

Component Design by Example

… a Step-by-Step Process Using VHDL with UART as Vehicle

Ben Cohen

VhdlCohen Publishing

Los Angeles, California

http://www.vhdlcohen.com

http://www.vhdlcohen.com/

 ii Component Design by Example

Component Design by Example

… A Step-by-Step Process Using VHDL with UART as Vehicle

Published by:

VhdlCohen Publishing

P.O. 2362

Palos Verdes Peninsula CA 90274-2362

vhdlcohen@aol.com

http://www.vhdlcohen.com or

http://members.aol.com/vhdlcohen/vhdl/

Library of Congress Cataloging-in-Publication Data

Library of Congress Card Number: 00-109498

Cohen, Ben

Component Design by Example

ISBN 0-9705394-0-1

Copyright © 2001 by VhdlCohen Publishing

All rights reserved. No part of this publication may be reproduced or

transmitted in any form or by any means, electronic or mechanical, including

photocopying, recording, or by any information storage and retrieval system,

without the prior written permission from the author, except for the

inclusion of brief quotations in a review.

Printed on acid-free paper

Printed in the United States of America

mailto:vhdlcohen@aol.com
http://www.vhdlcohen.com/
http://members.aol.com/vhdlcohen/vhdl/

Preface

iii

NOTES ADDED December 18, 2014

This book was written in 2001. Since then technology has changed, and the

verification methodologies have improved. Specifically, Verilog matured to

become SystemVerilog and assertion languages matured along with formal

verification. However,m VHDL did not make such pogress and in MHO, is

lagging behind. Below are some of the changes that occured in SystemVerilog.

However, I need to caution the readers of this book that the verification

methodologies offered here are outdated and are not recommended. The

guidelines in writng specifications and requirements still hold.

SystemVerilog supports specific features for verifcation, and those are not

supported by VHDL. Several aspects are needed in verification:

1) Stimulus generator. For that SV supports:

 a) Constraint random generation with random gen stability.

 FYI, on random stability: This explains it

 http://www.testbench.in/CR_20_RANDOM_STABILITY.html

 Basically, this deals with reproducability because of calls to RNG (random

number generator (something not available in VHDL)

2) Verification of results:

This is supported by SystemVerilog Assertions (SVA) and by data structures

needed for verification; these include associative arrays, queus, mailboxes, the

generate statement (like VHDL), vectors.

3) Coverage to determine when done, or how much was done.

 SV provides the SVA cover and the covergroup to help in that respect.

4) flexibility for changes

 SV has classes that can be extended and dynamically linked to other classes to

accommodate changes and tests.

5) standards: UVM was developed to facilitate the standardization for the

development of TBs.

I authored several books on VHDL and Verilog (which represents the RTL part of

SystemVerilog) and to me, the two languages are pretty much similar, except for

syntax. After being a very strong advocate of VHDL, I changed my beliefs and

switched to SystemVerilog, even for just the Verilog subset of it. It is less

restrictive, but requires good coding guidelines. I am also a very strong advocate

of SystemVerilog assertions (SVA) because they help in the clarification of the

requirements and in the debugging and verification process. Formal verification is

http://www.testbench.in/CR_20_RANDOM_STABILITY.html

 iv Component Design by Example

gaining wide acceptance, and uses SVA for the definitions of the properties of the

design. I also like the UVM methodology and approaches, though UVM is not

very straightforward, and requires care, with a good understanding of

SystemVerilog. However, with some guidance and rules, I believe that one can

effectively use UVM with a lesser than full understanding of SystemVerilog.

What I am talking about it is the use of predefined templates for the basic building

blocks.

--
Ben Cohen
http://www.systemverilog.us/ ben@systemverilog.us

* SystemVerilog Assertions Handbook 3rd Edition, 2013 ISBN 878-0-9705394-3-6
* A Pragmatic Approach to VMM Adoption 2006 ISBN 0-9705394-9-5
* Using PSL/SUGAR for Formal and Dynamic Verification 2nd Edition, 2004, ISBN 0-
9705394-6-0
* Real Chip Design and Verification Using Verilog and VHDL, 2002 isbn 0-9705394-2-8
* Component Design by Example ", 2001 ISBN 0-9705394-0-1
* VHDL Coding Styles and Methodologies, 2nd Edition, 1999 ISBN 0-7923-8474-1
* VHDL Answers to Frequently Asked Questions, 2nd Edition ISBN 0-7923-8115

