
Calculating FSMs coverage
Ben Cohen

http://www.systemverilog.us/ ben@systemverilog.us

Abstract
There are many techniques to calculate the coverage of states for FSM machines. One technique is to use the
SystemVerilog cover property or cover sequence statements. However, to cover all possible combinations of an
FSM machine can be very tedious when done manually because of the many possible combinations. There are tools
that can automate this process. However, an alternate approach is to use the covergroup statement that performs
coverage between the previous state of the FSM and the current state, effectively computing the coverage of the
state transitions. In addition cross coverage between states of different FSMs can also be computed. This paper
demonstrates this concept by example.

The model
Consider a traffic light controller that controls two traffic lights: a north-south and east-west. The states of the lights
can be expressed with an enumerated type and with module variables as follows:

typedef enum {ALL_OFF, RED, YELLOW, GREEN,

 RED_FLASH, YELLOW_FLASH, ALL_FLASH } lights_e;
 module traffic;

 lights_e ns, ew; // noth-south, east-west

Using cover sequence statement
 To obtain coverage of the FSM states for each set of lights (i.e., ns, ew), one could use a set of cover sequence
statements. For example,
 default clocking cb_ck1 @ (posedge(clk));
 cq_ns_RED2GREEN: cover sequence(ns==RED ##1 ns==GREEN);

 cq_ns_GREEN2YELLOW: cover sequence(ns==GREEN ##1 ns==YELLOW);

 // …

Another coverage of interest for this controller is the cross coverage between the north-south and east-west lights.
This can again be done with the cover sequence; for example,
 cq_nsRED_ewRED: cover sequence(ns==RED ##0 ew==RED);
 cq_nsGREEN_ewGREEN: cover sequence(ns==GREEN ##0 ew==GREEN);

 // …

To cover all the states can be very tedious, even for an FSM that has as few as seven states because of the number of
possibilities.

Using covergroup statement
The covergroup with cross coverage is a simpler approach to obtain coverage and cross coverage for FSM
machines. The next state sequence of the FSM can be computed into a variable that copies the current state at the
clock edge. For example,

 lights_e ns, ew, ns_past, ew_past; // noth-south, east-west, and next states

 always_ff @ (posedge clk) begin : aly

 ns_past <= ns;
 ew_past <= ew;

 end : aly

Thus for a north-south light, the coverage from its past state to the current state (i.e., the state transition) can be
expressed as: ns_pastXns: cross ns_past, ns;
Below is a waveform of the signals in a simulation.

The coverage of the FSM can thus be expressed using the covergroup as follows:
 covergroup tlights_cg;
 type_option.merge_instances = 0;
 option.per_instance = 1;

 option.get_inst_coverage = 1;

 // ns_cp: coverpoint ns; // redundant because of the cross
 // ew_cp: coverpoint ew;
 ns_pastXns: cross ns_past, ns;
 ew_pastXew: cross ew_past, ew;

 nsXew: cross ns, ew;

 endgroup

The complete model and results is shown below. For simplicity, because the actual traffic light FSM constructions
are of little importance to demonstrate the coverage, they are modeled using weighted random values.
import uvm_pkg::*; `include "uvm_macros.svh"

typedef enum {ALL_OFF, RED, YELLOW, GREEN, RED_FLASH, YELLOW_FLASH, ALL_FLASH } lights_e;
class t_c;

 rand lights_e ns, ew; // noth-south, east-west, and next states

 constraint NS_cst {ns dist{ALL_OFF:=1, RED:=20, YELLOW:=6, GREEN:=20,
 RED_FLASH:=3, YELLOW_FLASH:=3, ALL_FLASH:=3};}

endclass : t_c

module traffic;
 bit clk;

 lights_e ns, ew, ns_past, ew_past; // north-south, east-west, and next states

 t_c t=new();
 initial forever #10 clk=!clk;

