
Using SVA for scoreboarding and testbench design
Ben Cohen http://systemverilog.us/

Abstract

Though assertions are typically used for the verification of properties, they can be applied in
many other verification applications. For example, in scoreboarding functions can be called
from within a sequence match item after the assertion reaches a desired point.

Concept

If a sequence expression succeeds, an attached sequence match item would be executed if it
exists. Per 1800, Annex A, a sequence_match_item can be one of the following:
 operator_assignment
 | inc_or_dec_expression
 | subroutine_call

The access to a subroutine call from a sequence match item is the unique feature that allows
many options in the construction of the testbench. For example, the subroutine call can do
one (or more) of the following:
 1. covergroup sampling, as shown below
 (http://systemverilog.us/papers/cpu_cg_module.sv)
 sequence q_fetch; @ (clk)
 mode==FETCH ##1 (1, instr_cg1.sample(), addr_cg1.sample());
 endsequence : q_fetch
 cover property (q_fetch);

 2. Calculating the successful ranges in which an assertion was exercised.
 (http://systemverilog.us/papers/reqack_sequence_cover.sv)

 int reqackdone; // count
 default clocking cb_ck1 @ (posedge clk); endclocking

 // count
 function void set_reqackdone(int v);
 reqackdone=v;
 endfunction : set_reqackdone

 property p_seq_reqack;
 int v_count;
 (req, v_count=0)
 ##1 (rdy, v_count+=1)
 ##1 (1, v_count+=1)[*1:3]
 ##0 (done, set_reqackdone(v_count), cg_inst.sample());
 endproperty : p_seq_reqack
 // cp_seq_reqack: cover property(req ##1 rdy ##[1:3] done);
 cp_seq_reqackP: cover property(p_seq_reqack); // <------------

 covergroup cg_reqack_path_length;
 reqackdone_cp : coverpoint reqackdone
 {
 bins a2 = { 2};

http://systemverilog.us/
http://systemverilog.us/paper/reqack_sequence_cover.sv
http://systemverilog.us/paper/cpu_cg_module.sv

 bins a3 = { 3 }; // { [3:3] };
 bins a4 = { 4 }; // { [4:4] };
 }
 endgroup
 cg_reqack_path_length cg_inst = new();

 3. Performing complex scoreboarding operations at specific points in the assertion. The
assertion can be brought to a specific FSM point, and then call functions to do the
scoreboarding. The next subsection addresses this application by example.

Application example

In the following example (http://systemverilog.us/papers/matrix.sv
http://systemverilog.us/papers/matrix2.sv) the model holds an image in a 25x25 matrix array.
Each pixel in that image is an unsigned integer. The image is partitioned into 25 slices or
quadrants, and the scoreboard needs to compute within a 5x5 slice the number of pixels
greater than 3. The image is loaded when done_image is true, and the slice to be selected
is determined at a new ld signal. The done_image occurs within 1 to 3 cycles after the ld
signal.

In this model, the selection of the slice to be processed is randomly selected; this approach
demonstrates the application of function calls from a sequence match item. Two functions are
called from the sequence match item of a sequence in a property. These include:

 module matrix;
 int unsigned slice [0:4][0:4];
 int unsigned image [0:24][0:24];
 bit clk;
 bit ld, done_image;
 int count;
 typedef struct {
 int x;
 int y;
 } quadrand_t;
 // quadrand_t qd={0,1};
 quadrand_t found_qd;

 // Function select_slice copies pixels from an image into a slice

 // It is used by the count_targets_in_quadrant function.
 // There are 25 quadrants in the image, ranging from quadrant 0 to quadrant 24.

 function void select_slice(quadrand_t qd);
 int unsigned v [0:4][0:4];
 for (int i=0; i<5; i++) begin
 for (int j=0; j<5; j++) begin
 v[i][j]=image[qd.x*4+i][qd.y*4+j];
 end
 end
 slice=v;
 endfunction : select_slice

http://systemverilog.us/paper/matrix2.sv
http://systemverilog.us/paper/matrix.sv

 // Function find_quadrant randomly finds a quadrant
 // Called by property
 function quadrand_t find_quadrant();
 logic[0:3] x, y;
 quadrand_t v_qd;
 if (!randomize(x, y) with {x <5; y<5;})
 `uvm_error("MYERR", "This is a randomize error of find_quadrant");
 v_qd.x=x;
 v_qd.y=y;
 found_qd = v_qd;
 return v_qd;
 endfunction : find_quadrant

 // Function count_targets_in_quadrant counts the
 // number pixels >3 within the selected slice
 // Called by property
 function void count_targets_in_quadrant(quadrand_t v_qdt);
 automatic int unsigned v_count=0;
 select_slice(v_qdt);
 foreach (slice[i,j]) begin
 if (slice[i][j] > 3) v_count++; // 3 is a threshold
 end
 count = v_count;
 endfunction : count_targets_in_quadrant

When the assertion detects a new ld, the local variable v_qdt of the property saves value of
the selected quadrant through a call to find_quadrant. When done_image is detected,
the number of pixels > 3 within that selected quadrant is computed through a call to
count_targets_in_quadrant(v_qdt) with the previously computed quadrant passed as
an actual argument.

 default clocking cb_ck1 @ (posedge clk); endclocking
 property p_targets;
 int unsigned v_slice [0:4][0:4];
 quadrand_t v_qdt;
 first_match(($rose(ld), v_qdt=find_quadrant()) ##[1:3] done_image) |->
 (1, count_targets_in_quadrant(v_qdt));
 endproperty : p_targets

 ap_targets: assert property(p_targets);

Where should assertion be written?

Concurrent assertions are illegal in classes. Thus, assertions are best written in modules, or modules
bound to other modules, or in interfaces. The body functions may use class members or methods.
However, assertions may not use members referenced with class handles. Thus, the following is
illegal:

class c;
int unsigned slice [0:4][0:4];

 int unsigned image [0:24][0:24];
 typedef struct {
 int x;

 int y;
 } quadrand_t;

 quadrand_t found_qd;
 int count;

 function logic[0:3] find_quadrant(bit v);
 static logic[0:3] x, y;
 //automatic quadrand_t v_qd;
 if(v) begin
 if (!randomize(x, y) with {x <5; y<5;})
 `uvm_error("MYERR", "This is a randomize error of find_quadrant");
 return x;
 end
 else return y;
 endfunction : find_quadrant
..

endclass : c
module matrix;
 parameter seed=10;
 c c_h=new();
 property p_targets;
 int unsigned v_slice [0:4][0:4];
 logic[0:3] v_x, v_y;
 first_match(($rose(ld), v_x=c.h_find_quadrant(1), // illegal referencing
 v_y=c_h.find_quadrant(0)) ##[1:3] done_image)
 |->
 (1, c_h.count_targets_in_quadrant(v_x, v_y));
 endproperty : p_targets

	Using SVA for scoreboarding and testbench design
	Abstract
	Concept
	Application example
	Where should assertion be written?