--

Preface

v

Contents

FOREWORD……………………………………………………………………I

X

PREFACE

………………………………………………………………………XI

ABOUT THE

DISK…………………………………………………………….XV

ACKNOWLEDGEMENTS…………………………………………………..XV

II

ABOUT THE

AUTHOR…………………………………………………...….XIX

DISCLAIMER…………….…………………………………………………...XX

1 OVERVIEW... 1

1.1 COMPONENT DESIGN PROCESS ... 2

2 REQUIREMENT SPECIFICATION ... 7

2.1 LANGUAGE .. 8

2.2 UART REQUIREMENT SPECIFICATION .. 11
 1.0 SCOPE ... 12

 1.1 SCOPE... 12

 1.2 PURPOSE ... 12

 1.3 CLASSIFICATION .. 12

 2.0 DEFINITIONS .. 12

 2.1 ASYNCHRONOUS TRANSMISSION .. 12

 2.2 BAUD RATE .. 12

 2.3 DTE ... 12

 2.4 DCE ... 12

 2.5 FRAMING ERROR .. 12

 2.6 OVERRUN ERROR ... 12

 2.7 PARITY .. 13

 2.8 START BIT ... 13

 2.9 STOP BIT .. 13

 2.10 SYNCHRONOUS TRANSMISSION ... 13

 2.11 UNDERRUN ERROR .. 13

 2.12 WORD (WITH UART) ... 13

 3.0 APPLICABLE DOCUMENTS ... 13

 vi Component Design by Example

 3.1 GOVERNMENT DOCUMENTS ... 13

 3.2 NON-GOVERNMENT DOCUMENTS .. 14

 3.3 EXECUTABLE SPECIFICATIONS ... 14

 4. 0 ARCHITECTURAL OVERVIEW ... 14

 4.1 INTRODUCTION .. 14

 4.2 SYSTEM APPLICATION ... 15

 5.0 PHYSICAL LAYER ... 17

 5.1 INTERFACE PORT DESCRIPTION ... 17

 6.0 PROTOCOL LAYER ... 22

 7.0 ROBUSTNESS .. 24

 7.1 ERROR DETECTION .. 24

 8.0 HARDWARE AND SOFTWARE ... 24

 8.1 FIXED PARAMETERIZATION ... 24

 8.2 SOFTWARE INTERFACES ... 25

 8.3 MODES OF OPERATION... 29

 9. 0 PERFORMANCE .. 30

 9.1 FREQUENCY .. 30

 9.2 POWER DISSIPATION ... 30

 9.3 ENVIRONMENTAL ... 30

 9.4 TECHNOLOGY ... 30

 10.0 TESTABILITY ... 30

 11.0 MECHANICAL ... 30

3 ARCHITECTURAL PLAN .. 31
 1.0 SCOPE ... 33

 1.1 SCOPE... 33

 1.2 PURPOSE ... 33

 1.3 CLASSIFICATION .. 33

 2.0 DEFINITIONS .. 33

 3.0 APPLICABLE DOCUMENTS .. 33

 4.0 ARCHITECTURAL OVERVIEW .. 34

 4.1 CPU SUBBLOCK .. 34

 4.2 RECEIVER SUBBLOCK ... 34

 4.3 TRANSMIT SUBBLOCK ... 35

 4.4 CLOCK SUBBLOCK ... 35

 5.0 PHYSICAL LAYER ... 36

 6.0 PROTOCOL LAYER ... 37

 7.0 ROBUSTNESS .. 37

 8.0 HARDWARE AND SOFTWARE ... 37

 8.1 FIXED PARAMETERIZATION ... 37

 8.2 SOTWARE INTERFACES ... 37

 9.0 PERFORMANCE ... 37

 10.0 TESTABILITY .. 37

 11.0 DESIGN TOOLS ... 388

Preface

vii

4 VERIFICATION PLAN ... 39

4.1 METHODOLOGIES .. 40

4.1.1 What is a Verification Plan ... 40

4.1.2 Why a Verification Plan .. 40

4.1.3 Verification Languages ... 42

4.2 VERIFICATION PLAN ... 46
 1. SCOPE ... 47

 1.1 SCOPE... 47

 1.2 PURPOSE ... 47

 1.3 CLASSIFICATION .. 47

 2.0 DEFINTIONS ... 47

 3. APPLICABLE DOCUMENTS .. 48

 3.1 GOVERNEMENT DOCUMENTS ... 48

 3.2 NON-GOVERNEMENT DOCUMENTS .. 48

 3.3 EXECUTABLE SPECIFICATIONS ... 48

 3.4 REFERENCE SOURCES .. 48

 4. COMPLIANCE PLAN .. 49

 4.1 FEATURE EXTRACTION AND TEST STRATEGY ... 49

 4.2 TESTBENCH ARCHITECTURE ... 60

 4.3 VERIFIER .. 69

 5. DESIGN TOOLS ... 72

5 DESIGN AND SYNTHESIS ... 73

5.1 RTL DESIGN ... 73

5.1.1 CPU Interface (CpuIf) Subblock Design .. 74
 CPUIF.VHD .. 84

5.1.2 Clock Control .. 91
 CLKCNTRL.VHD .. 93

5.1.3 Receiver Subblock (rcvsublk) ... 95
 RCVSUBLK.VHD .. 98

 RECEIVER.VHD ... 101

 FIFO.VHD ... 104

5.1.4 Transmit Subblock (xmitsublk) .. 107

5.1.5 UART Model .. 109
 XMITSUBLK.VHD .. 110

 TRANSMITTER.VHD .. 113

 UART.VHD .. 116

5.1.6 Compilation ... 121

5.1.7 Synthesis ... 121

5.1.8 Layout ... 125

5.1.9 Area Statistics ... 128

 viii Component Design by Example

6 DESIGN VERIFICATION ... 131

6.1 OVERVIEW... 132

6.2 PARSER PACKAGE ... 132
 PARSER_PB.VHD ... 135

6.3 CLIENT MODEL ... 144
 UART_CLIENTRNDM.VHD ... 147

 RCV_CLIENT.VHD ... 152

6.4 SERVER.. 154
 UART_SERVER.VHD .. 155

 RCV_SERVER.VHD .. 159

 FIFO_SERVER.VHD ... 162

 FIFO_TB.VHD .. 164

6.5 VERIFIER ... 167

6.5.1 ISSUES ... 167

6.5.2 Verifier Design Approach ... 169

6.5.3 Verifier Design .. 174

6.5.4 Top level Testbench .. 178

6.5.5 Configuration .. 178
 VERIFPEEK.VHD ... 179

 UART8_TB.VHD ... 195

 UART_C.VHD ... 201

6.5.6 Definition of Scenarios (test cases) ... 205
 COMMAND FILE: INSTR1.TXT ... 205

 COMMAND FILE: CPU5TO15.TXT .. 214

 COMMAND FILE: SW_RESET.TXT .. 214

 COMMAND FILE: RCVINSTR.TXT ... 217

 COMMAND FILE: RCV11TO15.TXT ... 219

6.5.7 Compilation Scripts .. 220

6.5.8 Simulation Results .. 221

6.5.9 Reading Text File into a Linked List …………………………227

7 DOCUMENTATION AND DELIVERY... 233

2.1 INTRODUCTION .. 234

2.2 REFERENCE INFORMATION ... 234

2.2.1 Documented References ... 234

2.2.2 Terminology .. 234

2.3 DELIVERABLE OVERVIEW ... 234

2.4 DATA ORGANIZATION FOR THE PACKAGING OF DELIVERABLES 237

2.5 DELIVERABLES DESCRIPTIONS ... 242

2.5.1 General Deliverables ... 242

2.5.2 Documentation Deliverables ... 245

2.5.3 Creation Guide .. 247

2.5.4 Logic Design Deliverables .. 248

2.5.5 Physical Design Deliverables .. 248

2.5.6 Design-for-Test and Manufacturing-Related Test Deliverables 248

Preface

ix

2.5.7 Functional Verification Deliverables .. 248

2.5.8 Design Analysis Deliverables ... 251

2.6 DESIGN STATUS AND RECOMMENDATIONS .. 251

2.6.1 Status ... 251

2.6.2 Suggested Work .. 252

2.7 OPENMORE ... 252

8 INTEGRATION OF COMPONENTS INTO DESIGNS 263

8.1 APPLICATION OF UART INTO HIGHER LEVEL DESIGN 264

 UART_LEVEL2.VHD .. 265

8.2 HIGHER LEVEL COMPONENT EXTRACTION AND INTEGRATION 268

8.2.1 Motivation for change ... 268

8.2.2 Related Industry Trends .. 269

8.2.3 Types of IP Cores Error! Bookmark not defined.

8.2.4 Reuse Automation through High-Level Synthesis 272

8.2.5 IP-Centric Synthesis Methodology ... 273

8.2.6 Summary and Recommendation Error! Bookmark not defined.

9 REFLECTIONS... 276

9.1 REQUIREMENTS ... 276

9.1.1 Realities... 276

9.1.2 System implications .. 278

9.1.3 Consistency ... 279

9.2 DESIGN .. 280

9.3 VERIFICATION ... 281

9.3.1 Value of verifier. ... 282

9.3.2 Code coverage ... 282

9.3.3 Debugger/LINTing …………………………………………………..280

9.3.4 When is design fully verified .. 283

9.3.5 Text Command Files ... 283

9.3.6 Review of testplan against verifier implementation 283

9.4 Summary and Conclusions.......................... Error! Bookmark not defined.

INDEX …………………………………………………………………… 283

 x Component Design by Example

FOREWORD

When Ben first asked me if I would be interested in reviewing his latest book, I

was dually thrilled; once for the opportunity to contribute to the subject matter,

second because it meant that Ben was taking on some new issues. In my many

years with Synplicity, I have had the opportunity to read or review many books.

Of those, very few I appreciated enough to recommend. Two of Ben's earlier

books, VHDL Coding Styles and Methodologies and VHDL Answers to

Frequently Asked Questions are truly the best of the lot. They have long been on

my technical recommendation list. Ben has an academic knowledge of the VHDL

language, but utilizes that information with a practitioner’s sense of reason. Both

of these works are targeted toward the designer who utilizes VHDL. He fills

these books with tips and recommendations, explanations as to why decisions are

made and many references for further reading. What we gain from these books

are a practical guide to applying VHDL with consideration for both the circuits to

be implemented as well as the tools that you will used to create and verify the

designs. I was anticipating that this new work would be similar in approach.

In Component Design by Example, Ben attacks the design reuse problem. This

topic is timely and important. The Electronic Design Automation community has

spent the most of the last decade foreshadowing the emergence and importance of

design re-use and "IP" to obtain the next level of productivity gains. It is only in

recently that we have seen more frequent occurrences of design reuse. In the past

few years, our customers have begun to utilize various sizes and complexities of

IP. With our customers, we have discussed, planned, pondered and solved

various problems and futures for the development and reuse of design data and

modular design flows. Consequently, we have observed that there is much design

data that is reused, but only after significant effort. Often this is because the

module was not successfully designed with reuse in mind. I suspect that many

designers lacked resources and references broad enough to be useful on the topic

of design for reuse.

Preface

xi

Ben has created a pragmatic and useful book on design for reuse. It is useful

because it brings lots of practical information and experience in one place. Useful

because he dares to go beyond just the implementation phases of design, (which is

more frequently addressed), and takes on the procedures from conception to

specification and planning. PLEASE DON'T DISMISS THESE SECTIONS!

Too many projects get into too much trouble down the line due to incomplete,

ambiguous, or "undocumented" specifications and inadequate planning. It seems

obvious, yet so many designers think of it as overhead that impedes progress.

Component Design by Example will be useful to any designer or design team. It

may improve efficiency and improve products, or create disagreement in

approach. My hope is it will stimulate discussion. I expect it will be the

foundation for a future filled with IP. Read this before your next project. Then

reread it afterward. You will benefit both times.

Andrew R. Dauman

Vice-President of Corporate Applications

Synplicity, Inc.

Sunnyvale, CA

September 28, 2000

 xii Component Design by Example

PREFACE

As a VHDL trainer, consultant, and designer I recognized the need to demonstrate

how to organize designs from conception to verified products. Many books

address the design processes that include reuse methodologies for components,

subblocks, and ASIC/FPGA designs. Since 1996, the Virtual Socket Interface

Alliance TM (VSIA)1 has played a key role in the design reuse scenario by creating

standards for the industry that permits even broader reuse. These books and

standards provide guidelines and general recommendations, but lack the

provisions of complete design examples (with code) that demonstrate all the

front-end phases of a design process. These phases include definition of

requirements, architecture, verification approaches, HDL coding, synthesis,

verification, and documentation. This book covers this gap and addresses the

process of defining requirements and translating these requirements into a verified

soft component design.

A component is taken in the sense of a design unit, subblock (or partition of a

larger design), and a commercial Intellectual Property (IP). This book recognizes

that there are many methodologies adopted by industry to perform front-end

designs. This book provides methodologies generally accepted and recommended

by many textbooks, including: Reuse Methodology Manual, Michael Keating and

Pierre Bricaud, Writing Testbenches, Functional verification of HDL Models,

Janick Bergeron, and Verification Methodology Manual for Code Coverage in

HDL Designs by Michael Stuart and David Dempster. Users can tailor their

methodologies to what is required given the constraints of labor force, budgets,

and available tools. Even though tools do not represent methodologies, tools are

often used to guide methodologies.

This book serves the following goals:

1. It demonstrates, by example, the processes involved in specifying,

implementing, and verifying a reusable soft component. Most of these

front-end processes are independent of the HDL implementation or

verification languages. Even though the disciplines involved in every

project and company will vary, the presented processes provide a good

modeling base that users can modify and build upon. This is the focus

and purpose of the book.

2. It demonstrates how to write a requirement specification that defines the

foundation of the design. Defining a good specification is a difficult task

1 Virtual Socket Interface Alliance TM http://www.vsi.org

Preface

xiii

as no single approach represents an exclusive best solution. It discusses

potential specification methodologies, and provides a subset of this

domain space as a modeling example to specify a serial interface, which is

UART-like in requirements. These requirements meet those defined in

the EIA (Electronics Industry Association) standard for serial data

communication RS-232 UART. To emulate the challenges of real

designs, such as parameterization and adaptability to different modes, this

design adds additional performance requirements including: word widths,

storage depths, and interrupt controller. This UART design is a soft

component vehicle, and represents a model of moderate complexity with

adaptability to many applications. A UART is a Universal Asynchronous

Receiver Transmitter.

3. It demonstrates how to write an architectural implementation document,

before writing any HDL code. This document defines the architectural

approach for analysis and review.

4. It demonstrates how to write reusable and parameterized VHDL

synthesizable RTL code for designs using IEEE 1076.6 VHDL RTL for

synthesis guidelines2. This parameterization emulates typical components

that require such flexibilities.

5. It demonstrates how to write a verification plan that defines the

foundation of the verification approaches of a design. This document is

essential because it guides the design of the testbench and verification

models, and provides a forum for scrutinizing the validity and

completeness of the tests.

6. It demonstrates how to verify a design using reusable testbenches in

VHDL.3 The issues of verification techniques are quite controversial,4

particularly with the advent of new verification tools and languages. The

elementary concepts of verification are independent of tools or languages,

even though tools and languages are used to implement the verification.

This book concentrates on the strict use of VHDL as the verification

language because it is opened and portable. It illustrates advanced VHDL

modeling techniques for the generation of stimulus vectors, including the

use of text command files, client/server models, and pseudo-random

transactions. The text commands for the control of transactions include a

rich, but small, instruction set capable to recursively call command files

defined as subroutines.

7. It demonstrates the design and synthesis process, including results of

synthesis and post-route with Altera tools.

2 See http://www.vhdl.org/siwg
3 Those techniques are referenced in the following books:

VHDL Coding Styles and Methodologies, 2
nd

 Edition, Ben Cohen, KAP, 1999.

Writing Testbenches: Functional Verification of HDL Models, Janick Bergeron, KAP 2000
4 See http://janick.bergeron.com/guild

 xiv Component Design by Example

8. It provides, as a by-product of these methodologies, the design of a high-

speed, full-featured UART-like soft component that can be tailored to

applications that require an asynchronous or synchronous serial 8, 16, and

32-bit interface between two equipments.