 // emulation of traffic light FSMs
 always_ff @ (posedge clk) begin : aly

 if(!t.randomize()) `uvm_error("run_phase", "seq randomization failure");
 ns <= t.ns;
 ew <= t.ew;

 ns_past <= ns;

 ew_past <= ew;
 t_cg.sample(); // Sampling of covergoup

 end : aly

 covergroup tlights_cg;

 type_option.merge_instances = 0;

 option.per_instance = 1;
 option.get_inst_coverage = 1;

 // ns_cp: coverpoint ns; // redundant because of the cross
 // ew_cp: coverpoint ew;

 ns_pastXns: cross ns_past, ns;

 ew_pastXew: cross ew_past, ew;
 nsXew: cross ns, ew;
 endgroup

 tlights_cg t_cg = new; // instantiation of covergroup
endmodule : traffic

Sample results of the cross coverage and cross coverage is shown below:

COVERGROUP COVERAGE:

--
Covergroup Metric Goal/ Status

 At Least

--
Covergroup instance \/traffic/t_cg 84.3% 100 Uncovered
 Coverpoint ns_cp 100.0% 100 Covered

 covered/total bins: 7 7
 missing/total bins: 0 7

 bin auto[ALL_OFF] 1 1 Covered

 bin auto[RED] 16 1 Covered
 bin auto[YELLOW] 2 1 Covered

 bin auto[GREEN] 17 1 Covered

 bin auto[RED_FLASH] 6 1 Covered
 bin auto[YELLOW_FLASH] 4 1 Covered

 bin auto[ALL_FLASH]

Cross ns_pastXns 46.9% 100 Uncovered

 covered/total bins: 23 49
 missing/total bins: 26 49

 bin <auto[ALL_OFF],auto[ALL_OFF]> 1 1 Covered

 bin <auto[RED],auto[RED]> 10 1 Covered
 bin <auto[GREEN],auto[RED]> 6 1 Covered

 bin <auto[RED],auto[YELLOW]> 1 1 Covered

 bin <auto[GREEN],auto[YELLOW]> 1 1 Covered
 bin <auto[ALL_OFF],auto[GREEN]> 1 1 Covered

 bin <auto[RED],auto[GREEN]> 2 1 Covered

 bin <auto[YELLOW],auto[GREEN]> 1 1 Covered
…

 bin <auto[ALL_FLASH],auto[YELLOW_FLASH]> 2 1 Covered

 bin <auto[RED],auto[ALL_FLASH]> 2 1 Covered
 bin <auto[YELLOW],auto[ALL_FLASH]> 1 1 Covered

 bin <auto[GREEN],auto[ALL_FLASH]> 1 1 Covered
 bin <auto[RED],auto[ALL_OFF]> 0 1 ZERO
 bin <auto[YELLOW],auto[ALL_OFF]> 0 1 ZERO

 bin <auto[GREEN],auto[ALL_OFF]> 0 1 ZERO

 bin <auto[RED_FLASH],auto[ALL_OFF]> 0 1 ZERO

The comple model code and results are availabel at
 http://systemverilog.us/trafficlight_coverage.zip

http://www.systemverilog.us/
* SystemVerilog Assertions Handbook, 3rd Edition, 2013 ISBN 0-9705394-3-6 ** NEW BOOK **
* A Pragmatic Approach to VMM Adoption 2006 ISBN 0-9705394-9-5
* Using PSL/SUGAR for Formal and Dynamic Verification 2nd Edition, 2004, ISBN 0-9705394-6-0
* Real Chip Design and Verification Using Verilog and VHDL, 2002 isbn 0-9705394-2-8
* Component Design by Example, 2001 ISBN 0-9705394-0-1
* VHDL Coding Styles and Methodologies, 2nd Edition, 1999 ISBN 0-7923-8474-1
* VHDL Answers to Frequently Asked Questions, 2nd Edition ISBN 0-7923-8115
--

