2.1.1 Register and Integer Objects

332 Real Chip Design and Verification
Using Verilog and VHDL

OPERATION VALUE COMMENTS
integer intA;
reg [15:0] regA;

IntA is 32 bits
regA is 16 bits

Object decalration

intA = -4'd12; intA = FFFF_FFF4 4'd12 = 0000_000C // unsigned number in hex,
extended
// to 32 bits because it will be assigned onto a
// a 32-bit vector

-4'd12 = 2's complement of the 32-bit vector
= 2's complement(0000_000C) = FFFF_FFF4

regA = intA / 3; regA= FFFC intA is a SIGNED integer number
intA / 3 = FFFF_FFFC
// regA is a 16-bit UNSIGNED register
regA = intA[15:0] = FFFC

regA = -4'd12; regA= FFF4 4'd12 = 000C // unsigned number in hex, extended
// to 16 bits because it will be assigned onto a
// a 16-bit vector

-4'd12 = 2's complement of the 16-bit vector
= 2's complement(000C) = FFF4

intA = regA / 3; intA = 0000_5551 // regA is UNSIGNED FFF4 or 65524, positive number
regA /3 = FFF4 / 3 = 5551
// regA is zero extended to 32 bits because it will be
// assigned onto a 32-bit register. Thus,
intA = 0000_5551

intA = -4'd12 / 3; intA = 5555_5551 4'd12 = 0000_000C // unsigned number in hex,
extended
// to 32 bits because it will be assigned onto a // a 32-

bit vector
-4'd12 = 2's complement of the 32-bit vector
= 2's complement(0000_000C) = FFFF_FFF4

-4'd12/3 = FFFF_FFF4/3 = 5555_5551
regA = -12 / 3 regA= FFFC // -12 is an integer 32-bit number

-12 = FFFF_FFF4 (in hex)
-12/3 = FFFF_FFFC

regA = 'h1z; regA= 001z //regA is 16 bits. 'h1z = 0001_zzzz, zero extended
intA = 'h1z; intA = 0000001z //intA is 32 bits. 'h1z = 0001_zzzz, zero extended
regA = 'hz; regA= zzzz Automatic left padding {16{1'hz}}
intA = 'hz; intA = zzzzzzzz Automatic left padding {32{1'hz}}
regA ='hf; regA= 000f Unsized padding, zero padding
intA = 'hf; intA = 0000000f Unsized padding, zero padding

Arithmetic Machines 333

module why ;
wire [7:0] level;
wire [7:0] size;
reg [1:0] level_eq_size;

assign level = 8'b11111111;
assign size = 8'b00000000;

always @(level or size)
begin

if (level == size - 1) begin // FALSE
#10;
level_eq_size <= 2'b01;
#10;

end

if (level == size - 1'b1) begin // TRUE
#10;
level_eq_size <= 2'b10; // 2 at time 10
#10;

end

if (size - 1'b1 == size - 1) begin //TRUE
#10;
level_eq_size <= 2'b11; // 3 @ time 30

end
end

endmodule

Figure 6.2.1.1-2 Comparison Operations on Registers and Integer Objects (ch6/why.v)

6.2.1.2 Signed Operations with Unsigned Registers

As mentioned in previous subsections, Verilog'95 does not support SIGNED registers, but
current synthesis tools do support the Verilog'95 HDL. When SIGNED numbers need to be
used, the users have two options:

1 is integer, or 32'h0000_0001
size is thus etended to 32 bit,
32'h0000_0000
size-1 == 32'h0000_0000

32'h0000_0001 =>
32'hFFFF_FFFF
level is unsigned extended to 32 bits =>
level = 32'h0000_00FF

LEVEL IS UNEQUAL TO SIZE 1, thus
(level == size - 1) is FALSE

Level is 8 bits, Size is 8 bits,
1'b1 is unsigned and is extended to 8
bits
Thus size 1'b1 = 8'h00-8'h01
=>8'hFF
Level = 8'hFF
Thus (level == size - 1'b1) is TRUE

1 is integer, or 32'h0000_0001
size-1 == 32'hFFFF_FFFF (see above)
for left hand side, size extended to 32 bits
size 1'b1 = 32'h0000_0000-
32'h0000_0001
32'hFFFF_FFFF

Thus (size - 1'b1 == size -
1) is TRUE

334 Real Chip Design and Verification
Using Verilog and VHDL

1. Use Integer type: This approach is only available for numbers whose vector
equivalent can be represented in 32-bit numbers extending in range from

231 to + (231 1).
2. Use reg type with caution: reg vectors can be of any size, and are not limited to 32

bits. Since the interpretation of reg types is UNSIGNED, users must perform all sign
extensions and must modify the comparison operators to properly interpret the signs of
the numbers. For example, a =4'b0101; // +5, b=4'b1011; // -5, if (a>b) will be
FALSE since a and b are UNSIGNED reg, an error if the user's interpretation of a and
b are SIGNED numbers.