9. It demonstrates the integration of the soft component into a subsystem.

10. It demonstrates the filling of the OpenMore spreadsheet. OpenMore is

an assessment program developed by Synopsys and Mentor Graphics

designed to enable a self-assessment of the reusability of commercial IP

offerings.

11. It demonstrates an application of a Virtual Component Block

Deliverables document, as described by Motorola’s Semiconductor Reuse

Standard5.

All VHDL code described in the book is on a companion CD. All code was

verified and simulated with ModelSim version 5.4b,6 and synthesized with

Synplify version 5.3.1.7 The CD also includes the GNU toolsuite with EMACS

language sensitive editor (with VHDL, Verilog, and other language templates),

and TSHELL tools that emulate a Unix shell.

This book is intended for:

1. Engineers. Book provides examples for the processes involved in

defining components from requirements through verification and

synthesis. It represents templates for the definition and implementation of

a design. Engineers are better at copying and improving upon what is

done, than from starting from scratch. This book will provide a head start

in these processes.

2. Application Designers. Engineers who need a UART can use or modify

the models described in this book.

3. Tool Developers. This book defines a well-specified and documented

model of a common design of medium complexity, with hierarchy. Tool

developers may exercise these requirements and HDL designs through

new tools to demonstrate enhancements in the design processes.

4. Trainers. This book provides the focus of an advanced class for the

definition and application of front-end methodologies and processes.

5. College students. Book demonstrates the design processes, from

5 Motorola: http://www.mot-sps.com/technology/srs/index.html

6 Model Technology: http://www.model.com

7 Synplicity http://www.synplicity.com

Preface

xv

requirements to a verified implementation. It models real working industry

design experiences

This book will be helpful as a guide through all the phases of a front-end design.

It provides useful document templates for the definition of the requirement,

implementation, and test plan documents. It also provides reusable code for the

design of testbenches, and demonstrates by example, the application of this code

for the synthesis and verification of a UART model.

 xvi Component Design by Example

About The Disk

Table 1 summarizes the contents of the enclosed CD.

Table 1 Contents of Enclosed CD

DIRECTOR

Y NAME

DESCRIPTION

vhdl/rtl clkcntrl.vhd -- clock controller subblock

 cpuif.vhd -- CPU Interface subblock

 fifo.vhd -- FIFO subblock

 rcvsublk.vhd – Receiver top-level with receiver subblock and FIFO

 receiver.vhd – Receiver subblock

 transmitter.vhd -- Transmitter subblock

 xmitsublk.vhd -- top-level with transmitter subblock and FIFO

 uart.vhd -- UART, top-level

 uart_level2.vhd – integration of UART into higher level

vhdl/tb vsp.vhd -- miscellaneous package

lfsrstd.vhd -- Linear feedback shift register package

image_pb.vhd -- image package for conversion to strings

size_pkg.vhd – For testbench use, global signals and constants

parser_pb.vhd – Parser package for file I/O and command parsing

uart_server.vhd -- UART Server for TB

rcv_client.vhd -- Client for receive side of UART

rcv_server.vhd -- Server for receive side of UART

verifierpeek.vhd -- Verifier with use of global signals for synch

verifierblkbox.vhd -- Verifier, black box approach

uart_clientrndm.vhd – Uart client with good random tests

uart_client_bad.vhd -- – Uart client with tests that produce errors

uart8_tb.vhd -- Top level testbench for UART

uart_c.vhd -- Configuration declarations for UART testbench

fifo_server.vhd -- Fifo server for use with uart client

fifo_tb.vhd-- fifo testbench

filedata.vhd -- Reading data from a file through linked lists

vhdl/gates uart.vho -- gate level model produced by Altera

Preface

xvii

Directory

Name

Description

uart cpu5to15.txt -- CPU subroutine command file

instr1.txt -- CPU command file

rcv11to15.txt -- Receive side subroutine command file

rcvinstr.txt -- Receive side command file

sw_reset.txt -- Reset subroutine command file

scripts compile.do -- ModelSim compile scripts

compile.log – ModelSim compile log

run.do -- ModelSim run simulation

Altera Synplify EDIF files, Files produced by Altera

simRuns Gate_Sim – gate level simulation run output

RTL_BlkBox -- RTL black box simulation run output

RTL_GreyBoxRdmn -- RTL Gray box simulation run output

RTL_Grey_OverrunError – RTL Gray box with errors

IEEE NUMBIT.VHD, NUMSTD.VHD, STDLOGIC.VHD packages

Synopsys attribut.vhd, bvarith.vhd, slmisc.vhd, stdarith.vhd, stdtxtio.vhd,

std_cmpt.vhd, std_sign.vhd, std_unsg.vhd, synopsys.vhd packages

modelsim_

spy

PLI for ModelSim to access signals internal to a design

motorola_

Deliverable

srsmotdeliverable.pdf -- Motorola deleiverable document template

openMore openmore-uart.xls – OpenMore spreadsheet for UART

openmore.xls -- OpenMore spreadsheet -- unfilled

VHDL_

Syntax

VHDL’87 and VHDL’93 syntax in HTML format

VHDL Help: VHDL Language Reference Guide

Verilog CummingsSNUG2000SJ_NBA_rev1a.pdf,

VerilogHDLCoding_Motorola.pdf, verilog_vs_vhdl.PDF,

vlog1364- HDLCON-2000.pdf

PDF_FIles ModelSIm5_2 reference guide, VHDL and Verilog reference cards,

Std_Logic_1164 reference card, and European Space Agency

Modeling guidelines

Usr GNU toolset

man GNU help files in Windows Help format. Root file is ManPagesDir

Etc Csh.cshrc and my.cshrc startup files for TSHEL

 xviii Component Design by Example

dgments

Acknowledgements

Component Design by Example evolved from the recent recognition in books, technical

articles, and presentations on the need to follow a process for large designs. In particular,

I thank Michael Keating, author of Reuse Methodology Manual, and, Janick Bergeron,

author of Writing Testbenches, Functional verification of HDL Models and organizer of

the Verification Guild newsletter for bringing forward those important design issues.

I thank Model Technology for granting me a license of ModelSim version 5.4b with the

built-in code coverage for the duration of the project. ModelSim is an excellent user-

friendly HDL toolset that enabled the compilation and verification of this design.

I thank Synplicity for granting a license of Synplify HDL Analyst version 5.3.1 to

synthesize the design and to extract the RTL views and delay paths for visual display and

documentation of the logic and critical paths. Synplify is a very efficient, user-friendly,

and insightful linting FPGA synthesis tool.

Altera's MAX+PLUS® II ver 9.4 complemented Synplify's EDF output because it routed

the design and produced an accurate gate level model with routed timing. Altera was

kind enough to grant me a tool license for this project.

I thank Novas for granting me a license of Debussy 5.0 Total Debug (tm) system for

complex designs at the gate, RTL and behavioral levels. Even though the license came in

late in the project, I was still able to gain insightful views of the design and testbench.

I thank Reto Zimmermann from Synopsys for commenting on the manuscript, and for

supporting the community on the excellent upgrades to vhdl-mode for emacs GNU text

editor. The application of the language sensitive vhdl-mode significantly helped in the

production of VHDL code for design and verification.

I thank YxI for providing me with more insights into advanced synthesis methodologies

from higher-level HDL definitions.

I sincerely thank Andrew Dauman from Synplicity and Richard Hall from Cadence

Design Systems, Inc for reviewing the book and providing many suggestions.

I especially thank my wife, Gloria Jean, for supporting me in this endeavor.

Preface

xix

Sculpture Created by my Wife Gloria to

 Express my Long Hours with a Laptop in the Creation of VHDL Books

 xx Component Design by Example

About the Author

Ben Cohen is currently a VHDL language trainer and consultant. He has

technical experience in digital and analog hardware design, computer architecture,

ASIC design, synthesis, and use of hardware description languages for modeling

of statistical simulations, instruction set descriptions, and hardware models. He

applied VHDL since 1990 to model various bus functional models of computer

interfaces. He authored VHDL Coding Styles and Methodologies, first and second

editions, and VHDL Answers to Frequently Asked Questions, first and second

editions. He was one of the pilot team members of the VHDL Synthesis

Interoperability Working Group of the Design Automation Standards Committee

who authored the IEEE P1076.6 Standard for VHDL Register Transfer Level

Synthesis. He taught several VHDL training classes, and provided VHDL

consulting services on several tasks.

 VhdlCohen Training and Consulting

email: VhdlCohen@aol.com

Web page: http://www.vhdlcohen.com/

 or http://members.aol.com/vhdlcohen/vhdl/

mailto:VhdlCohen@aol.com
http://www.vhdlcohen.com/
http://memebers.aol.com/vhdlcohen/vhdl/

Preface

xxi

DISCLAIMER

Every attempt was made to ensure accuracy in the specifications and

implementation of the models. However, All code provided in this book and in

the accompanied CD is distributed with *ABSOLUTELY NO SUPPORT* and

NO WARRANTY from the author. The author shall not be liable for damage in

connection with, or arising out of, the furnishing, performance or use of the

models provided in the book and CD.

The software media is distributed on an "AS IS" basis, without warranty.

If the media is defective, you may return it for a replacement.

Use or reproduction of the information provided in this book and on the enclosed

CD for commercial gain is strictly prohibited.

1 OVERVIEW

This chapter introduces exemplary design processes required in typical front-end

phases of a design. These phases include definition of requirements, architectural

design, verification, behavioral modeling, RTL design, synthesis, timing analysis,

design applications, documentation and delivery.

2 Component Design by Example

1.1 COMPONENT DESIGN PROCESS

Figure 1.1-1 represents typical processes for the definition,

implementation, and verification of a design. A design typically

starts with an idea (e.g., a house, a car, an ASIC). A requirement

document identifies what shall be built, and what kind of

interfaces, performance,

etc, it must meet (e.g., a house shall be 4000 square feet in size, two-stories,

facing the ocean). Based on those design requirements, an implementation

specification is followed to identify how the design will be built. This is a plan,

but not the actual implementation (e.g., the house will have four bedrooms, with

sliding windows facing the ocean, and prefabricated purchased appliances). The

verification plan specifies what and how the product will be checked to insure

that it meets the original requirements. The tests require information from both

the requirements and the implementation documents. For example, a house may

have several inspection steps (e.g., foundation, framing, electrical), and each

purchased appliance may have its own separate inspections to insure quality

before installation. Once the above documents are approved, the implementation

and verification steps can proceed.

