
136 SystemVerilog Assertions Handbook, 4th Edition

Rule: The use of $sampled in assertions, although allowed, is redundant because the values
used for all design variables inside the expressions are those sampled at the Preponed region.
However, the $sampled is necessary in an action block, which does not follow/utilize the sampled
semantics and hence uses the current values of the variables at the time the action block is
evaluated.

4.2.1.1.2 $past
Rule: The $past function provides the sampled value that an expression held in a previous nth

cycle. The syntax of the function is: [1]
$past(expression1 [, number_of_ticks] [, expression2] [, clocking_event])

expression1 represents the expression being sought.
The three optional arguments define the following:

expression1 and expression2 can be any expression allowed in assertions.
number_of_ticks specifies the number of clock ticks in the past. number_of_ticks must be
one or greater, and must be static (i.e., known at elaboration time). If number_of_ticks is
not specified, then it defaults to 1. If the specified clock tick in the past is before the start
of simulation, the returned value from the $past function is a value of X.
expression2 is used as a gating expression for the clocking event. The value returned for
$past is expression1 sampled number_of_ticks gated cycles ago. In other words, for:
$past(data, 3, load_enable, @(posedge clk)) the returned value is the sampled value of
data in the 3rd prior cycle in which load_enable was true. This is demonstrated in Figure
4.1.1.1-2 /ch4/4.2/past.sv
clocking_event specifies the clocking event for sampling expression. A clock tick is
based on clocking_event.
Examples: :

regload |=> reg_data==$past(data); // value of load_data at the previous cycle
regload |-> ##2 reg_data==$past(data, 2); // value of load_data at 2 cycles ago
regload |-> ##2 reg_data==$past(data, 2, 1, @(posedge clk)); // value of load_data at 2 cycles ago

regload |-> ##2 reg_data==$past(data, 3, load_enable, @ (posedge clk));
// value of data when it was sampled 3 gated cycles ago with load_enable as the gate.

Figure 4.2.1.1-2 Evaluation of $past(data, 3, load_enable, @ (posedge clk)
Rule: Method triggered (see 2.5.2) is not allowed as an argument of system task functions.

In addition, it can only be used within a SVA construct. Thus, the following code is illegal:
sequence qT; @ (posedge clk)a ##2 b; endsequence : qT
a_P1 : assert property (@ (posedge clk) go |=> $past(qT.triggered)); //
wire go_triggered;
assign go_triggered = $past(qT.triggered)); // ch4/ sampled4_3.sv

