ii SystemVerilog Assertions Handbook

SystemVerilog Assertions
Handbook

... for Formal and Dynamic Verification

Published by:

VhdlCohen Publishing

P.O. 2362

Palos Verdes Peninsula CA 90274-2362
vhdlcohen@aol.com
http://www.vhdlcohen.com

Library of Congress Cataloging-in-Publication Data
A C.1.P. Catalog record for thisbook isavailable from the Library of Congress

SystemVerilog Assertions Handbook
... for Formal and Dynamic Verification
ISBN 0-97053%-7-9

Copyright © 2005 by VhdlCohen Publishing

All rightsreserved. No part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording, or
by any information storage and retrieval system, without the prior written permission
from the author, except for theinclusion of brief quotationsin areview.

Printed on acid-free paper

Printed in the United States of America



Preface iii

Contents

FOr BWON O oo e X
S = o (=N LU o =1 o Xi
Stuart SUTNErIand ......ooovii e e e X
Harry D. FOSEr o e XV
Tarak Parikh o e XV
KB RIEKEN o e e et et e i, XIX
L0 O £ 1T o T = XXi
AlaiN RAYNAUA ..ot e e e e xXiii

P B A o XXV
ACKNOWIEAGEMENTS ..., XXX
ADOUL the QUL S oo e e XXXiii

1 ROLE OF SYSTEMVERILOG ASSERTIONS

IN A VERIFICATION METHODOLOGY ..o 1
1.1 History of Design Verification methodolOgies ... e 2
1.2 SystemVerilog Assertionsin verification Strategy ......c.ccoceveremrieninieeneeiesese e e e 5
1.2.1 AreAssertions | ndependent from SystemVerilog Structures? ..........ccoceevievennnnns 5
1.2.2 AreAssertions Useful for the Definition and Verification of Designs? ... 6
1.2.2.1 Captures DESIGNEr INTENT ...oc.ceiieeiiie et st st sr e 7
1.2.2.2 Allows Protocolsto be Defined and Verified ... 8
1.2.2.3 Reducesthe TIMETO MalKet ... e 8
1.2.2.4 Greatly Simplifiesthe Verification of Reusable [P ... 8
1.2.2.5 Facilitates Functional Coverage MEIIiCS .....ccovirireiereeine et 9
1.2.2.6 Gener ates Counter examples to Demonstr ate Violation of Properties ........c.coe..... 10
1.2.3 Can/should entire functional verification task be perfor med
USING SysSteMVerilog ASSENTIONS? ...ttt e 10
1.2.4 IsSystemVerilog Assertions Solely Restricted to Applications that
USE SYSLEMVENT1007? ...ttt et ettt r et ebenn e e 10
1.2.41VHDL Mode and Testbench with SystemVerilog AssertionsModule .............co........ 10
1.2.42VHDL Model Embedded in SystemVerilog testbench with SVYA Module ................... 11
1.3 Accelera’'s SystemVerilog ASSErtioNS GOAIS .......cccceiieeriinereeirise e e e 11

1.4 SystemVerilog ASSErtioNS LANQUAGE ......cceverieriiriereeiienesie et sr e sresn e e enenn e e 12



iv SystemV erilog Assertions Handbook

2 OVERVIEW OF PROPERTIESAND ASSERTIONS ......ccccoe..... 15

2L DEFINITIONS ...ttt et et se e et eb e sn et e 2t e e e ee 15
2.1 1 PrOPEITIES oeieiieieee ettt sttt st a et st s e et es et h et be s e n e e Rt ke b r et R et et e e e 15
2.0.2 SEQUENCES  ..ooiteieieiie et st sttt et e st sttt sh e e b s se e ee e aeen e s R e R e e e ea bRt R e e e Rt Rt R e e e e e s 16
2.1.3 Antecedent / Consequent / TAread .......cocoviriiineiinreeire e e 16
2.1.4 Specification and VErifiCalION .........cccoereiririeiiieeiiseie et sr et srenee e e 18

ASSErtion-Based VErifiCaliON  ......ccciviiieiiiiire e e e 18
2.1.5 Assertion/ Assumption / Verification Dir €CHIVE .......c.cooeveireeirienireeie e e e 19
216 CONSIIAINT ..ottt ettt r ettt es et es et se e s et be b et nr et et e besren e e e 19
A o] (0] o= o 3 TP PP 20
2.2.1 NAME Properti€S ..ottt ettt st et se e e sn et see e e e 20
2.3 ASSENTION ottt et bt e Rt be e e Rt b e b er et e e n e 21
2.3 1 IMMEIBLE @SSEITIONS  .o.eiiiieie ettt sttt ettt r e et sn e ees e ees 22
2.3.2 CONCUITENE ASSEITION oottt et se e ettt ee b e e 24

Verification DIFECLIVES oottt e e e e 24
2.4 B00IEAN EXPrESSION ....eiuiiiiieieiieiise ettt et e e et bbbt s e b e et e e e e e e 26
3 UNDERSTANDING PROPERTIES ... 27
3.1 SEQUENCES OVEN VIEBW ...ttt sttt es e e et ettt et ee et b e e e 28
311 SequENCE DECIArGLiON  ....ccoiieieiie ettt et e r e e 29
3.2 SysSteEMVErilog PrOPErTIES ..ottt sttt ettt e e e 31
3.2.1 Property HEAOEN ......oociiiiiiiiieiiee et e ettt et e e e e 32
3.2.2 Property FABNEITIEN ..ottt et st e e 33
3.2.3 Formal ArgumentS and USAgE  ......coceoireiiriinie ittt sr st sn e 33
3.24 Local VariableSin PropartieS ...ttt st 34
3.2.5 BOdy Of tNE PrOPEITY oottt et et e 39
3.2.5. 1 ClOCKING EVENT ...vieceiece ettt et sttt b e e e e 39
3.2.5.2 Disabling CONTITION ......oouiiiiiiieieiire e e e eb e sr et sr e e e 40
3.2.5.3 Property EXPIESSION ....cccoiieiirie sttt sttt st sr e et sn e s ennen e e 42
3.2.5.3. L Property OPEralOrS  ..oceieiieerieeieeteereesiesieeseeiee ettt e e sre s e e e ssbe s eeseesresseesses e sresneeneenneses 42
4 UNDERSTANDING SEQUENCES ... eeeeseenee e 47
4.1 Sequence Operators and Built-in FUNCLIONS ........cooiiiieiciere e 48
4.2 Capturing Temporal Behavior in SystemVerilog ASSErtions ..........ccceevvveneeienenieneneen e 49
4.3 1MPliCAION OPEIGLOIS  .eieieeiie ettt b e e s st e s e enbenn e e 53
4.3.1 Overlapped implication OPEralor |-> ....cccooeerireriieire e eren 54
4.3.2 Non Overlapped I mplication OPErator [=> ......cciiieeriiiereeirese e e 55
4.3.3 Understanding the Overlapped | mplication Operator " |->" ......cccoiievvicinieninnene e 56
4.3.4 Understanding the Non-overlapped I mplication Operator " |[=>"  ...ccoviieiniiinennn 58
4.3.5 Using " not" with Implication OPErator ........ccoceeiiiereinieee e e e e 59
4.4FIrst_MAatCh OPEIAIOT  ..o.ociieiieiece ettt et sr et se ettt sr e b erenn e e 60
4.5 REPELITION OPEIBLOIS  .uviuiieiiirieie st sr e se ettt sr e et es e e e e s e es e e e esenne s e e 64
4.5.1 CoOnSeCUtIVE REPELITION  ...ouiieiiciiecie ettt et 66
4511 [*N] REPELITION .ottt sttt sttt r e et sb et sn e enenas 66
4512 [*NiM] REPELITION oottt et r e eneenn e e 66
4.5.1.3[*0: M] REPELITIONS ...ooeiuiieiieieciirt ettt et st sr et e sbenn e e e 69
A5 LA N D ], HHO:B] oot et bbbt 71