Figure 1.1-1 Typical Design Processes

Typical
design
process and

phases

Guizmo Idea!

What shall be built?

Requirement

Specification

Verification

Plan

Guizmo Design and Build

Implementation of Design

Verify

How will it be built? What will it be

checked?

Does it meet

Requirements

Implementation

Specification

Overview 3

Figure 1.1-2 represents typical component and subblock design processes, with

emphasis on the front-end design aspects. Each of these processes is greatly

expanded and demonstrated in the subsequent chapters, with complete samples

for the documents, HDL code of the models and verification, and compilation

scripts for simulation and synthesis.

Figure 1.1-2 Component Design Processes

REQUIREMENTS
ARCHITECTURE/

IMPLEMENTATION

DOCUMENT

VERIFICATION

PLAN

ALGORITHMIC/

BEHAVIORAL

MODEL

SYTHESIZABLE

HDL DESIGN

SYNTHESIS &

TIMING

OPTIMIZATION*

TESTABILITY

INSERTION *

VERIFICATION

AND

REGRESSION *

INTEGRATION

INTO

APPLICATION

LAYOUT *

TESTBENCH

DESIGN

* Not covered in book

VC
DOCUMENTATION

DESIGN

4 Component Design by Example

A design typically starts with a requirement specification that

defines the required operations and interfaces of the component, but

not its implementation. This step is necessary to reaffirm the

requirements and to remove any ambiguities between the original

goals and the implementation. A well-reviewed requirement

document brings all personnel involved in the project into an

agreement as to what the design (Subblock, FPGA, or ASIC) must

do, but not how it is implemented. The requirement document can

be defined in many formats, and may include English descriptions,

behavioral modeling definitions, or language specific definitions

such as C, C++, MathCad, VHDL, Verilog, SPEC C1, etc. Without

this document, implementation designs typically must be iterated

several times, or completely redone because the objectives of the

design (i.e., the requirements) were not specified. That haphazard

technique is often called the SPIRAL coding method where the

design is hacked, iterated, and generally poorly documented until it

meets requirements that are defined on the fly.

Once the requirements are defined, reviewed, and agreed upon, an

algorithmic, and not necessarily cycle-accurate behavioral model

of the design, may be started (if not done during the design

requirements phase) and studied for further validation of the

requirements.

Following the requirement document, the architectural implementation
document can be started. This document identifies the subblocks,

data flow, and control flow of the design. These subblocks may

also be other components or IPs. This step is necessary to reaffirm

how the design will be partitioned, and architectured from a

hardware viewpoint to meet the requirements. Again, this step, and

the critical peer review of this step is necessary prior to starting a

single line of synthesizable behavioral or RTL coding. Otherwise,

the coding will typically be iterated several times, or completely

redone because the objectives of the design and requirements were

not implemented. It is common to mistake the requirement

document from the architectural document, or to even accept the

architectural implementation document as the requirement

document. Those two documents serve different purposes, and it is

good practice to create them separately.

1 Spec C: specification Language and Methodology, Daniel D Gajski, Jianwen Zhu,

 Kluwer Academic Publishers 2000, ISBN 0-7923-7822-9

Requirement
specification is
necessary prior
to proceeding
with design
implementation
. It defines
operations and
required
interfaces, but
not the
implementation
.

Avoid using the
SPIRAL coding

methodology.

Behavioral
Model may
validate the

requirements

Architectural
implementation
document
defines
subblocks, data
flow, control
flow, and
reusable
subblocks.
Behavioral
models may be
used as source
for the

synthesizers

Overview 5

With the advent of new compiler technology, it is now possible to directly

synthesize higher-level definitions from behavioral HDL2 or C3 into either lower

level RTL code or netlists. The inclusion of these tools into the implementation

process needs to be considered during the architectural implementation phase.

The verification plan defines how the component will be verified

to insure that the design meets the requirements. The verification

plan makes use of the requirement document for the source of

requirements, and the implementation document for the definition

of the interfaces of the components, subblocks, or ASIC. It extracts

from the requirement document the features to be verified. It also

defines the transactions and types of vectors (directed or random) to

be applied to the design, the

methods of test vector applications, and the techniques used to verify compliance

to the functional specifications.

The synthesizable behavioral and RTL designs make use of the architectural

requirement document as the source of design requirements. As each piece of the

subblock is defined, it is recommended that the code be checked with both

linting4 and synthesis tools. The linting tool identifies errors in coding rules and

style, and provides design warnings. A good synthesizer provides linting

information, including synthesis-coding violations. In addition, the synthesizer

provides information about the design including 1) identification of the registers,

2) unused inputs and outputs, 3) write-only hardware that gets optimized out, 4)

and graphical views of the design and interconnects for use as a sanity check of

the hardware inferred by the HDL. The goals of using the synthesis toolset at

this phase of the design process is only to help in the debug and understanding of

the design, but not necessarily to optimize the design for performance, unless

blatant inadequacies are observed.

To maintain interoperability among commercial tools, it is important that the RTL

design abides by coding rules and design style guides such as the IEEE 1076.6

VHDL RTL for synthesis guidelines5, IEEE P1364.1 Standard for Verilog®

Register Transfer Level Synthesis, and Nonblocking Assignments in Verilog

2 Example: YXI Y Explorations, Inc., http://www.yxi.com/

3 C Level Design, http://www.cleveldesign.com/

4 Examples: http://www.novas.com, http://www.Transeda.com

5 http://www.vhdl.org/siwg

Verification
plan defines
functional
verification
steps to
insure
design
compliance

http://www.yxi.com/
http://www.novas.com/

6 Component Design by Example

Synthesis, Coding Styles that Kill6. Deviations from those standards need to be

documented with rationales. Other proprietary guidelines, such as coding and

documentation styles, are necessary to achieve design consistency and potential

reuse.

The testbench design typically occurs (or should occur)

concurrently with the RTL design by a verification engineer. The

testbench is written for the verification of the subblocks, the

integration of subblocks, and the component design. The testbench

is based on the verification plan, requirement and implementation

documents. The purpose of the testbench is to provide an

environment to verify that the implemented design meets the

requirements.

The verification phase makes use of the testbench and the designs

under test, including the source models (e.g., behavioral, RTL, C),

the synthesized models, and any application software. Verification

is a very demanding and important process to insure that the design

functions correctly in the intended system.

Synthesis, testability, layout, and timing analysis are important

back-end processes necessary for the fabrication of the design to the

desired requirements.

6http://www.deepchip.com/items/0347-01.html

 http://www.sunburst-

design.com/papers/CummingsSNUG2000SJ_NBA_rev1a.pdf

 (included on CD in Verilog subdirectory for user's convenience)

Testbench makes
use of
requirements,
verification plan,
and
implementation
document

Verification
ensures
design
accuracy

Back-end
processes
must meet

requirements

http://www.deepchip.com/items/0347-01.html
http://www.sunburst-design.com/papers/CummingsSNUG2000SJ_NBA_rev1a.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2000SJ_NBA_rev1a.pdf

2 REQUIREMENT

SPECIFICATION

This section describes the requirement specification for an RS232 UART design.

The purpose of this chapter is to demonstrate, by example, a model of a

requirement specification. A serious attempt was made to include topics pertinent

to all components. However, every design has its own peculiarities, and additional

entries need to be identified for specific designs. The reviewers may disagree with

the features presented in this specification. If the reviewers have comments, then

that specification has met its goals of providing a forum for a good design review.

Again, the purpose of this book is to demonstrate methodologies and provide

techniques using the UART model as an model, rather than just designing a

UART. There are several methods to define requirement specifications including

English language and programming languages such as VHDL, C, C++, SPEC C,

MathCad, Foresight1, etc. Programming languages have the advantages of

creating an executable specification. However, there are several requirements that

are difficult to express in a programming language. For example, operating

conditions (e.g., clock speed, operating range, radiation levels, size, reliability,

reset values, latency, packaging) are design attributes rather than processing

algorithms, which cannot be expressed in a programming language that does not

support attributes. In general, it is best to use an English specification document

as a baseline to cover all the requirements of the design. This English document

can reference other executable specification models for the definition of specific

1 http://www.foresight.com

8 Component Design by Example

algorithms that are best expressed mathematically. This creates a universal

document that does not require knowledge of programming languages as the

baseline for the requirements, but allows the inclusion of other requirement models

for further definitions. The English specification used in this book is modeled

after a modified structure proposed in Military Standard MIL-STD-490A2, 4 June

1985, Specification Practices document. This is a Department of Defense (DoD)

document approved for public release with unlimited distribution. This Military

Standard sets forth practices for the preparation, interpretation, change, and

revision of program-peculiar specifications prepared by or for the Departments

and Agencies of the Department of Defense. It defines good practices for defining

requirements.

Another source of specification modeling template used in this sample requirement

document is MIL-STD-1553 standard (Aircraft Internal Time Division

Command/Response Multiplex Data Bus), another DoD document approved for

public release with unlimited distribution.

2.1 LANGUAGE

Engineers are notorious for being poor writers. This section emphasizes important

English points to consider when writing a document because they typically are

major sources of errors and poor style.

STYLE: MIL-STD-490 section 3.2.3, language style, states the following:

The paramount consideration in a specification is its technical essence, and this

should be presented in language free of vague and ambiguous terms and using

the simplest words and phrases that will convey the intended meaning. Inclusion of

essential information shall be complete, whether by direct statements or references

to other documents. Consistency in terminology and organization of material will

contribute to the specification’s clarity and usefulness. Sentences shall be as short

and concise as possible. Punctuation should aid in reading and prevent

misreading. Well-planned word order requires a minimum of punctuation. When

extensive punctuation is necessary for clarity, the sentence(s) shall be rewritten.

Sentences with compound clauses shall be converted into short and concise

sentences.

