
258 SystemVerilog Assertions Handbook, 4
th
 edition

8.1 Naming convention guidelines

A naming convention provides consistency in a design project for the clarification of how objects

in the design are used and classified. Users may not agree with our proposed naming convention,

and may prefer an optional alternative. Our position is that as long as a consistent naming

convention is explained and used across a project, the choice of the convention is not critical.

8.1.1 File naming
1. A file consists of three parts: a) Name that characterizes the function or level of the

design or testbench, b) a type that characterizes its usage type (e.g., package, rtl, etc), c)

an extension that characterizes the language (e.g., SystemVerilog, e, c). The format of a

file typically adopted in industry is: name_suffix.extension In some cases, the format

may include two or more suffixes, i.e., name_suffix1_suffix2.extension.

2. Each design name should include a suffix that describes the usage. The file name should

match the design name. This approach helps to clarify the content and intent of a file.

See Table 8.1.1-1.

Table 8.1.1-1 Design unit naming convention

Type of file Suffix Example File name

Package _pkg package cpu_pkg; cpu_pkg.sv

RTL _rtl module cpu_rtl (…); cpu_rtl.sv

Behavior _beh module cpu_beh(…); cpu_beh.sv

Properties _props module cpu_props(..); cpu_props.sv

Testbench _tb module top_tb(); top_tb.sv

Checker (SV) _chk checker cpu_chk();

// SystemVerilog checker (See

5.0)

cpu_chk.sv

Interface _if interface usb_bus_if (..); usb_bus_if.sv

Program _pgm program test_pgm; test_pgm.sv

Library _lib package cpu_lib_pkg; cpu_lib_pkg.sv

Configuration _config class counter_config; counter_config.sv

Driver _driver class counter_driver; counter_driver.sv

Environment _env class counter_env; counter_env.sv

Agent _agent class counter_agent; counter_agent.sv

Monitor _monitor class counter_monitor; counter_env.sv

Sequencer _sequencer class counter_sequencer; counter_env.sv

Sequence _sequence class counter_sequence; counter_env.sv

Transaction _xactn class counter_xactn; counter_env.sv

Checker (TB) _checker

_verif

class counter_checker;

// verifier or checker in

functionality

counter_checker.sv

Test _test class counter_test; counter_env.sv

Base _base class counter_base_test;

// base class
counter_env.sv

3. Files that get directly compiled should have the .sv extension. All the files that are

`included into a .sv file somewhere should have a .svh extension. This enhances the

understanding on how SystemVerilog files are used.

SystemVerilog Assertions Guidelines 259

4. Within a design, suffixes are used to characterize the type of the object or its active

polarity. Table 8.1.1-2 summarizes an object naming convention.

Table 8.1.1-2 Object naming convention

Type of

object

Suffix Example

Type _t

_e

_ev

typedef logic [WIDTH-1 : 0] word_t;
typedef enum {OFF, RED, YELLOW, GREEN} lights_e;
event clk_ev

Active low

variable

_n logic reset_n; // active low reset

Constant and

parameter

Upper
Case

parameter WIDTH=16;
localparam DEPTH=256;
module memory #(DEPTH, WIDTH) (..);

modport _mp drvr_if_mp

Clocking

block

_cb driver_cb

8.1.2 Naming of assertion constructs
A naming convention for the assertions helps to identify the constructs, and becomes meaningful

during the display of failed assertions or the access of instantiated assertions using the AVA

Application Programming Interface (API). Table 8.1.2 provides a summary of recommended

prefix notation. Note that the underscore ‘_’ character is optional, but recommended when the

first letter of the object name is in lower case, as it enhances readability.

Table 8.1.1.2 Recommended prefix named notation for assertion constructs

Type of

object

Pre-

fix

Example

sequence q sequence q_req;
 $rose(ready) ##[0:4] req;
endsequence : q_req

property p property p_reqack;
 $rose(req) |=> ack;
endproperty : p_reqack

variable v property p_req;
 logic [31:0] v_data; // local variable for data
 logic [1:0] v_vie; // local variable for vie
 ($rose(req), v_data=data, v_vie=vie) |=>
 ack && buff=v_data && vie!=v_vie;

endproperty : p_req

local

variable

formal

argument

lv sequence q_ab(input addr, // formal argument

 local inout int lv_addr); // local variable formal

argument
 (a, lv_address=addr) ##1 addr== lv_addr +1’b2;
endsequence : q_ab

assert* a ap_reqack : assert property (@ (posedge clk) p_reqack);

cover* c cq_req : cover sequence (@ (posedge clk) q_req);
cp_reqack : cover property (@ (posedge clk) p_reqack);

assume*

m mp_reqack : assume property (@ (posedge clk) p_reqack);
mq_req : assume property (@ (posedge clk) q_req);

restrict* r rp_fn_mode : restrict property (@(posedge clk) scan_en == 0);

* The prefix “a”, “c”, “m”, is followed by the name of the property or sequence.