4.5.2 Sequence Non-consecutive RePELition ([TN]) .ooeocevereirerineie e 74



Preface \

4.5.3 Sequence goto REPELITION ([->N])  ooviiieieeer e ene e e e 74
4.6 Sequence COMPOSITION OPEN GLOIS .....ocveuerreiereeiirieseesiee e seeieseeseeses e s e sesesessesteee s enene senas 75
4.6.1 Sequence FUSION (FH0) ..ottt st e et sr et sr e 76
4.6.2 Sequence DiSJUNCLION (OF)  ocereeereeieeeiire et er e e e en e e e e e 76
4.6.3 Sequence Non-Length-Matching (and) .......c.oceeriiininiec e e 77
4.6.4 SequencelLength-Matching (iNTErSEC)  .ovovieeiie s e 77
4.6.5 Sequence Containment (WIthin) ....cc.ooooiiiiie e e e e 78
4.6.6 Conditionsover Sequences (throughout OPEr atOr) .......ccevveveereriereie e e e 79
4.7 M ethods SUPPOItiNg SEQUENCES  ....couiieiieieieseiieies et se et sr e et srenee s e senene ae 80
4.7.1 Endpoint of a Single Clock Sequence” ended” ... iiieinicniee e 80
4.7.2 Endpoint of a Multi-Clock Sequence"” matched" ... 83
4.7.3 Triggered MENOU .....ocooiiiieee et e 84
A.7.4 SEOUENCE BVENTES ...veieeeeieeeeeteese et et et sr st et be b e se e et e eb e e ae e be bt ebeeseeaseaneanbesresren e e ene e e en 85
EXEICISES oottt ettt bttt e ekt b e R e R R e en bR et n ettt e 86
5 Advanced Topics For Propertiesand SeqUeNCeS .......ccoooeevcvevieenn. 91
5.1 Datatypesin Properties and SEQUENCES .........ccoeerieeriieneeiire e se s e s e e e senn 91
5.2 Misuse of ASSErtion OVEr laPPiNg .....c.eoeeerieiereee st ss e e e nen e 93
5.3 Multiple ThreadS TerMiNatioN  .......ocoieieeiriiieine et e e en e 98
5.4 Assertion REfINEMENT PrOCESS  ...ocoiiiiiieieceeii ettt e 99
54.1 Relaxed, Stringent aSSErtioN  .....cccccicceiiiiiieeieee st es e erae s se e aesre s e ene e e sraenen e 100
5.5 Unbounded Range $in Properties ...t e e 100
5.8 RECUINSION ettt ettt ettt sttt ettt £e st e s et b s et se e e b e e enebe e e e e s et e 101
5.7 Emulating PSL-Like ConStructSin SVA et e e e 104
5.7.1 WRIBNOL .ottt e sttt e e e 104
5.7.2 Theeventually! Operator in SEQUENCE  .....occuiiieiiriie e e 106
5.7.3 Emulating UNTIL With SEQUENCES ......ccccoiiiiiiiieirce et e e 106
5.7.4 FDEIONE G ..ottt et ettt ettt en et e e e 107
5.7.5 One-Shot Assertion Using Initial BIOCKS .........ccoooiiiiiiniiie e 108
5.7.5.1 Flag Bit Defining Start of ANtECEAENT  .....cc.ovviiiiciirece e 108
5.7.5.2 Procedural Assertion in Initial BIOCK ... 109
5.8 Assertion-Based System FUNCHIONS  .....cc.ooiieiiieee et e e 109
5.8.1 Sampled Valued FUNCLIONS  .....cooiiiie ittt e e 109
5.8.1.1ValUEACCESS fUNCLIONS ...ttt ettt e en e e sneneneas 109
5.8.1.1.1 $sampled(expression [, clocking_event]) .......ccocevevreeniensniensiinsienee e neeevnene oo 110
B.8.LL2 PBPBSE ettt bbb h b et e b e e ettt e e en e 111
5.8.1.2 Value Change fUNCLIONS ........ccuiiiirieiriie sttt st e e e e 113
5.8.1.2.1 $roseand BFEIl .....ccoerieiiiriciiieie e e e e s 113
5.8.1.2.2 BSADIE ...t bbbt e 115
5.8.2 Vector-Analysis System FUNCLIONS  ......ocoeviiiieiecinie et e 116
5.8.3 Severity-level System FUNCHIONS ........ccooviiiiiiieecs et e e e e 116
5.8.4 Assertion-Control System TasKS ... e 117
5.9 Clocked Sequence and MUIti-ClOCKING ......cuiiiiieireeiireeeeeeise et e e ren e e 118
5.9.1 Clock Specification for Properties and SEqQUENCES  ......cccooiveveeiecinesineeinieein e 118
5.9.2 ClOCK RESDIULION ..ottt s sr e e e e 120
5.9.2.1 Clock Resolution in Assertion and Property DirectiveS .......cccceevvvvnvcnnnne v, 121
5.9.2.2 Clock ResOIULiON IN SEQUENCES  ...ooeiiieiieeiiree ettt s st st 121