2 Mil-STD-490A is included on CD

Requirement Specification 9

Commonly used words and phrasing. Certain words and phrases are frequently

used in a specification. The following rules shall be followed:

a. Referenced documents shall be cited thus "conforming to ..." "as specified in ..."

or "in accordance with ...".

b. "Unless otherwise specified" shall be used to indicate an alternative course of

action. The phrase shall always come at the beginning of the sentence, and if

possible, at the beginning of the paragraph. This phrase shall be used only when it

is possible to clarify its meaning by providing a reference such as to Section 6 of

the specification for further clarification in the contract or order or otherwise.

c. When making reference to a requirement in the specification and the

requirement referenced is rather obvious or not difficult to locate, the simple

phrase "as specified herein" is sufficient and should be used.

d. The phrase "... to determine compliance with ..." or "... to determine

conformance to ..." should be used in place of "... to determine compliance to ...".

In any case use the same wording throughout.

e. In stating positive limitations, the phrase shall be stated thus: "The diameter

shall be no greater than ...".

The emphatic form of verb shall be used throughout the specification; i.e., state

in the requirements section that "The indicator shall be designated to indicate ...",

and in the section containing test provisions "The indicator shall be turned to zero

and 230 volts alternating current applied." For specific test procedures, the

imperative form may be used provided the entire method is preceded by "the

following tests shall be performed," or related wording. Thus, "Turn the indicator

to zero and apply 230 volts alternating current."

Use of "shall," will," "should," and "may". Use "shall" whenever a specification

expresses a provision that is binding. Use "should" and "may" wherever it is

necessary to express non-mandatory provisions. "Will" may be used to express a

declaration of purpose on the part of the contracting agency. It may be necessary

to use "will" in cases where the simple future tense is required, i.e., power for the

motor will be supplied by the ship.

THAT verses WHICH: Another common mistake is the misunderstanding in the

10 Component Design by Example

use the pronoun THAT and WHICH. The Merriam-Webster3 dictionary defines:

that pron, pl those : 1: the one indicated, mentioned, or understood <that is my

house> 2: the one farther away or first mentioned <this is an elm, that's a

maple> 3 : what has been indicated or mentioned <after that, we left> 4 : the

one or ones : IT, THEY <those who wish to leave may do so>

which pron 1 : which one or ones <which is yours> … 3 — used to introduce

a relative clause and to serve as a substitute therein for the noun modified by

the clause <the money, which is coming to me,>

Microsoft Word grammar check explains the application rule as: “if the marked

group of words is essential to the meaning of the sentence, use that to introduce

the group of words. Do not use a comma. If these words are not essential to the

meaning of your sentence, use which and separate the words with a comma”. For

example,

Books, which are generally expensive, can be purchased over the Internet.

Note: The qualifier “which are generally expensive” is not essential to the

meaning of the sentence.

The book that describes VHDL guidelines is the Cohen book.

Note: The qualifier “that describes VHDL guidelines” is essential in the

sentence.

In some sentence structures, the qualifier THAT can be deleted, thus shortening the

sentence, without affecting the meaning of the sentence. For example,

 Spec C is a language that is suitable for specifying systems. // can delete "that

is"

 Spec C is a language suitable for specifying systems.

3 © 1995 Zane Publishing, Inc. The Merriam-Webster Dictionary © 1994 by

Merriam-Webster, Incorporated

Requirement Specification 11

2.2 UART REQUIREMENT SPECIFICATION

REQUIREMENTS FOR AN ASYNCHRONOUS OR
SYNCHRONOUS 8 TO 32 BIT Universal Asynchronous
Receiver/Transmitter

Document #:
Release Date: __
Revision Number: ____
Revision Date: __
Originator
 Name: ____
 Phone: ___
 email: __

Approved:
 Name:
 Phone:
 email:

Revisions History :
Date:
Version:
Author:
Description:
…

Note: The Header page will vary with each organization because of different

needs. For example, a reviewer list (with name and signature only) may be more

appropriate that a single "approved" entry. This page is a placeholder for a

header page, and is not meant to represent an absolute format.

The numbering system for the requirement specification starts at 1.0 because it is

intended to represent a stand-alone document. Therefore, it does not follow the

chapter numbering system.

Header page
Pertinent
logistics data
about the
requirements

12 Component Design by Example

 1. SCOPE

1.1 Scope

This document establishes the requirements for a component that

provides a bridge between a microprocessor interface and a

transmit/receive asynchronous or synchronous, parameterized eight

to thirty-two bit serial interface, emulating a UART-like protocol.

The specification is primarily targeted for component developers, IP

integrators, and system OEMs.

1.2 Purpose

These requirements shall apply to a modified Universal

Asynchronous Receiver/Transmitter (UART) interface for inclusion

as a component.

1.3 Classification

This document defines the requirements for a hardware design.

2. DEFINITIONS
2.1 Asynchronous transmission

4

The transmitted clock is not sent to the receiving logic. Instead,

asynchronous transmission relies on some other mechanism to

synchronize the receiver to the data stream. In the case of a UART,

asynchronous transmission relies on the use of a start bit and stop

bit(s), in addition to the bits representing the character (and an

optional parity bit), to distinguish separate characters.

2.2 Baud rate
4

The baud rate is the number of events, or signal changes, that occur in one second.

2.3 DTE

Data Terminal Equipment, such as terminals.

2.4 DCE

Data Communication Equipment, such as modems.

2.5 Framing Error

A condition where the received data stream is not properly framed between a

START bit and a STOP bit.

2.6 Overrun Error
4

An error that occurs when a device receiving data cannot handle or make use of

Concise
abstract of the
coverage of the
specification

Target
audience

Purpose of
specification

System,
hardware,

software

Terms used
in this
document.
Organize
definitions
alphabeticall
y

Requirement Specification 13

the information as rapidly as it arrives.

2.7 Parity4

The quality of sameness or equivalence, in the case of computers usually referring

to an error-checking procedure in which the number of ONEs must always be the

same—either even or odd—for each group of bits transmitted without error.

Even parity The number of ONEs in each successfully transmitted set of bits

(data plus parity) must be an even number.

Odd parity The number of ONEs in each successfully transmitted set of bits

(data plus parity) must be an odd number.

No parity No parity bit is used.

Space parity A parity bit is used and is always set to zero.

Mark parity A parity bit is used and is always set to one.

2.8 Start Bit

A low level bit to indicate the start of a transmission. The receiver uses this

negative transition to synchronize its internal clock to the transmitted data.

2.9 Stop Bit

A high level bit to indicate the end of a transmission, and to guarantee that a new

START bit will be initiated with a negative edge. STOP bits are also asserted

when no data is sent.

2.10 Synchronous Transmission (with UART)
 4

A UART that supports synchronous serial transmission, where the sender and

receiver share a timing signal.

2.11 Underrun Error (with UART)

An error that occurs when the CPU attempts to read data that was not yet received.

2.12 Word (with UART)

A data element that is one, two, or four bytes in size, depending upon the

parameterization of the component.

3. APPLICABLE DOCUMENTS
3.1 Government Documents

3.1.1 TIA/EIA-232-F

Interface between Data Terminal Equipment and Data Circuit-

4Microsoft Press® Computer and Internet Dictionary © & 1997, 1998 Microsoft Corporation.

Sources of
applicable
documents

Standard and
government
specifications
and
requirements

Non-
government
specifications

14 Component Design by Example

Terminating Equipment Employing Serial Binary Data Interchange

(ANSI/TIA/EIA-232-F-1997), October 14, 1997.

http://www.tiaonline.org/standards/search_results2.cfm?document_no=TIA/EIA-232-

F
Electronic Industries Alliance, 2500 Wilson Boulevard

Arlington, VA 22201-3834, (703) 907-7500

3.2 Non-government Documents

Technical Aspects of Data Communication, John E. McNamara,

1977, Digital Press.

A Practical Guide to RS-232 Interfacing, Lawrence E. Hughes.

Mycroft Labs, Inc., P.O. Box 6045, Tallahassee, FL 32301

RS-232 Protocols and Computer Networks, Dr. D. Koren / Tel-Aviv

University, http://www.rad.com/networks/1995/rs232/rs232.htm

3.3 Executable Specifications

None.

4. ARCHITECTURAL OVERVIEW
4.1 Introduction

The UART component shall represent a design written in an HDL

(VHDL or Verilog) that can easily be incorporated into a larger

design. The UART shall provide the function of a bridge between a

processor (CPU) and an interface that meets an RS-232 like

protocol. Figure 4.1 represents a high level view of the interfaces.

A variation to the standard

RS-232 shall be incorporated for the transfer of 8, 16, or 32-bit data blocks, instead

of the standard 7 or 8-bit transfer imposed by the standard. This variation shall

maintain the START/STOP bit synchronization bits, but shall allow the

parameterization of the data word to 8, 16, or 32 bits. In addition, this UART

shall support either the asynchronous transmission, as defined by the standard, or

synchronous transmission where the synchronization signals are externally

supplied to the component. The selection between synchronous or asynchronous

transmission shall be defined as a parameter before the elaboration of the design

into hardware. The UART shall include the following features:

Essential
requirements
and
descriptions
that apply to
performance,
design,

reliability, etc

http://www.rad.com/networks/1995/rs232/rs232.htm

Requirement Specification 15

Figure 4.1 High Level View of the UART Interfaces

1. Parameterized storage space for both the transmitter and receiver buffers

2. Interrupt controls with programmable masking capability.

3. CPU controlled characteristics including parity definition.

4. Framing and parity error detection of received messages.

5. Overrun and underrun error detection.

6. Full implementation of modem control functions

The CPU interface shall be a simple interface that emulates an asynchronous

random access memory (RAM) device with address, read control, write control,

enable control, data in, data out and Tri-state control. This will allow the

adaptation of this CPU interface to a specialized processor interface through

bridging logic.

The UART shall support a maximum baud rate of 25 Mbauds in synchronous

mode, and 1.5 Mbauds in asynchronous mode.

4.2 System Application

The UART can be applied in a variety of system configurations.

Figure 4.2-1 demonstrates one such configuration where the UART

interfaces on one side to a host controller or another controller. On

the other interface, the component can connect to a modem for a link

onto a telephone line or a network. Figure 4.2-2 shows another

system application of the UART used as a serial hardwired interface

between two subsystems.