Figure 6.2.1.2-1 represents a model of a multiplier that checks signs of operands before
performing the multiplication.

module signmult95cc (k_64c, k_32a, k_32b);
output [63:0] k_64c;
input [31:0] k_32a, k_32b;
reg [63:0] k_64c;
reg [31:0] op32a, op32b;
reg neg_product;

// (1) if only one of the operand MSBs is set,
// the product will be negative.
// (2) generate the absolute value of each multiplicand.
// (3) generate the appropriate positive or
// negative signed output product
always @(k_32a or k_32b) begin

neg_product = (k_32b[31] ^ k_32a[31]);
if (k_32a[31]) op32a = -k_32a; // absolute value
else op32a = k_32a;
if (k_32b[31]) op32b = -k_32b; // absolute value
else op32b = k_32b;
if (neg_product) k_64c = -(op32a * op32b);
else k_64c = (op32a * op32b);

end
endmodule
// Cliff Cummings Sunburst Design, Inc.
// cliffc@sunburst-design.com

Figure 6.2.1.2-1 Model of a Multiplier (ch6/signmult95cc.v)

Figure 6.2.1.2-2 represents a trivial testbench to quickly evaluate the multiplier. Figure
6.2.1.2-3 shows the test results.

Arithmetic Machines 335

module signmult95_tb;
parameter SIZE = 32;
wire [2*SIZE-1:0] k_64c;
reg [SIZE-1:0] k_32a;
reg [SIZE-1:0] k_32b;

signmult95cc signmult95cc(
// Outputs
.k_64c (k_64c[2*SIZE-1:0]),
// Inputs
.k_32a (k_32a[SIZE-1:0]),
.k_32b (k_32b[SIZE-1:0]));

initial begin
#40;
k_32a <= 5;
k_32b <= 6;
#50;
k_32a <= 32'hFFFF_FFFB;
k_32b <= 32'h0000_0004;
#50;
k_32b <= 32'hFFFF_FFFC;
#50;

end

always @ (k_32a or k_32b or k_64c)
$display ($time, " k_32a=%h; k_32b=%h; k_64c=%h", k_32a, k_32b, k_64c);

endmodule // signmult95_tb

Figure 6.2.1.2-2 Simple Multiplier Testbench (ch6/signmult95_tb.v)

NC-Sim> run 1 us
40 k_32a=00000005; k_32b=00000006; k_64c=xxxxxxxxxxxxxxxx
40 k_32a=00000005; k_32b=00000006; k_64c=000000000000001e
90 k_32a=fffffffb; k_32b=00000004; k_64c=000000000000001e
90 k_32a=fffffffb; k_32b=00000004; k_64c=ffffffffffffffec

140 k_32a=fffffffb; k_32b=fffffffc; k_64c=ffffffffffffffec
140 k_32a=fffffffb; k_32b=fffffffc; k_64c=0000000000000014

Ran until 1 US + 0
NC-Sim>

Figure 6.2.1.2-3 Multiplier Test Results (with Cadence NC-Sim)

Figure 6.2.1.2-4 is an RTL view of the synthesized multiplier. The two's complement
inverters, multiplexers, and multipliers are clearly demonstrated with this vectored SIGNED
multiplier defined in Verilog'95.

336 Real Chip Design and Verification
Using Verilog and VHDL

Figure 6.2.1.2-4 Synthesized Multiplier RTL View (with Synplicity Synplify Pro)

6.2.2 Verilog 1364-2001 Arithmetic

Many new features were added in Verilog 2001 version to support arithmetic operations.
These are summarized below. New Verilog 2001 are summarized in the reference shown in
the footnote, and of course, are defined in the Language Reference Manual.