5.9.3 Multiple CloCKEd SEQUENCES .......cooiiiiieiee et st e e 123



Vi SystemV erilog Assertions Handbook

5.9.3. 1 Rulesin Using Multiple-Clocked SEqUENCE  .......ccoiiirieirine e e
5.9.4 Multiple-clocked Properties ...t st e
5.9.5 CIOCK TIOW ..ttt e et sb e e bbb s e e e
5.9.6 Clocking RUIES TN ASSEITIONS  ..ooviieiiiieiirieie ettt et
5.9.6.1 SiNgle ClOCKEd @SSEITIONS. ......ociiiirieriiieiire ettt st se e e e
5.9.6.2 Sequence and Propertiesin Clocking BIOCKS ........cccocoiiiiiincinic e
5.9.6.3 MUItiple-ClOCKEA ASSEITIONS ......ocvireeiieeetireeie st ere et e e
510 SystemVerilog Scheduling semanticsfor ASSErtioNS ........ccocevererniesineseneeiniee e
511 PropertieSin INTErTACES ..ottt rne e e e
512 VerifiCation DIFECLIVES  ...ociiiiieieiie ettt ettt er e
5.12.1 @SSErt DIFECLIVE .ottt e ettt es et sr b e e et e
51211 Concurrent Assertion Statements Outside of Procedural Code..........cccveevnen...
512.1.2 Concurrent Assertion Statements Embedded in Procedural Block ..................
512.1.3  IMMEdIale @SS TION:  ..oocuiiiieiieeieieet ettt st sne e
51214 ACHON-DIOCK ..o e s
5.12.2 aSSUME DITECLIVE  ..eeeicii ettt ettt sttt ettt sn e ee e e
5.12.3 COVEN DIFECLIVE ettt ettt et s e bt sn et eb e er s
5.12.4 EXPECE CONSLIUCE ..ottt ettt se et s se et ene s sr e e sre b e e nne e e e e
5.13 Binding Propertiesto SCOPeS Or INSLANCES ......ccocevireeirrieiiniie e e e
514 Veifying VHDL Modelswith SystemVerilog ASSErtioNnsS ........c.ccceevvenereinneenvnn e
5.14.1 TRE CONCEPL ....ooiviieetiieiiie ettt sttt e se sttt ss e e se e eb et sn et ebenne e e e e
5.14.2 VHDL Modulein VHDL Testbench with SystemVerilog Assertions Module ......
5.14.21 VHDL MOOE ..ottt sttt s
51422 SystemVerilog ASSErtioNnS MOAUIE ......cceiiiiriiieieieee e
5.14.23 Connecting SystemVerilog Assertions moduleto VHDL design .........cccceeenn ..
5.14.2.3.1 Direct I nstantiation of SYA moduleinto VHDL Testbench ...
5.14.2.3.2 Binding of SVA Verification Moduleto VHDL Model .......ccccoveiniiencinen e
5.14.3 VHDL Modd in a SystemVerilog Testbench with SVA Module........cccceeenecennn.
6 SystemVerilog Assertions|nthe Design Process ...
6.1 Traditional DESIGN PrOCESS .......ccciiiiiieiirisie ettt stere et se e srabe s e e e s enas
6.2 Design Process with ABV using SVA asVeNiCle ... e e
6.2.1 SyStEM-1EVE ASSEITIONS ....cceeiiiieiiie ettt sttt e e e
6.2.2 INLErfACE ASSEITIONS  ...oiiiieiieiie ettt et eb e et r et b e en et nnennn e s
6.2.3 ATChITECTUral PIAN oottt e s
6.2.4 VerifiCation PIan ...ttt e e e e
B.2.5 RTL DESIGN .ooiiieiieiiie ettt ettt et ne bbb nr et b e e e e
6.2.6 WriteTestbench and SIMUlate ..o
6.2.7 Analyzethe Simulation Resultsand COVEr g€ .......ccoeeereererereeesine e
6.2.8 Formal VErifiCation (FV) oottt e e e
6.3 Case Study - SynChronOUS FIFO .....ocoiiiii e e e e
6.3.1 Synchronous FIFO REQUITEMENTS .......cccoviirireniiieiine et s e
6.3.2 VEfiCation PIan ...t e e e e
6.3.3 RTL DESIGN .oiieieiiciiie ettt sttt ettt e s et et sr et sn e ebenne e e e
6.3.4  SIMUIBLION ...ttt sttt et r et ettt et sr e et ene e e e e
6.3.5 FOrmal VErifiCaAtION ....ccueiiciiieiie ettt sttt st et e e

[ (S o1 =TT RTRTPR



Preface vii

7 FORMAL VERIFICATION USING ASSERTIONS ... 199
T.LFV METHODOLOGY ..ottt ettt sn et e e s en e e nenas 200
7.1.1 Modd Checking Expectationsand RUIES ..o eeees 203
7.2 Role of SystemVerilog ASSErtioNSiN FV ...t e e 204
7.2.1 SystemVerilog Assertionsin Formal SpecCifiCations ..........coccccoveierieiieneeiienniesenenees 204
7.2.2 SystemVerilog AssertionsUsagein FV vs. DynamiC ABV ... 205
7.2.2.1 Same I nputsin Antecedent and CONSEQUENT  ......cucveiieeireeereeie e e 205
7.3 CASE STUDY - FV OF A TRAFFICLIGHT CONTROLLER ...cccoevvivieievievenee. 206
4R T R 1Y oo = SRS 206
7.3.2 BASICTEQUITEIMENTS ...eeiiuiitiiieieisietese ettt es sttt se st s e sees e ne e sn e besne e srennn e e e e 209
7.3.3 SystemVerilog Assertionsfor Traffic Light Controller ... 209
734 VETICALION oottt e ettt sn et et ere e 213
7.3.5 Good Traffic Light CONtroller ... 215
7.4 FV COVERAGE METRICS ...ttt st s e e 216
741 Proof RAIUS  ...ocoiiiiiice ettt et sttt e 216
7.4.2 Explored State-Based COVEr A8 ......cccovrieiriiieieeisee ettt s e e 217
7.4.3 Flip-flop tO Property DISLANCE  .....ccciiiirieieiieiire st s 217
7.4.4 Functional Coverage POINTS ........ccocooiieiririne et ss e sre e e 217
7.5 EMERGING APPLICATIONSOF SYSTEMVERILOG ASSERTIONS

WITH FORMAL METHODS st 217
7.5.1 SystemVerilog Assertions Based Perfor mance Evaluation of Digital Systems ..... 217
7.5.2 Hybrid (dynamic and formal) VerifiCation ........cccccooeririeniiiniinie e 218
7.5.3 Directed Random Test Generation from SystemVerilog ASSertions ..........ccceeeen. 219
7.5.4 Achieving hard-to-hit functional coverage goals using Formal Methods ............ 219
7.6 TeMPOral DEDUGUING ..vcuveeeiereiiereee ettt sre sttt st sr e et ss et seeseenenbe e e e 222
7.7SIMULATION OR FORMAL VERIFICATION? ..ot e e e 224
7.7.1 Argumentsfor Simulation With ABV ..ot 224
7.7.2 Argumentsfor Formal VErifiCalion ........ccccooieireienieinie i e 225
T.7.3 BAIANCE ...ttt e et h ettt e e e s 225
7.7.4 RECOMMENUAIIONS ....oeuiiieitiie ettt et sr ettt ne e et ane e e e e 226
7.7.5 Validity of Formal Verification resUltS ..........cocoeiieieiecinecice e e e 226
8 SystemVerilog Assertions GUIdElINES...........ccoocvvvviveevieieiseeisecsceeenn . 229
8.1 TypographiC GUILEIINES ......cccocieiiiiieiieiiee ettt ettt e e e e e 230
8.1.1 NamiNg CONVENTION  ....uuiieiie ittt e et et e e e e e e e e e eneans 230
B.LLLIFIENAMING ..o vttt et e e et et e e e e e 230
8.1.1.2 Object Namlng e e e e e 230
8.1.1.3 Naming of Assertion Constructs ............................................................. 231
8.1.2 Ending Statements ........... P2/
8.1.3 ConstantsforModul&andlnterfaces e e e 232
8.2UseModd Guidelines  ....... PP ZIC 12
8.2.1 Whereto Write Properties and Assertlons ................................................ 232
8.2.2 Assertionsfor Accuracy .. et e, 234
8221Ab|debyGoodVenlogCodmgSterRuI% e e e 234
8.2.2.2 Avoid Nested System Functions ......... e, 234
82238ewareofunS|zedadd|t|onsm+1versus +1'b1 e 235
8.2.2.4 Bewar e of Property Negation Operator ......... 2 1

8.2.25 Ensure" Write before Read" while using L ocal Assertlon Varlables .............. 238



viii SystemV erilog Assertions Handbook

8.2.2.6 Be Aware of Overlapping ASSErtioNS ........cc.ovvviiviiiiiiiiiiiiiieiiieneeeeeeneen. 238
8.2.2.7Beware of Metalogical Values  .......cccooiiiiiiiiiiiiiii e 239
8.2.2.8 Avoid VaCUOUS Properti€S ......covvieiieiiiiiiiiiiiie e e e en e neenen 239
8.2.2.9 Avoid ContradiCtory Properti€S .......c.ee et vt e 239
8.2.3 Use $sampled Function in Action Block to Display Values of Current Variables 240
8.2.4 Accessing Local Variablesin ASSErtionS ..........ovvviveiiiiiine i ciiieieeeeeeennn. 240