Information

about how

data is moved

across the

UART (i.e.,

UART in the

system

environment)

Clocks UART
Virtual

Component

RS-232

CPU

Interface

or VC

16 Component Design by Example

Figure 4.2-1 UART Applications with a Modem

Figure 4.2-2 Hardwired Application of UART

Clocks UART
Virtual

Component

RS-232

Clocks UART
Virtual

Component

RS-232

Host

Controller

or VC

Host

Controller

or VC

Hardwired

Connection

Optional

Line

drivers/

receivers

Clocks UART
Virtual

Component

RS-232

MODEMHost

Controller

or VC

Link or

network

Requirement Specification 17

5. PHYSICAL LAYER
The physical hardware interfaces shall be as shown in Figure 5.0.

These interfaces are partitioned as RS-232 for the serial port

interfaces, and CPU for the processor and clock interface.

Figure 5.0 Interfaces of the UART

5.1 Interface Port Description

5.1.1 RS-232 Serial Interface

5.1.1.1 TxD, Transmit Data
Direction: Output, DTE -> DCE; Size: 1 bit; Active level: High

Serial data to be sent from the DTE to the DCE. The DTE shall hold

this line at logic '1' when no data are being transmitted. An ON

(logic '0') condition must be present on all of the following signals

before data can be transmitted on the TxD signal:

 Request To Send, Clear To Send, Data Set Ready,

 Data Terminal Ready.

5.1.1.2 RxD, Receive Data
Direction: Input, DCE -> DTE; Size: 1 bit; Active level: High

Serial data to be received from the DCE to the DTE. This port will

be held at logic '1' when no data are being transmitted.

5.1.1.3 RTSn, Request-To-Send

Direction: Output, DTE -> DCE; Size: 1 bit; Active level: Low

Clocks

CPU Interface

UART
Virtual

Component

RS-232 Serial Interface

---> TxD Transmitted Data,

<--- RxD Received Data,

---> RTSn Request To Send

<--- CTSn Clear To Send

<--- DSRn Data Set Ready

<--- DCDn Data Carrier Detect

---> DTRn Data Terminal Ready

<--- RIn Ring Indicator

 Addr (2) --->

 CS0 --->

 CS1 --->

 CS2n --->

 Clk --->

 Din (8/16/32) --->

 RDn --->

 RIN --->

 Resetn --->

 WRn --->

 TC_synch --->

 RC_synch --->

 Clk16x --->
 DO (8/16/32) <---

 OutEnb <---

 Intrpt <---

Interfaces of
VC as seen
from the
pinout
viewpoint

Show all
ports that are
anticipated
as
requirements

Organize
ports by
function.

Describe
each port,
including
name,
direction
(source ->
destination),
size, active
level, and
description.

Add pin
numbering if
required

18 Component Design by Example

This signal shall enable the transmission circuits. The DTE shall assert this signal

(logic '0') when it wants to transmit to the DCE. This signal, in combination with

the Clear-To-Send signal, coordinates data transmission between the DTE and the

DCE. A logic '0' on this line keeps the DCE in transmit mode. The DCE will

receive data from the DTE and transmit it on to the communication link. The

Request-To-Send and Clear-To-Send signals relate to a half-duplex telephone line.

A half duplex line is capable of carrying signals on both directions but only one at

a time. When the DTE has data to send, it shall assert Request-To-Send and then

waits until the DCE changes from receive to transmit mode. This "On" to "Off"

transition instructs the DCE to move to "transmit" mode, and when a transmission

is possible, the DCE will set Clear-To-Send (to logic '0') to start the transmission.

On a full duplex line, like a hard-wired connection, where transmission and

reception can occur simultaneously, the Clear-To-Send and Request-To-Send

signals may be held to a constant "On" level. An "On" to "Off" transition on this

line instructs the DCE to complete the transmission of data that is in progress, and

to move to a "receive" (or "no transmission") mode. The Request-To-Send shall be

asserted by the UART when the UART has data in its transmission buffer. The

RTSn can be deasserted any time after the START bit is sent.

5.1.1.4 CTSn, Clear-To-Send

Direction: Input, DCE -> DTE ; Size: 1 bit; Active level: Low

When this signal is active (logic '0'), it shall inform the DTE that it can start to

transmit on the TxD port. When this signal is ON (logic '0') and the Request To

Send, Data Set Ready, and Data Terminal Ready are all ON (logic '0'), the DTE is

assured that its data will be sent to the communications link. When OFF (logic '1'),

it is an indication to the DTE that the DCE is not ready, and therefore data should

not be sent. When the Data-Set-Ready and Data-Terminal-Ready signals are not

implemented, such as a local connection not using a modem, the Clear-To-Send

and Request-To-Send signals will be sufficient to control data transmission. In that

case, the Data-Set-Ready and Data-Terminal-Ready will be hardwired at the ports

of the component to the active (logic '0') state.

5.1.1.5 DSRn, Data-Set-Ready
Direction: Input, DCE -> DTE; Size: 1 bit; Active level: Low

This signal is active when at logic '0', and informs the DTE that the DCE

communication channel is available (i.e., in an automatic calling system, the DCE

(modem) is not in the dial, test or talk modes and therefore is available for

transmission and reception). It reflects the status of the local data set, and does not

indicate that an actual link has been established with any remote data equipment.

5.1.1.6 DCDn, Data-Carrier-Detect

Direction: Input, DCE -> DTE; Size: 1 bit; Active level: Low

The DCE uses this line to signal the DTE that a good signal is being received (a

"good signal" means a good analog carrier, that can ensure demodulation of

Requirement Specification 19

received data).

5.1.1.7 DTRn, Data-Terminal-Ready

Direction: Output, DTE -> DCE; Size: 1 bit; Active level: Low

When ON (logic '0'), this signal shall indicate that the DTE is available for

receiving. This signal must be "On" before the DCE can turn Data Set Ready "On",

thereby indicating that it is connected to the communications link. The Data-

Terminal-Ready and Data-Set-Ready signals deal with the readiness of the

equipment, as opposed to the Clear-To-Send and Request-To-Send signals that

deal with the readiness of the communication channel. When "Off", this signal will

cause the DCE to finish any transmission in progress and to be removed from the

communication channel. The value of the DTRn signal shall be defined by the

CPU. It shall indicate to the DCE that the CPU is in a ready mode to process data.

5.1.1.8 RIn, Ring Indicator
Direction: input, DCE -> DTE; Size: 1 bit; Active level: Low

On this line, the DCE signals the DTE that there is an incoming call. This signal

will be maintained off at all times, except when the DCE receives a ringing signal.

5.1.2 CPU Interface

5.1.2.1 Addr, Address
Direction: input, CPU -> UART ; Size: 2 bits; Active level: High

The Addr ports shall represent two bits of the CPU address to define the

personality characteristics of the UART and the DCE control information. The

Addr ports shall also be used to read information about the DCE interfaces and the

UART pending interrupts. The Addr bits shall be used in conjunction with the

chip select bits (CS0, CS1, CS2n) and the READ (RDn) and WRITE (WRn) control

signals.

5.1.2.2 CS0, Chip Select 0
Direction: input, CPU -> UART; Size: 1 bit; Active level: High

The CS0 pin shall represent one of three chip select pin to enable a READ or

WRITE operation into the UART. Access to the UART shall require that the CS0

= High, CS1 = High, and CS2n = Low.

5.1.2.3 CS1, Chip Select 1
Direction: input, CPU -> UART; Size: 1 bit; Active level: High

The CS1 pin shall represent one of three chip select pin to enable a READ or

WRITE operation into the UART. Access to the UART shall require that the CS0

= High, CS1 = High, and CS2n = Low.

5.1.2.4 CS2n, Chip Select 2
Direction: input, CPU -> UART; Size: 1 bit; Active level: Low

20 Component Design by Example

The CS2n pin shall represent one of three chip select pin to enable a READ or

WRITE operation into the UART. Access to the UART shall require that the CS0

= High,

 CS1 = High, and CS2n = Low.

5.1.2.5 Din, Data Input
Direction: input, CPU -> UART; Size: 8/16/32 bits; Active level: High

The Din shall represent the CPU data to be asserted into the UART. The width of

that data shall be parameterized in the component design to accommodate at least

the following widths: 8, 16, and 32 bits. That same width shall also be used to

define the UART data widths. Therefore, an 8-bit CPU width shall also define an

8-bit UART data width, whereas a 32-bit CPU width shall specify a 32-bit UART

data width.

5.1.2.6 RDn, Read
Direction: input, CPU -> UART; Size: 1 bit; Active level: Low

The RDn shall represent a read strobe signal, used for reading data and status from

the UART. The RDn signal shall be operational only when the chip select bits are

set to the "selected" values. It shall be an operational error if the RDn and WRn are

both asserted.

5.1.2.7 Resetn, Reset
Direction: input, CPU -> UART; Size: 1 bit; Active level: Low

The Resetn signal shall represent the master reset for the UART. The Resetn signal

shall be synchronous to the system clock. Once activated, the Resetn signal shall

force the UART into a benign state and in an idle mode with no data in the UART

buffers (transmit or receive). A benign state or idle mode shall be represented by

the hardware as logical zero. This requirement shall provide the support of

scanable registers where the reset condition can be forced through a serial scan

interface with zeros being forced into the scan serial stream.

5.1.2.8 WRn. Write
Direction: input, CPU -> UART; Size: 1 bit; Active level: Low

The WRn signal shall represent a write strobe signal, used for writing data and

control information to the UART. The Wrn signal shall be operational only when

the chip select bits are set to the "selected" values. It shall be an operational error if

the RDn and WRn are both asserted.

5.1.2.9 DO, Data Output
Direction: output, UART -> CPU; Size: 8/16/32 bits; Active level: High

The DO shall represent the UART data output to be sent to the CPU. The width of

that data shall use the same parameter as the Din width parameter in the

component design. It shall accommodate at least the following widths: 8, 16, and

Requirement Specification 21

32 bits

5.1.2.10 OutEnb, Output Enable
Direction: output, UART -> CPU; Size: 1 bit; Active level: High

The OutEnb signal defines the timing at which the UART DO is valid. It shall

allow a buffer, external to the component, to enable the DO data onto a tri-state

bus. This feature will allow the component to be integrated into a larger subsystem

with a tri-state CPU data interface.

5.1.2.11 Intrpt, Interrupt

Direction: output, UART -> CPU; Size: 2 bits; Active level: High

Bit 1 (MSB) shall represent the interrupt from the transmit hardware.