Verilog 200151 added the concept of SIGNED registers and nets:
reg signed [63: 0] data;
wire signed [11: 0] address;

Function returns can be declared as signed:
function signed [128: 0] function signed [128: 0] alu;

Literal integer numbers can be declared as signed:
16'shC501 // a signed 16- bit hex

New arithmetic shift operators (<<< and >>>) maintain the sign of a value.

data_signed = $signed(data_unsigned);

51 The IEEE Verilog 1364- 2000 Standard, , Stuart Sutherland, Sutherland
HDL, Inc., Presented at the HDLCON- 2000 Conference March 10, 2000 San Jose, California
(http://www.sutherland-hdl.com)

Arithmetic Machines 337

Automatic Width Extension Past 32 bits:
1. In Verilog- 1995:
o Verilog assignments zero fills when the left-hand side is wider than the right- hand

side
o Unsized integers default to 32- bits wide; therefore, the widths of integers must be

hard-coded
Verilog- 1995
parameter WIDTH = 64;
reg [WIDTH- 1: 0] data;
data = 'bz; // fills with 'h00000000zzzzzzzz
data = 64'bz; // fills with 'hzzzzzzzzzzzzzzzz

2. Verilog- 2001 automatically extends a logic Z or X to the full width of the left-hand
side
Verilog- 2001
parameter WIDTH = 64;
reg [WIDTH- 1: 0] data;
data = 'bz; // fills with 'hzzzzzzzzzzzzzzzz

More on CADENCE Signed Objects52

Cadence NC-Sim currently supports SIGNED objects and SIGNED arithmetic. The values of
signed quantities are represented with two's complement notation. A signed value will not
cross hierarchical boundaries. If a signed value is needed in other modules of a hierarchy,
then it must be declared in each of the modules where signed arithmetic is necessary. The
following example shows some sample declarations.

wire signed [3:0] signed_wire; // range -8 <-> +7
reg signed [3:0] signed_reg; // range -8 <-> +7
reg signed [3:0] signed_mem [99:0] // 100 words range -8 <-> +7
function signed [3:0] signed_func; // range -8 <-> +7

A based constant can be typed by prepending the letter s to the base type as shown in Figure
6.2.2.1-1.

52 NC-Sim Reference, Product Version 3.2 Cadence Design Systems, Inc.
http://www.cadence.com This arithmetic is complient to Verilog 2001

338 Real Chip Design and Verification
Using Verilog and VHDL

module test_signed1;
reg signed [3:0] sig_reg;
reg [3:0] unsig_reg;

initial
begin

#10 sig_reg = -4'd1;
unsig_reg = -4'd1;
#1 $display ($time,,"sig_reg=%d unsig_reg=%d (-4'd1)=%d (-4'sd1)=%d",

sig_reg, unsig_reg, -4'd1, -4'sd1);
#10 sig_reg = -4'sd1;
unsig_reg = -4'sd1;
#1 $display ($time,,"sig_reg=%d unsig_reg=%d (-4'd1)=%d (-4'sd1)=%d",

sig_reg, unsig_reg, -4'd1, -4'sd1);
end

endmodule

Figure 6.2.2.1-1 Aplication of SIGNED Type (Ch6/test_signed1.v)

The simulation output with Cadence NC-Sim is:
11 sig_reg= -1 unsig_reg=15 (-4'd1)=15 (-4'sd1)= -1
22 sig_reg= -1 unsig_reg=15 (-4'd1)=15 (-4'sd1)= -1

The following rules determine the resulting type of an expression:
The expression type depends only on the operands. It does not depend on the
left-hand side (LHS) (if any).
Decimal numbers are signed.
If any operand is real, the result is real.
If all operands are signed, the result is signed, regardless of operator.
The following list shows objects that are unsigned regardless of the operands:

o The result of any expression where any operand is unsigned
o Based numbers
o Comparison results (1, 0)
o Bit select results
o Part select results
o Concatenate results

If a signed operand is to be resized to a larger signed width and the value of the
sign bit is X or Z, the resulting value will be a bit filled with an X value.
If any non-logical operation has a bit with a signed value of X or Z, then the
result is X for the entire value of the expression.

Nets as signed objects only have significance in an expression, in which case the entire
expression is considered a signed value.
Expressions on ports are typed, sized, evaluated, and assigned to the object on the
other side of the port using the same rules as expressions in assignments. Verilog-XL
uses the following steps for evaluating an expression:

Arithmetic Machines 339

1. Determine the right-hand side (RHS) type, then coerce all RHS operands to
this type.

2. Determine the largest operand size, including the LHS (if any), then resize all
RHS operands to this size.

3. Evaluate the RHS expression, producing a result of the type found in
step 1 and the size found in step 2.

4. If there is a LHS,
o Resize the result to the LHS size.
o Coerce the result to the LHS type.

Figure 6.2.2.1-2 provides an example of a counter with SIGNED ports and registers.