825 Style ........... e e e e ennnenenenens 240
8.2.5.1 Avoid Unbounded Ranges e e e et e e et e en e e e 240
8.2.5.2Use of Default CIOCK ... .eiee e e e e e e e e 241
8.2.5.3 Evaluate Assertion Relativeto aClock ..........coovvviiiiiiii i e, 241
8.25.4 Handling ReSEtSIN Properties ... e e e e e 241
8.2.5.5 Defining Time Unit and Time For mat Specifications for Design = ..................... 242
8.2.5.6 Direct or Implicit Declaration of Properties ..........cccoovviiieiiiiiiiiiiiiiin e, 245

8.2.5.7 Use Formal Argumentsonly when ReuseisIntended  .............cccovvivvvnnnenn.. 246
8.2.5.8 Use module portsor Registered Signalsin Properties  .........cccevvvvviiviineenn... 246
8.2.5.9 Standar dize Action Block Error Display . .. . 4
8.25.10 Usegenerate Construct for Assertions Condltlonal on Parameters ............ 247
8.25.11 UsePattern Format in Documenting ASSErtions ..........ccccoevvvvinevnniennne... 248
8.25.12 ReviewPropertiesandAssertionsAgainst Requirements...................c..... 248

82513 SimulateDesign ........ e e e e 248
8.25.14 Guidelinesfor DebugglngAssertlons ................................................. 249
8.2.6 Using SystemVerilog assertionswith Verilog RTL .......oooiiiiiiiiiiii i, 249
8.2.7 Using Dynamic Data Typesinside Properties ..........ccccoeveveiiiiiiiiiininiiineenne. . 250
8.3 Methodology GUIEIINES .....oeee e e e e e e e e 251
8.3.1 Identifying Propertiesfrom Design SpeCifiCations ..........c.covvvieiieiiiineiiininnns 251
8.3.2 Classification Of Properti€s ........ooeeiieiiiiie it e e e ne e, 201
8.3.2.1 DESION CONEIIC . et it e et ettt e e et e e ettt et e e 251
8.3.21.1 Stylein FSM Properties .......cccoeieiiiiiiiiiiieie et e ieie e e e 201
8.3.2.2 Assumption Centric ......... PP o XC
8.3.2.3 Requirement / Verification Centrlc ......................................................... 253
8.3.24 Environmental Properties .......covviiiiiiiiii i e, 254
8.3.25 Coverage Properties .......... et e e 25D
8.3.3 Processof Writing Propertleﬁand Assertlons ............................................. 256

9 SystemVerilog Assertions Dictionary ............ccccccevveeeiceieeiiceenn... 261

O0.11f CONDL then COND2Z ..ot e e e e e e e e e e e 262
9.2 1f CONDZ, then at next COND2, COND3 .....oiirii i e e e e eaa e 262
9.3 If COND1, then after nth COND2, CONDS ...oviiiiii e e 263
9.4 1f COND1 and first COND2, then COND3 until COND4  .......ccciiiiiiiiiiiiieie e, 264
9.51f COND1 and first COND2, then SEQUENCE ........ovviiieie e e v e e ee e 264
9.6 Between COND1 and COND2, Signal 1 asserted .......coooviviiiiiie i e, 265
9.7 1f COND1 and then 1 occurrence of COND2 then Sequence ..........cocvevvviiineninnnen 266
9.8 If COND1 then N Occurrences of COND2 before COND3. N isvalueof signal ...... 266
9.9 If COND1 and within n cyclesy occurrences of COND2, then COND3 .................... 268
9.10 If CONDZ1, then COND2 until COND3 ..ot e e 269
9.11 If Condlthen Cond2beforeCond3 .......coiiiiiiiiiiii e 269

9.12 1f COND1isfollowed by COND2, and COND3 is not received within 64 cycles while
COND2 then Error (COND5). If COND3 isreceived within 64 cyclesthen COND4 ....... 269



Preface

9.13

9.14
9.15

9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24

9.25
9.26

9.27
9.28
9.29

6 AppendiXx A ANSWErStO EXEIrCISES ....c.oovvviiiiiiiiiieiiiiiee e,
A.1 Answersto Chapter 4 Exercises
A.2 Answersto Chapter 6 Exercise

Appendix B: DefINItIONS .........cccccoiiiiiiiiii i

For every write (COND1), data transfers must alter nate between
odd and even entries .......

If COND1 then COND2in N cycles unlass COND3 ......................................

Data Integrity in Memory. Dataread from Memory should be same as
what was last written

Data I ntegrity in QUEUES. Interface Data ertten must be properly

transferred to the Receiving Hardware ...................
Never 2 consecutive Writes with same Address

Cache controller requirement: A cached addrass(CONDl) WI|| eventuaIIy

beretired (CONDZ2) and after that, within 2 to 7 clocks the cache

copy shall beinvalidated (COND3) ..ot e

during cond1 Never COND3 after COND2. Cond2 may occur within
n cycles after Cond1
If CONDL, then next N cycI& COND2 If new CONDl beforeend of COND2

then COND2 extended for N cyclesuntil NOCONDL ..........coooviiiiiiiiiiiiinn e,
Never two CONDSWIthin 2 CyCleS APart ....oeiviieiie e e

Assume Reset low for initial N cycles ........

If COND1 and N cycle later CONDZ2, then COND3 untll COND4 unlaes COND5 .

If Sequence CONDL1 followed by N non-necessarily consecutive COND2,

then N consecutive COND3 UNtil CONDZ ... e e e e,

If COND1, COND2 doesn't change for N clocks, unless COND1 goes high again
If a Sequence Starts but does not Complete then State Register must bein
ERROR state

COND1 and COND2 are M utually Ech USIVE ottt e et e e e e

If Address Error, then eventually good addr ess

Enabling aproperty after atrigger .......ouveoiiriie e e

APPENDI X C: QUICK REFERENCE GUIDE

APPENDIX D: CLOCK RESOLUTION ..o
APPENDIX E: SYSTEMVERILOG ASSERTIONS SYNTAX

| ndex

. 271

271

. 273

. 274

276

277

278

278
280

. 281

282

283
283

284
286
287
288

289
289
298

305

. 313

317
321

. 325



X SystemV erilog Assertions Handbook
All codeisavailable for download

chl/ ch5/mixed_vhdl_sv_section5_14/ ch7/tlightokitrafficlightok10csv.sv

chl/cookie.sv regack.vhd ch7/tlightokitrafficlight_props.sv

chl/reqack.sv ch5/mixed_vhdl_sv_section5_14/ ch7ltlightokitrafficlight_top.sv

chl/wire_explorer.sv

ch2/
ch2/handshake2_1_3.sv
ch2/handshake2_2_1.sv
ch2/handshake2_2_1b.sv
ch2/handshake2_3_2.sv
ch2/hburstmode2_1_6.sv
ch2/interface2_3_2.sv
ch2/packets2_3 1b.sv
ch2/pushpop2_3_1.sv

ch3/

ch3/cache3_2.sv
ch3/clocking3_2_5 1.sv
ch3/formal_3_2_3.sv
ch3/if3_2 5 3 1.sv
ch3/pdata3_2 4.sv
ch3/sample3_1_1.sv

ch4/

chd/ended4 7_1.sv
chd/eventd_7_4.sv
chd/firstmatch2.sv
chd/match3ed4_7_2.sv
chd/repetitions4_5.sv
chd/repetitions4_5 1 2.sv
chd/throughout4_6_6.sv
chdftriggeredd_7_3.sv
chd/within4_6_5.sv