Bit 0 (LSB) shall represent the interrupt from the receive hardware.

The sources for the transmit interrupts shall be identified in the pending interrupt

register (PIR), as shown below. A READ of the transmit PIR shall reset the

register, but any new PIR value that occurs during the READ cycle shall set the

PIR for that value. Upon the activation of a RESET (soft or hard), the transmit

PIR register must be reset to the inactive state. The sources for the transmit

interrupts shall be maskable with a CPU loadable mask register.

PIR(5) Transmit buffer error: write to full buffer

PIR(4) Transmit buffer OFF of non-Empty state reached (i.e., just emptied)

PIR(3) Transmit buffer OFF of Almost Empty state reached (i.e., data sent to serializer)

PIR(2) Transmit buffer OFF of Half-Full state reached (i.e., data sent to serializer)

PIR(1) Transmit buffer OFF of Almost Full state reached (i.e., data sent to serializer)

PIR(0) Transmit buffer OFF of Full state reached (i.e., data was to serializer)

 The sources for the receive interrupts shall be as shown below. A READ of the

transmit PIR shall reset the register, but any new PIR value that occurs at the

READ cycle shall set the PIR for that value. Upon the activation of a RESET (soft

or hard), the receive PIR register must be reset to the inactive state. The sources

for the receive interrupts shall be maskable with a CPU loadable mask register

PIR(7) Receive buffer error: framing error

PIR(6) Receive buffer error: Parity error , or read of an empty buffer

PIR(5) Receive buffer error: Overrun error, or read of an empty buffer

PIR(4) Receive buffer Not-Empty state reached

PIR(3) Receive buffer Almost Empty state reached

PIR(2) Receive buffer Half-Full state reached

PIR(1) Receive buffer Almost Full state reached

PIR(0) Receive buffer Full state reached

5.1.3 Clock Interface

22 Component Design by Example

5.1.3.1 Clk, System Clock
Direction: input, CPU -> UART; Size: 1 bit; Active level: High

The Clk shall represent the system clock for all synchronous transfers. The design

shall support a minimum system clock frequency from 0 HZ to 25 MHz.

5.1.3.2 TC_synch, Transmit Clock for Synchronous Transmission

Direction: input, CPU -> UART; Size: 1 bit; Active level: High

The TC_synch shall represent the synchronous transmit clock enable signal

operating at the transmit clock frequency. The TC_synch signal shall be a derived

signal from the system clock (CLk), and shall be active for one system clock period

for every baud period, as shown in Figure 5.1.3.2. The selection between

synchronous and asynchronous clock mode shall be defined through a parameter to

be used by the synthesis process. If asynchronous transmission mode is selected,

the TC_synch signal shall be ignored.

 Figure 5.1.3.2 Synchronous Transmit and Receive Clock Timing

5.1.3.3 RC_synch, Receive Clock for Synchronous Transmission
Direction: input, CPU -> UART; Size: 1 bit; Active level: High

The RC_synch shall represent the synchronous receive clock enable signal

operating at the receive clock frequency. The RC_synch signal shall be a derived

signal from the system clock (CLk), and shall be active for one system clock period

for every baud period, as shown in Figure 5.1.3.2. The selection between

synchronous and asynchronous clock mode shall be defined through the same

parameter as the TC_synch signal. If asynchronous transmission mode is selected,

the RC_synch signal shall be ignored.

5.1.3.4 Clk16x, Sixteen Times Clock for Asynchronous Transmission

Direction: input, CPU -> UART; Size: 1 bit; Active level: High

In asynchronous transmission mode, the Clk16x shall represent the input clock

used for internal baud rate generation. The Clk16x clock shall be at a rate sixteen

times the baud rate. The Clk16x clock shall not necessarily be synchronous to the

system clock. In synchronous transmission mode, the Clk16x signal shall be

ignored.

6. PROTOCOL LAYER

Include
timing
diagrams to
emphasize

requirements

Clk

TC_Synch

RC_Synch

~
~

~ ~
~

~

Baud Period

Requirement Specification 23

A serial message shall consist of the following bits transmitted at the requested

baud rate:

START: This bit is set to a low state to initiate bit synchronization of

the message at the receiver.

Data Word: These bits shall represent the data bits of the word, as

defined by the word size parameter of the component. Bits shall be

sent out onto the bus least-significant bit (LSB) first, followed by the

next LSB, through to the most-significant bit (MSB) last. For each bit,

a high level shall represent a logical ONE, and conversely, a low level

shall represent a ZERO. The word size shall be parameterized and used

in the build of the design.

PARITY: If parity is enable, then this bit shall represent the even or

odd parity of the data word. The definition of even or odd parity shall

be defined by the CPU as a control parameter. For even parity, the

parity bit shall be such that the number of ONEs in the word message

and the parity bit will be an even number. For odd parity, the parity bit

shall be such that the number of ONEs in the word message and the

parity bit will be an odd number. The parity bit shall be the exclusive

OR of the desired parity mode ('0' for even, or '1' for odd) and the data

word. If parity is disabled, then this bit shall be omitted.

STOP Bit: This bit is set to a high state to provide message-framing

indication for use in bit synchronization at the receiver.

Figure 6.1-1 demonstrates the interface format of the serial data.

 Figure 6.1-2 Interface Format of Serial Data

Provide
definition of
interface
protocol that
represents a
requirement

8, 16, 32 data bits

* UART = 8

Identify
algorithm if
that algorithm
is a

requirement

24 Component Design by Example

If all the conditions for transmission are satisfied, and no transmission is in

progress, then a new serial message shall be started within two baud cycles. If a

message is queued no later than two baud cycles from the completion of an on-

going message, and all the conditions for the new message are satisfied, then the

new message shall immediately follow the on-going message with no additional

STOP bits between the two messages.

7. ROBUSTNESS
7.1 Error Detection
The errors identified in the following subsections shall be reported.

7.1.1 Receive Framing Error

A framing error shall be reported if a message is started, but is not terminated with

a STOP bit. Whenever possible, this error shall be applicable to the correspondent

received message.

7.1.2 Receive Parity Error

A parity error shall be reported if parity check is enabled and parity fails on the

received data. This error shall be applicable to the correspondent received

message.

7.1.3 Receive Buffer Overrun Error

A buffer overrun error shall be reported if data is received, but the receive buffer is

full. When this error occurs, the received word shall be rejected.

7.1.4 Transmit Buffer Overrun Error
A transmit buffer overrun error shall be reported if the CPU attempts to write into

a full transmit buffer.

7.2 Error Handling

No error correction or automatic transmission retries shall be provided. All errors

shall be reported to the pending interrupt registers, and to two maskable interrupts

as specified herein.

8. HARDWARE AND SOFTWARE
8.1 Fixed Parameterization

The UART shall provide for the following parameters used in the definition of the

implemented hardware (i.e., during hardware build):

Word size: Word size shall be user defined, but must accommodate the

following sizes: 8, 16, or 32 bits/word. This word size shall be used to

identify the width of the CPU data interface, and the size of the serial

message transmitted and received by the UART. For example, a 16-bit

word size shall represent a 16-bit CPU interface and a 16-bit serial word

Identify the
parameters
that affect
the
produced

design.

Requirement Specification 25

message.

Buffer Depth: This parameter shall define the storage space for the

transmitter and receiver buffers. The same parameter shall be used for

each of the buffers (transmit and receive). This will reduce the number

of CPU interrupts for the received data, and will allow the CPU to fill

the buffer for transmit data before continuing other tasks. Buffer depth

shall be of size divisible by two, and of size two or greater.

Buffer Almost-Empty Threshold: This threshold shall be used in the

identity of the buffer almost-empty flag. It shall be used in the

generation of interrupts.

Buffer Almost-Full Threshold: This threshold shall be used in the

identity of the buffer almost-full flag. It shall be used in the generation

of interrupts.

Synchronous or Asynchronous Transmission Mode: This parameter

shall identify the transmission and receive mode of the UART as

synchronous or asynchronous transmission.

8.2 Software Interfaces

The CPU shall write into the UART information to control the

modem modes, data for transmission, and interrupt masks. The CPU

shall also read from the transmit and receive PIR, and modem status.

Table 8.2 represents a summary of the functions as seen from

software.

 Table 8.2 Summary of Software Addresses and Functions

Addr RdF WrF OPERATION

00 0 1 Read Modem status

00 1 0 Write Modem Control and Parity Definition

01 0 1 Read Receive PIR

01 1 0 Write Receive buffer control

10 0 1 Read transmit PIR

10 1 0 Write transmit buffer control

11 1 0 Write transmit Data

11 0 1 Read Receive data

Identify the
interfaces
and the
machine as
seen from the

software.

26 Component Design by Example

8.2.1 Address "00", CPU READ, Modem Status
A CPU READ at address "00" shall return to the CPU the following four modem status

bits (little endian, bit '0' is the LSB). Spare bits shall be of value ZERO.

 Bit 3 : RINn, Ring indicator

 Bit 2 : CTSn, Clear to send

 Bit 1 : DSRn, Data set ready

 Bit 0 : DCDn, Data carrier detect

8.2.2 Address "00", CPU WRITE, Modem Control / Parity Control
A CPU WRITE at address "00" shall characterize to the UART the modem control and

settings. These include:

 Bit 2 : Invert of DTRn, Data terminal ready

 ('0' = not ready, '1' = ready)

 Bit 1 : Parity disable/enable

 ('0' = no parity, '1'= parity)

 Bit 0 : Parity bit

 ('0'= Even parity, '1'= Odd parity)

8.2.3 Address "01", CPU READ Receive PIR

A CPU READ at address "01" shall return the status of the UART receive pending

interrupt register (PIR). The receive PIR shall be automatically reset following a READ

(i.e., Read and clear) of that register. However, if a new setting is to be set at the same

read-and-clear cycle, the new setting shall be asserted following the READ action. The

PIR shall only be reset via a READ at address "01", or via a hard reset, or soft reset of the

receive section (see 8.2.4). The data format shall be as follows. Spare bits shall be of value

ZERO.

Bit 7: Receive framing error

This error shall be applicable to the received data being read.

Bit 6: Receive parity error

This error shall be applicable to the received data being read.