module signed_counter (
// Outputs
count_out, termcount,
// Inputs
clk, rst_n
) ;

parameter SIZE = 4;
output signed [SIZE - 1:0] count_out;// out : counter output
output termcount;
input clk; // in : system clock
input rst_n; // in : reset, active hi
reg signed [SIZE-1:0] count_out;
reg termcount;
wire signed [15:0] regS;
assign regS = -5;

always @ (posedge clk)
begin

if (! rst_n) begin
count_out <=regS ;
termcount <= 1'b0;

end
else begin

count_out <= count_out - 1;
if (count_out == -1)

termcount <= 1'b1;
else

termcount <= 1'b0;
end

$display($time,,"rst_n = %b, termcount=%b, count_out=%h",
rst_n, termcount, count_out);

end
endmodule // signed_counter
module signed_counter_tb;

wire signed count_out; // From signed_counter of signed_counter.v
wire termcount; // From signed_counter of signed_counter.v
reg clk;
reg rst_n;

340 Real Chip Design and Verification
Using Verilog and VHDL

initial begin
clk = 1'b1;
forever #50 clk = ~clk;

end

initial begin
#10 rst_n = 1'b1;
#100 rst_n = 1'b0;
#100 rst_n = 1'b1;

end

signed_counter #(4) signed_counter(
// Outputs
.count_out(count_out),
.termcount(termcount),
// Inputs
.clk (clk),
.rst_n (rst_n));

endmodule // signed_counter_tb

Figure 6.2.2.1-2 Counter and Testbench with SIGNED Ports and Registers
(ch6/signed_counter.v)

The results of NC-Sim simulation is show in Figure 6.2.2.1-3 and Figure 6.2.2.1-4.

NC-Sim> run 10 us
0 rst_n = x, termcount=x, count_out=x

100 rst_n = 1, termcount=0, count_out=x
200 rst_n = 0, termcount=0, count_out=x
300 rst_n = 1, termcount=0, count_out=b
400 rst_n = 1, termcount=0, count_out=a
500 rst_n = 1, termcount=0, count_out=9
600 rst_n = 1, termcount=0, count_out=8
700 rst_n = 1, termcount=0, count_out=7
800 rst_n = 1, termcount=0, count_out=6
900 rst_n = 1, termcount=0, count_out=5

1000 rst_n = 1, termcount=0, count_out=4
1100 rst_n = 1, termcount=0, count_out=3
1200 rst_n = 1, termcount=0, count_out=2
1300 rst_n = 1, termcount=0, count_out=1
1400 rst_n = 1, termcount=0, count_out=0
1500 rst_n = 1, termcount=0, count_out=f
1600 rst_n = 1, termcount=1, count_out=e
1700 rst_n = 1, termcount=0, count_out=d
1800 rst_n = 1, termcount=0, count_out=c
1900 rst_n = 1, termcount=0, count_out=b

Figure 6.2.2.1-3 Signed Counter Simulation Results (Cadence NC-Sim)

Arithmetic Machines 341

Figure 6.2.2.1-4 Signed Counter Simulation (Cadence NC-Sim)

The arithmetic shift operators (<<< and >>>) work the same as regular shift operators on
unsigned objects. However, when used on signed objects, the following rules apply:

1. Arithmetic shift left ignores the signed bit and shifts bit values to the left (like a
regular shift left operator), filling the open bits with zeroes.

2. Arithmetic shift right propagates all bits, including the signed bit, to the right while
maintaining the signed bit value.

Figure 6.2.2.1-4 illustrates the Verilog 2001 shift concepts. Figure 6.2.2.1-5 demonstrates the
simulation results.

342 Real Chip Design and Verification
Using Verilog and VHDL

module signed_shift;
reg signed [3:0] start, result;
initial

begin
$monitor($time,,"start=%b, result=%b", start, result);

#10 start = -1; // Start is 1111
#10 result = (start <<< 2); // Result is 1100
#10 result = (result <<< 1); // Result is 1000
#10 start = 5; // Start is 0101
#10 result = (start <<< 2); // Result is 0100
#10 start = -3; // Start is 1101
#10 result = (start >>> 1); // Result is 1110
#10 result = (result >>> 1); // Result is 1111
#10 result = (result >>> 1); // Result is 1111
#10 start = 3; // Start is 0011
#10 result = (start >>> 1); // Result is 0001
#10 result = (result >>> 1); // Result is 0000

end
endmodule //signed_shift

Figure 6.2.2.1-4 Verilog 2001 Shift Concepts (ch6/signed_shift.v)

0 start=xxxx, result=xxxx
10 start=1111, result=xxxx
20 start=1111, result=1100
30 start=1111, result=1000

40 start=0101, result=1000
50 start=0101, result=0100
60 start=1101, result=0100
70 start=1101, result=1110

80 start=1101, result=1111
00 start=0011, result=1111
10 start=0011, result=0001
20 start=0011, result=0000

Figure 6.2.2.1-5 Simulation Results (Cadence NC-Sim)