chb/
ch5/mixed_vhdl_sv_section5_14/
ch5/mixed_vhdl_sv_section5_14/

bind.sv
ch5/mixed_vhdl_sv_section5_14/
makefile

reqack2_tb.vhd
ch5/mixed_vhdl_sv_section5_14/
reqack3_th.sv
ch5/mixed_vhdl_sv_section5_14/
reqack sva.sv
ch5/mixed_vhdl_sv_section5_14
regack_th.vhd
ch5/oneshot5_7.sv
ch5/psl_like5_7.sv
chb/recursion5_6.sv
chb/refinement5_4.sv
chb/req2send_5_3.sv
chb/sampled5_8.sv
ch5/section5_12.sv
ch5/section5_13.sv
ch5/section5_8.sv
ch5/section5_9.sv
ch5/unbounded5_5.sv
chb/unexpectedA_5_2.sv
chb/unexpectedB_5_2.sv

cho/
ché/fifo_assert_control.sv
ché/fifo_if.sv
ché/fifo_if_withQ.sv
ché/fifo_pkg_include.sv
ché/fifo_props.sv
ché/fifo_rtl.sv
ché/fifo_th.sv
ché/vpi_sect6_2_7.sv

ch7/

ch7/tlightfail/
ch7/tlightfailtb_bc.sv
ch7/tlightfailitrafficlight080404.sv
ch7/tlightok/
ch7/tlightokitrafficlightok10avg.sv

ch8/

ch8/section8_2.sv
ch8/section8_2_5 10.sv
ch8/section8_2_5 _4.sv
ch8/section8_2_5 5.sv
ch8/section8_2_5 9.sv

ch9/
ch9/section9_15.sv
ch9/section9_16.sv
ch9/testmodels/
ch9/testmodels/bus_xfr_data_inte
grity_check.sv
ch9/testmodels/d17.sv
ch9/testmodels/d1819.sv
ch9/testmodels/d1to16.sv
ch9/testmodels/d20.sv
ch9/testmodels/d21.sv
ch9/testmodels/d22.sv
ch9/testmodels/d23.sv
ch9/testmodels/d24.sv
ch9/testmodels/d25.sv
ch9/testmodels/d26.sv
ch9/testmodels/d27.sv
ch9/testmodels/d281.sv
ch9/testmodels/d282.sv
ch9/testmodels/d29.sv
ch9/testmodels/
memory_data_integrity_check.sv

appendixA/
appendixA/parkinglot.sv
appendixA/slave_handshake.sv
appendixA/slave_handshake_th.sv




Preface Xi

FOREWORD, Surrendra A. Dudani

The study of assertions has a range of applications in hardware design verification, including bug
detection in simulation and emulation, formal proofs of design correctness, functional coverage of
complex behaviors, and constraint-based random stimulus generation. Assertions offer improvements
at every stage of design and verification process. To guide users of assertions, the authors have
previously contributed to the subject of assertions, its importance in design verification and provided
numerous examples illustrating its usage.

SystemVerilog Assertions Handbook introduces SystemV erilog’ s language of assertions from the point
of view of practitioners that primarily consist of design and verification engineers. SystemVerilog
language evolved from Verilog hardware description language as an industry standard language to
describe hardware design as well as to write verification programs supporting the enormous task of
verifying the design. The capability to encapsulate design and verification in one language is
invaluable to thousands of engineers who have the formidable challenge of designing and verifying
present day complex hardware systems. One of the unique features of SystemVerilog is the ability to
freely express the interaction of the behavior of sequences and assertions with other features of the
language that direct stimulus generation and coverage.

The past few years have brought a shift in design verification methodology, as new techniques have
emerged from the work of research and academic institutions to industries that promoted them as
matured products providing improvements in quality, productivity, and management of hardware
design projects to successful completion in a reasonable timeframe. No longer an engineer thinks only
of writing tests and checking the results of simulation as the basis of verification. The art of checking
the sanity of results has been formalized into assertions, expressed in concise language form that has a
mathematical foundation to also allow formal proof techniques. Despite its compelling benefits,
assertion based verification has not reached the desks of many engineers due to its overwhelming
expressive power in the language features and a new style of specification. The need of books, guides,
and training in informing and instructing engineers with these new concepts is plainly evident.
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The authors of this book, Ben Cohen, Srinivasan Venkataramanan and Ajeetha Kumari, are well
experienced in the real world of design verification to present a solid introduction to assertions in a
practical manner to captivate many engineers who may otherwise be reluctant to take up a new
subject. Although hardware engineers are well versed in parallel behaviors interlaced with timing
subtleties, assertion language features bring these together in a new and concise form of expressing.
The authors have illustrated these concepts in a step-by-step manner with practical examples to relate
the outcome of language constructs with the results intuitively expected by the readers. Before
delving into the details of the language, a chapter is devoted to acquaint the reader with assertions, its
methodology of usage and benefits. Later, the chapters are organized to bring out simpler to more
advanced features of expressing sequences, properties and assertions. The depiction of design process
using SystemVerilog helps the reader to step back from the language semantics and view the role of
assertions in various verification tasks.

The readers of this book will benefit from the clear presentation of concepts together with practical
examples and appropriate usage of the language features. Design engineers will find a wealth of easy
to apply assertions as checkers to improve the quality of their day-to-day design projects. On the other
hand, verification engineers will learn advanced concepts to simplify writing temporal behaviors at the
system level to perform system level checking. Further, the book will also assist architects of
methodology in deploying advanced verification techniques using SystemVerilog Assertions. This
book is a guide much needed to fully capitalize many benefits offered by SystemVerilog Assertions.

Surrendra A. Dudani Syn l] IJSYS:IE

Synopsys Scientist
http://www.synopsys.com/
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FOREWORD, Stuart Sutherland

Assertion-based design and verification is an absolute necessity in today's large, complex designs. For
that matter, the use of assertions applies even to the simplest of designs. Every design engineer should
be adding assertion checks to his design! Assertions both document and check the design engineer's
assumptions and expectations about the design functionality. Every verification engineer should be
taking full advantage of assertions! Assertions can dramatically decrease the amount of effort
required to define intdligent, self-checking testbenches, and, at the same time, increase the
effectiveness of the testbench. As this book shows, assertions offer countless other benefits to both the
design engineer and the verification engineer.

The new and exciting SystemVerilog standard adds hundreds of powerful extensions to the IEEE
Verilog language standard. Prominent among these extensions is a native assertion language that is
fully compatible with the existing Verilog language. SystemVerilog Assertions, abbreviated as SVA,
syntactically and semantically fit into Verilog code. Engineers can directly specify assertions in their
Verilog models and testbenches, without having to hide the assertions within comments, pragmas or
conditional compilation directives. However, SVA is avery rich language in its own right, and is not
simple to adopt. SVA has the ability to concisely describe the expected (or unexpected) results of
extremely complex sequences of changes within a design. There are a number of conference papers,
and even some books, that discuss SystemVerilog Assertions. These papers and books discuss the
importance of SVA, and how to use an assertion based verification methodology in design projects.

However, | have yet to find a paper or book that teaches how to write SystemVerilog Assertions.

This book fills that void. It introduces the concepts and importance of assertion-based verification,
and then goes into great depth on how to write both simple and complex assertions using the
SystemV erilog Assertions language. Hundreds of examples illustrate the proper usage of SVA. Many
of the examples are based on real-world designs. The examples do more than just illustrate how to
write an assertion. The examples serve as a cookbook of assertions that can be applied to a variety of
designs.
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| have been involved with the definition of the SystemVerilog standard since its inception, and am
excited to see this great book on SystemVerilog Assertions. My company, Sutherland HDL, Inc.,
provides expert training and consulting on Verilog and SystemVerilog. We are very active in helping
companies adopt SystemVerilog in their current and upcoming design projects. This book will be a
valuable tool that we will make full use of in our training workshops and consulting work.

| expect that every design and verification engineer will find that this book is an essential resource in
their day-to-day work.

Stuart Sutherland,
Sutherland HDL, Inc.
http://www.sutherland-hdl.com
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FOREWORD, Harry D. Foster

An industry-wide effort has been underway for the past few years to extend the capahilities of the
Verilog language. The fruit of that labor is SystemVerilog. The SystemVerilog extensions include
enhancements in modeling as well as new features for verification. One of the key features added to
the language is the ability to specify formal properties as assertion checks and as elements of a
functional coverage model.

So why is this important? With the advent of design reuse and 1P-based SoC design, two verification
challenges have emerged: verifying that the |P complies with its specification and verifying that the IP
is interoperable with other compliant devices (that is, adheres to various interface standards).
Although the act of specification is fundamental to the process of functional verification, historically,
the process of specification has consisted of creating a natural language description for a set of design
requirements. And unfortunately, this form of specification is both ambiguous and, in many cases,
unverifiable (dueto the lack of a standard machine-executable representation).

As assertion and property language standards such as SystemVerilog Assertions (SVA) gain a
foothold, they address the problem of ambiguities in natural language specification and reduce the
time spent in verification. And as a result, IP providers are able to adopt an assertion-based
verification (ABV) methodology to provide verifiable forms of 1P specification.

Adopting an ABV methodology benefits both IP producers and consumers. For the IP producer,
developing an assertion-based specification for the IP has a collateral benefit—the formal specification
process often uncovers misconceptions about the implementer’s origina intent. Thus, the time
invested in developing the specification is time well spent. And generally, the benefits are realized
early in the design and verification cycle, beforethe IP producer applies any form of verification to the
IP. With the assertion-based specification in hand, the IP producer is positioned to verify IP
compliance and interoperability. For the IP consumer, an assertion-based specification reduces
integration time by unambiguously clarifying proper |P behavior under various configurations, while
providing away to verify the SoC’s interoperability with the IP. But perhaps most notably, assertion-
based specification benefits both producers and consumers by unifying the verification process with a
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single form of specification that can be automatically leveraged across a diverse set of verification
tools, such as formal verification, simulation, emulation, and even synthesis.

Although a pool of published data confirms the benefits of adopting an ABV methodology, few
guiddlines exist for coding effective assertion-based specification. Ben Cohen, Srinivasan
Venkataramanan, and Ajeetha Kumari have addressed this challenge by creating an excellent source
for mastering the art of assertion-based specification. SystemVerilog Assertions Handbook should be a
part of every RTL design and verification engineer’ s library.

Harry D. Foster

Chief Methodologist JASPER

Jasper Design Automation design automation
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FOREWORD, Tarak Parikh

The growing adoption of the SystemVerilog Assertions language is enabling design and verification
engineers to formalize what has been done informally for many years. Assertion-based verification at
its essence checks that a design behaves a certain way, and has historically been done mostly in
simulation, and using formal verification with various methods and languages.

Assertion-based verification using formal model checking also has been used in the industry, but the
solutions have ranged from proprietary assertion languages to standard, but difficult to use languages
such as CTL and LTL. While formal mode checking is a very powerful method to find corner-case
bugs and to completely verify the design meets specific requirements, it has not been widely adopted
in the industry until recently. The major barriers with model checking have been the difficulty in
writing assertions, as well hard to use tools with inadequate debugging capabilities, not to mention the
lack of a standard language.

Now, the existence of a standard assertion language suitable for use with formal model checking,
integrated with a design language familiar to al design and verification community makes it much
easier for EDA vendors to cregate tools usable by a wide audience. It also gives the engineer more
options, since they are not locked into any particular proprietary solution.

Although SystemVerilog Assertions simplify design verification and makes it much easier to write
powerful and portable checks, it is not a panaceafor all of the verification challenges. For example, it
is not well suited for higher-level data flow checks, such as verifying that a packet put into a system is
eventually delivered to the right receiver with the correct data. However, when combined with the
ability to run these assertions in simulation, adoption of SystemVerilog Assertions creates a significant
improvement in verification productivity.

SystemVerilog Assertions are good for checking that design protocols meet specification, and that
critical design functions are not violated. For example, it is simpleto write an assertion to check that a
bus request always is acknowledged within a certain number of clock cycles. With SystemVerilog
Assertions, this sort of check may be used in simulation, or proven using forma model checking tools
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such as our @Verifier product. The SystemVerilog Assertions also allow debugging tools to provide
one unified interface for the creation, verification, and debugging of assertions, regardiess if they are
used in simulation or formal model checking. Our patent-pending Assertion Sudio technology
provides this sort of interface.

@HDL has strived to make assertion-based verification a usable and productive verification technique.
The standardization of SystemVerilog Assertions language further enables our tools to fit seamlessly
into the verification flows of our customers.

@HDL is pleased to have been able to help the authors develop this book. While powerful,
SystemV erilog Assertions can be complicated. This book reviews the language elements and provides
clear examples on what is legal and what is not. It is an excellent resource for the novice and
experienced assertion-based verification engineer, and is useful for both learning the language and as a
reference when developing SystemVerilog Assertions.

Tarak Parikh

Vice-President, Products ’ m I
@HDL ™

http://www.athdl.com/
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FOREWORD, Keith Rieken

Ben Cohen, Srinivasan Venkataramanan, and Ajeetha Kumari have once again provided a timely,
application-oriented approach to an emerging design methodology. As design practices demand ever-
increasing productivity in functional verification, the SystemVerilog language coupled with proven
verification methodologies will likely be a cornerstone to improved productivity.

The O-In Business Unit of Mentor Graphics is similarly committed to improving the overal
productivity of existing functional verification processes by employing Assertion-Based Verification
(ABV) methods. Having pioneered the commercialization of ABV technologies, O-In believes
SystemVerilog provides another alternative for realizing the productivity improvements associated
with ABV. The standardization of a language that enables a sophisticated testbench automation
solution, design construct improvements and language-based assertion specification will accelerate the
adoption of ABV by the design community.

Mentor Graphics continues to support such standardization efforts through the incorporation of
SystemVerilog support into its Scalable Verification solution. Through a combination of the Mentor
solution and the applied approaches demonstrated in this SystemVerilog Assertions Handbook, teams
will be able to quickly realize the benefits of a SystemVerilog ABV solution.

Keith Rieken
Director, Technical Marketing Engineering, br

O-In Functional Verification Business Unit, ®
reir oo Gra hics

http://www. mentor.com/
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FOREWORD, Yu-Chin Hsu

Advanced languages and assertions are coming of age because of mounting design complexity,
shrinking time-to-market, and a leveling off in productivity. The potential of SystemVerilog is not
merely in its impressive host of useful modeling elements, but also lies in the benefits of a unifying
coherent framework for comprehensive design, verification, and debug methodology. SVA, the
assertion temporal language portion of SystemVerilog, draws on the strengths of three languages: PSL
from Accellera with roots in Sugar, a language used at IBM, VERA from Synopsys, and OVA from
Synopsys, also with origins stemming from the industrial setting at Sun Microsystems. The SVA
syntax constructs and semantics are designed to be native to SystemV erilog to make them more easily
integrated with the design and testbench, and readily approachable by designers.

Assertions can be used in a variety of roles: constraints, checkers, integration monitors, and for
functional coverage. Assertions are a formal means to bridge the gap between design specification
and implementation, also a way to consolidate design, verification, and debug. Assertion driven
verification is perceived as the enabling methodology for early bug detection, bug source localization,
and verification reuse. Given the complexity of SoC designs, and component heterogeneity
challenges, Novas has developed an enhanced debug framework targeted at empowering designers to
not only manage and sustain — but rather to grow — their creativity in the face of the design challenges.
Assertions are a cornerstone of this development framework that revolves around automated powerful
analysis and debug, and intuitive and efficient interaction with the user. We see assertions as an ideal
entry, interaction, and abstraction mechanism for design and debug that boosts design productivity and
understanding.
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Ben Cohen and co-authors have published numerous books about design and verification of HDLSs.
This publication follows on the heels of the book on PSL, and contains many useful comparisons and
contrasts. Readers will undoubtedly enjoy the SystemVerilog Assertions Handbook for it addresses the
language from an application-oriented viewpoint. Ben Cohen, Srinivasan Venkataramanan, and
Ajeetha Kumari also point out in this book many subtleties in the language and its underpinnings.
With the development of OV A, PSL and now SVA, it is quite conceivable that any one user will likely
encounter several of these assertion languages (even within the same project) each with its particular

strengths, so a good understanding of the foundation of temporal languages and the particulars of each
iswell advised.

Yu-Chin Hsu

Vice President, Research and Development
Novas Software, Inc.
http://www.novas.con/
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FOREWORD, Alain Raynaud

Fifteen years ago, schematics designers surely must have wondered what went wrong with their design
practices when first explained the rules on latch inference for the synthesizable subset of Verilog. You
are likely to experience the same puzzled fedling today when reading about the vacuous success of
temporal properties. But today, just like fifteen years ago, it would be a huge mistake to dismiss the
topic of assertion-based verification (ABV) as specialized or limited in scope.

Designers went from expressing the structure of the design through schematics capture, to writing
register transfer level code where the key concept is to define everything that happens one clock cycle
at atime. With its assertions, SystemVerilog is the first mainstream unified language to break that
clock barrier and allow the expression of rdationships across many cycles. This will have a
tremendous impact on hardware design in the coming years. Verification is the obvious first
methodology to face this new wave, and a large part of this book rightfully focuses on verification.
Coverage-driven verification, in particular, is bound to see major improvements and hopefully will
receive the attention it deserves. From where | sit, in the emulation side of the verification problem,
I’d happily see more emulation cycles being dedicated to running actual interesting application code
and fewer cycles spent on blind random regression testing.

Design practices will also evolve gradually as EDA tools start making use of the full power of
assertions. We are not that far off from ABD: Assertion-Based Design; and this book touches on that
subject as well, making it a must read for every designer who wants to stay ahead of the curve. When
those EDA vendors come visit you a year from now to pitch their revolutionary new design tools,
you’ll already understand the underlying technology and you' Il be able to separate the wheat from the
chaff.
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Ben Cohen, Srinivasan Venkataramanan and Ajeetha Kumari have written a book that will teach you
more than you ever wanted to know about SystemVerilog Assertions. It can be put to practical use
today and will give you an edge for tomorrow. All the right ingredients and topics are covered: from
coding style to reference, from coverage to formal proof. This book not only should be part of every
verification engineer’ s library, but designers ought to be on-board as well.

Alain Raynaud
Technical Director

EVE USA, inc.
http://www.eve-team.com/
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PREFACE

The Book

SystemVerilog Assertions Handbook is a follow-up book to Using PSL/Sugar for Formal and Dynamic
Verification 2nd Edition. It focuses on the assertions aspect of SystemVerilog, along with an
explanation of the language concepts along with many examples to demonstrate how SystemVerilog
Assertions (SVA) can be effectively used in an Assertion-Based Verification methodology to verify
designs written in HDLs like SystemVerilog, Verilog, or VHDL. The integration of assertions in
SystemVerilog proves very beneficial for the definition of a verification environment because
SystemVerilog is a modern language with powerful and advanced constructs like interfaces, queues,
associative array, semaphores, system functions, classes, methods, packages, safe pointers, etc.

This book presents different classes of designs, and demonstrates how SystemVerilog Assertions are
used in the design process from requirements document, verification plan, design and verification
using simulation and formal verification. Many of the examples use the advanced features of
SystemVerilog including packages, interfaces, types, and binding. In addition, synthesizable RTL
SystemV erilog code examples were synthesized to demonstrated feasibility. Other features provided
inthis book area“dictionary” of English to SystemVerilog Assertions examples, guidelines in the use
of SystemVerilog Assertions, and a quick reference guide of the SystemVerilog Assertions syntax.
This book represents the collaboration of three authors who are experts in system engineering,
architecture, and design and verification with hardware description languages (HDLS) and hardware
verification languages (HVLs), aong with experience in authoring books, thus bringing more
synergism to this SystemVerilog Assertions Handbook.

The I ntent

One of the reasons that we, the authors, decided to write this handbook on SystemV erilog Assertions
is the positive impact that Assertion-based Verification (ABV) is providing, and we believe that
SystemVerilog is setting up a new viable and effective standard in the design and verification
processes. We also felt that the “assertions” aspect of SystemVerilog needed special emphasis. Thus
we decided to maintain the focus of this book on SystemV erilog Assertions, with usage of many of the
new features that SystemVerilog provides. We are assuming that the users are familiar with
SystemVerilog, and have access to the SystemVerilog LRM and to books that address SystemVerilog
language.1

1+ gystemVerilog Language Reference Manual http://www.systemverilog.org/
* SystemVerilog For Verification, Tom Fitzpatrick, Dave Rich, Aturo Salz and Suart Sutherland,
2005, Springer Springeronline.com
* SystemVerilog For Design A Guide to Using SystemVerilog for Hardware Design and Modeling
Stuart Sutherland, Simon Davidmann, Peter Flake, KAP, June 2003, ISBN 1-4020-7530-8
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Assertion-Based Verification is changing the traditional design process because that methodology
helps to formally characterize the design intent and expected operations.2 ABV also quickens the
verification task because it provides feedback at the white-box level.3 As a formal property
specification language, SystemVerilog Assertions facilitate automation of common verification tasks
that can be exploited across various verification methodologies.

As designers and consultants/trainers, we experienced many designs that were weakly specified. The
RTL modeling lacked information about properties and design characteristics, and that led to
difficulties and/or ambiguities in the maintenance and verification processes. A design specification is
helpful in defining requirements. However, specifications are generally defined in an informal
language, like English. They lack a standard machine-executable representation and cannot be
dynamically simulated and/or statically processed by a formal verification tool to ensure compliance
to requirements.

Assertion-Based Verification with SystemVerilog Assertions

In a manner similar to Accellera Property Specification Language (PSL)4, the assertion aspect of
SystemVerilog was devel oped to address these shortcomings. 1t gives the design architects a standard
means of specifying design properties using a concise syntax with clearly defined formal semantics.
Similarly, it enables the RTL designers to capture design intent and assumptions in a verifiable form,
while enabling the verification engineers to validate that the implementation satisfies its specification
through dynamic (i.e., smulation) and formal verification options. Furthermore, it provides a means
to measure the quality of the verification process through the creation of functional coverage models
built on formally specified properties. It provides a standard means for hardware designers and
verification engineers to rigorously document the design specifications using a machine-executable
format.

SystemVerilog with assertions improves the quality of digital designs and helps eliminate defects per
the Six Sigma methodology® because assertions play an important role in a unified verification
methodology ranging from requirement definitions through design and verification (see Chapter 6 for
discussion on the design process with SystemVerilog Assertions). Assertions express functional
design intent and can be used to express assumed input behavior, expected output behavior, or
forbidden behavior. Assertions allow the architects or designers to capture the design intent and
assumptions in a manner that can be verified in the implementation. Assertions are captured during
the development process and are continuously verified throughout the design and verification process.
Working in a unified verification methodology, assertions reduce the verification time by detecting
bugs earlier, and by isolating where a bug is located (by being closer to the source of error). In
addition to detection of property violations, assertions improve the efficiency in a unified methodol ogy
by improving reuse, enhancing testbench checking, and capturing coverage information. Per Lionel

2 Assertion-Based Design, Second Edition, Harry D. Foster, Adam C. Krolnik, David J. Lacey
June 2004, |SBN 1-4020-8027-1,

The SystemVerilog Verification Methodology Manual (VMM), 2005 Springeronline.com
3 Writing Testbenches: Functional Verification of HDL Models, Janick Bergeron, Kluwer Academic Publishers
4 http://www.accellera.com

http://www.eda.org/viv/docs/psl_Irm-1.01.pdf
Shttp://www.isixsigma.com/sixsigma/six_sigma.asp
Six Sigmais a disciplined, data-driven approach and methodology for eiminating defects (driving towards six
standard deviations between the mean and the nearest specification limit) in any process -- from manufacturing
to transactional, and from product to service.
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Benning's® experience, designers created fewer initial bugs in the RTL as an ABV methodology
forced them to think more clearly and accurately about what to design. Also, properties are more
accurate and less prone to misinterpretation than comments in the RTL.

When we were first exposed to SystemVerilog Assertions, we redlized its strong potentials in
specifying design functional specification requirements and properties in a manner easy to learn, write,
and read. We particularly liked the concise syntax of the assertions, which are tightly integrated with
SystemVerilog. We also appreciated the rigorously well-defined formal semantics, and expressive
power of the language, permitting the formal specification (and documentation) for a large class of
real world design properties. Expressing the same functionality with HDLs would require extensive
coding with explicit FSM machines.

SystemVerilog Tool Support

Today, many companies are supporting SystemV erilog with assertions, and the list is growing. A list
of vendors supporting SystemVerilog is shown at the site shown in the footnote.” During the process
of writing this book, we had access to tools from Synopsys and @HDL. Theintent of this book is to
present the general concepts of using SystemVerilog with assertions for dynamic and formal
verification in atool independent manner.

Why ABV with SystemVerilog Assertions?

Assertion-Based Verification moved the traditional design process from an informal RTL coding
approach with typically poor documentation to a process that provides the following benefits: 1)
addresses and documents design decisions; 2) documents design properties and assumptions; 3)
addresses solutions (e.g., interfaces, implied FSMs) to requirements prior to any RTL coding; 4)
addresses verification of assertions, which items to watch out for during the design of RTL and
testbench; 5) facilitates functional coverage to ensure that simulation addresses complex timing-based
corner cases; 6) provides excellent basis for design and verification reviews; 7) simplifies design of
testbench reference models or scoreboards, which verifies the correctness of results; 8) guides
testbench vectors for conditions to be addressed.

It is important to note that SystemVerilog Assertions define the properties, and are implementation
independent. It presents a different viewpoint of the design. The property definitions may imply
FSMs in the implementation. However, those properties do not necessarily show any design
optimizations, such as the use of don't-care conditions. As the design matures, it may be necessary to
revisit the assertions, as they may be too restrictive. In addition, it may also be necessary to add
assertions at the functional level. But this experience of tuning the assertions and the design is healthy
because it forces users to delve into the requirements and implementation.

Our experience with the usage of SystemVerilog Assertions for front-end design definitions
demonstrated that SystemVerilog Assertions are very powerful in the process of delving into design
requirements, design architecture, and definition of restrictions imposed by the architecture. We found
the property and assertion definitions more expressive and precise than the use of a natural language,
eg., English. The RTL design and verification tasks were greatly simplified as a result of using this
assertion-based methodology because it alleviated the need to write a thorough testbench reference
model prior to debugging the model. During simulation the assertions immediately alerted us of

6 Verifiable RTL Design: A Functional Coding Style Supporting Verification Processesin Verilog, Lionel
Benning and Harry Foster, Kluwer Academic Publishers

7 http://www.synopsys.com/partners/systemveril og/systemverilog_partnershtml
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design and testbench errors. In fact, we strongly recommend the use of ABV with SystemVerilog on
design projects. ABV isavery viable methodology for the definition and verification of designs. We
must admit though that at times assertions are very frustrating because they (correctly) insisted that
our designs werein error when we believed that we had all the necessary fixes!!!

M or e about the Book

SystemVerilog Assertions Handbook addresses the practical aspects of understanding and using
assertions with SystemVerilog. This is accomplished by first defining the language, in a non-LRM
manner with many examples to explain the various syntax and nuances of the language. This is then
followed by explaining how SystemVerilog assertions are used in the design process through all
phases of the design including system level definition, architectural and verification plans, RTL and
testbench designs, dynamic and static verification. This is done by example, using a simple
synchronous FIFO as a project model. Formal verification concepts and application of formal
verification with SystemV erilog Assertions are then presented, along with an example of atraffic light
controller to demonstrate the application of tools, and types of results typically presented by such
tools. A set of language and application guidelines emanating from our experience with
SystemVerilog Assertions is presented. A “dictionary” of examples demonstrates how various
English requirements can be trandated into SystemVerilog properties.

Book Organization

Chapter 1 provides an introduction to Assertion-Based Verification. Chapter 2 serves as an
introduction to SystemV erilog Assertions (SVA) concepts with emphasis on properties and assertions.
It prepares the readers for Chapters 3, 4, and 5, which represent the “core’ of SystemVerilog
Assertions. Chapter 3 delves into understanding properties. Chapter 4 delves into the understanding
and application of sequences that represent the real potential of SystemVerilog Assertions. Chapter 5
provides a deeper appreciation of SystemVerilog Assertions by addressing advanced topics for
properties and sequences. Chapter 6 addresses the methodologies in using properties / sequences /
assertions during the requirement and verification planning phases at the requirement and verification
planning levels, in addition to the RTL and testbench levels. It first explains the process, and then
demonstrates an application of assertions in the requirements specification and verification plan using
a synchronous First-In First-Out (FIFO) as an IP (Intellectual Property) block. SystemVerilog
packages, interfaces, modules, and bindings are also demonstrated. Chapter 7 addresses the formal
verification aspects of SystemVerilog Assertions. It focuses on Formal Verification (FV)
methodologies for functional verification of RTL designs. It provides a case study using a traffic light
controller model. Chapter 8 provides a summary a rich set of guidelines in using SystemVerilog
Assertions. These guidelines emerged from experience with usage of Assertion-Based Verification
with Accellera’s PSL, vendor’s recommendations, code reviews, and LRM documentation. Chapter
9 represents a “dictionary” of classes of application examples that translate English descriptions of
properties to SystemVerilog properties. Appendix A provides the answers to the exercises asked at
the end of some chapters. Appendix B is a summary of terms and definitions used within this book.
Appendix C is a SystemVerilog Assertions quick reference guide of the syntax and examples.
Appendix D represents the SystemVerilog Assertions syntax. The book Index provides a page
lookup for information available in this book.
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