Bit 5: Receive FIFO buffer overrun or read of empty buffer error

This bit shall be set upon a receive overrun error, or a CPU read of an empty buffer.

Bit 4: Receive FIFO Buffer Not-Empty

This bit shall '1' if the number of words in the receive buffer is ONE or more than ONE.

Bit 3 : Receive FIFO Buffer Almost-Empty

This bit shall be '1' if the number of words in the receive buffer is equal to, or is above the

predefined almost-empty threshold. For example, if the almost-empty threshold is set to

2, then the almost-empty bit shall be set to '1' when the number of words in the receive

buffer equals, or exceeds 2.

Bit 2: Receive FIFO Buffer Half-Full

This bit shall be '1' if the number of words in the receive buffer is equal to, or is above the

predefined half-full threshold. For example, if the buffer size is 4, then the half-full

threshold is set to 2, and the half-full bit shall be set to '1' when the number of words in the

receive buffer equals, or exceeds 2.

Bit 1: Receive FIFO Buffer Almost-Full

Identify each
bit read by
the address

Identify each
bit to be
written at the
specified

address

Requirement Specification 27

This bit shall be '1' if the number of words in the receive buffer is equal to, or is above the

predefined almost-full threshold. For example, if the almost-full threshold is set to 3, then

the almost-full bit shall be set to '1' when the number of words in the receive buffer equals,

or exceeds 3.

Bit 0: Receive FIFO Buffer Full

This bit shall be '1' if the number of words in the receive buffer is equal to the maximum

size of the receive buffer. For example, if the receive buffer size is set to 4, then the

almost-full bit shall be set to '1' when the number of words in the receive buffer equals 4.

8.2.4 Address "01", CPU WRITE, Receive Buffer Control
The CPU WRITE of the receive buffer control at address "01" shall define the following

parameters for the receive buffer. The data format shall be as follows:

Bit 6: (MSB) Software reset of the receiver function

A logic '1' shall reset the receive function to the idle state, and all received messages

aborted. When this bit is set to logic '1', the CPU must not send another transaction (read

or write) to the component for a minimum of five clock cycles to allow the reset to take

effect. The CPU shall set this bit to a logic '0' to enable operation of the receive logic.

Bit 5: Error interrupt enable

A logic '1' shall enable the interrupt function for a receive error that can comprise of one

or more of the following: Receive framing error, receive parity error, and receive buffer

overrun error. A logic '0' shall mask that interrupt.

Bit 4: Not-empty interrupt enable

A logic '1' shall enable the interrupt function for the receive not-empty. The interrupt shall

be asserted when the receive buffer reaches the not-empty level. A logic '0' shall mask that

interrupt.

Bit 3: Almost-empty interrupt enable

A logic '1' shall enable the interrupt function for the receive almost-empty flag. The

interrupt shall be asserted when the receive buffer reaches the almost-empty level. A logic

'0' shall mask that interrupt.

Bit 2: Half-full interrupt enable

A logic '1' shall enable the interrupt function for the receive half-full flag. The interrupt

shall be asserted when the receive buffer reaches the half-full level. A logic '0' shall mask

that interrupt

Bit 1: Almost-full interrupt enable

A logic '1' shall enable the interrupt function for the receive almost-full flag. The interrupt

shall be asserted when the receive buffer reaches the almost-full level. A logic '0' shall

mask that interrupt.

Bit 0: (LSB) Full interrupt enable

A logic '1' shall enable the interrupt function for the receive full flag. The interrupt shall

be asserted when the receive buffer reaches the full level. A logic '0' shall mask that

interrupt.

28 Component Design by Example

8.2.5 Address "10", CPU READ, Transmit PIR
A CPU READ at address "10" shall return the value of the UART transmit pending

interrupt register (PIR). The transmit PIR shall be automatically reset following a READ

(i.e., Read and clear) of that register. However, if a new setting is to be set at the same

read-and-clear cycle, the new setting shall be asserted following the READ action. The

PIR shall only be reset via a READ at address "10", or via a hard reset, or soft reset of the

receive section (see 8.2.6). The data format shall be as follows. Spare bits shall be of

value ZERO.

Bit 5: (MSB) Transmit error

This error shall indicate that the CPU attempted to write into a full buffer.

Bit 4: Transmit FIFO Buffer OFF of Non-Empty (i.e., To Empty state)

This bit shall be '1' when the number of words in the transmit FIFO buffer becomes empty

from a non-empty condition, i.e., the transmit FIFO buffer became zero and can hold up to

the as many new words for transmission as the transmit FIFO buffer size. For example, if

the transmit FIFO buffer size is 4, then the CPU could send up to 4 words for serial

transmission.

Bit 3: Transmit FIFO Buffer OFF of Almost-Empty

This bit shall be '1' when the number of words in the transmit FIFO buffer gets off the

almost-empty state, i.e., the transmit FIFO buffer had reached the almost-empty value and

is now one less that that value. For example, if the transmit FIFO buffer size is 8, and the

almost-empty size is 3, then the OFF of almost empty flag means that the buffer was

holding 3 words, but now holds one less than 3. The CPU could send up to (8 - 3 + 1), or

6 words. .

Bit 2: Transmit Buffer OFF of half-full

This bit shall be '1' when the number of words in the transmit buffer gets off the half-full

from a higher level, i.e., the transmit FIFO buffer reached one level below the half-full and

can hold as many new words for transmission as the transmit FIFO buffer size minus the

half-full value plus one. For example, if the buffer size is 4, half-full is 2, then the CPU

could send up to (4 –2) + 1, or 3 words.

Bit 1: Transmit Buffer OFF of Almost-full

This bit shall be '1' when the number of words in the transmit buffer gets off the

almost-full from a higher level, i.e., the transmit FIFO buffer reached one level below the

almost-full and can hold as many new words for transmission as the transmit FIFO buffer

size minus the almost-full value minus one. For example, if the FIFO buffer size is 8 and

the almost-full level is 6, then the CPU could send up to (8 –(6-1), or 3 words.

Bit 0: Transmit Buffer OFF Full

This bit shall be '1' when the number of words in the transmit FIFO gets off the full level,

i.e., the transmit FIFO buffer flushed one word off the buffer and the CPU could send one

additional word for serial transmission.

8.2.6 Address "10", CPU WRITE, Transmit Buffer Control
The CPU WRITE of the transmit buffer control at address "10" shall define the following

Requirement Specification 29

parameters for the transmit buffer. The data format shall be as follows:

Bit 6: (MSB) Software reset of the transmit function

A logic '1' shall reset the transmit function to the idle state, and all outgoing messages

aborted. When this bit is set to logic '1', the CPU must not send another transaction

(READ or WRITE) to the component for a minimum of five clock cycles to allow the

reset to take effect. The CPU shall set this bit to a logic '0' to enable operation of the

transmit logic.

Bit 5: Error Interrupt enable

A logic '1' shall enable the interrupt function for a CPU attempting to write a data word

into a full transmit buffer. A logic '0' shall mask that interrupt.

Bit 4: Empty interrupt enable

A logic '1' shall enable the interrupt function for the transmit empty flag. The interrupt

shall be asserted when the buffer drops down to the empty level from a level higher than

empty. A logic '0' shall mask that interrupt.

Bit 3: Almost-empty interrupt enable

A logic '1' shall enable the interrupt function for the transmit almost-empty flag. The

interrupt shall be asserted when the buffer drops down to the almost-empty level from a

level higher than almost-empty. A logic '0' shall mask that interrupt.

Bit 2: half-full interrupt enable

A logic '1' shall enable the interrupt function for the transmit half-full flag. The interrupt

shall be asserted when the buffer drops down to the half-full level from a level higher than

the half-full level. A logic '0' shall mask that interrupt

Bit 1: Almost-full interrupt enable

A logic '1' shall enable the interrupt function for the transmit almost-full flag. The

interrupt shall be asserted when the buffer drops down to the almost-full level from a level

higher than the almost-full level. A logic '0' shall mask that interrupt.

Bit 0: (LSB) full interrupt enable

A logic '1' shall enable the interrupt function for the transmit full flag. The interrupt shall

be asserted when the buffer drops off the full level. A logic '0' shall mask that interrupt.

8.2.7 Address "11", CPU READ, Read Received Data
The CPU READ at address "11" shall send to the CPU "DO" interface the data stored into

the received buffer in the order the words were received.

8.2.8 Address "11", CPU WRITE, Write Transmit data
The CPU WRITE at address "11" shall write into the transmit buffer data to be transmitted

by the UART. It shall be an error if the CPU attempts to write into a full transmit buffer.

Under that condition, the error shall be indicated, but no write function shall occur.

8.3 Modes of Operation

Tactically, the UART shall be in one of the following modes.

 NO Parity: This mode shall be applied to the receiver and transmit functions of

the UART.

 Even Parity: This mode shall be applied to the receiver and transmit functions of

the UART.

30 Component Design by Example

 Odd Parity: This mode shall be applied to the receiver and transmit functions of

the UART.

 Forced Reset: This reset shall represent a CPU command to reset either or both

the transmitter and receiver functions to the idle state. Upon a transmit reset, all

outgoing messages shall be aborted. Upon a receiver reset all received messages

shall be aborted.

9. PERFORMANCE
9.1 Frequency
The UART shall support a maximum baud rate of 25 Mbauds in synchronous mode, and

1.5 Mbauds in asynchronous mode.

9.2 Power Dissipation
The power shall be less than 1 watt at 25 MHz.

9.3 Environmental
Does not apply.

9.4 Technology
The design shall be adaptable to any technology because the design shall be portable and

defined in an HDL.

10. TESTABILITY
None required.

11. MECHANICAL
Does not apply.

3 ARCHITECTURAL PLAN

This section defines the architectural plan that represents the implementation

approach of the design as defined in the requirement document. This plan serves

several purposes:

1. Clarifies how the design will be implemented and what technology and

devices will be used.

2. Provides an opportunity, early in the design process, to modify the design

approaches. For example, during the review process, other more efficient

or economical approaches may be evaluated. These may include reuse or

purchase of intellectual property devices, definition of design at a level

high enough to allow direct synthesis to gates, or change in hierarchy or

structure to allow distribution or sharing of the design.

3. Allows management or senior design engineers to validate the design, and

provide design guidelines (i.e., get their wisdom!)

4. Refines design issues that may be ambiguous.

5. Identifies tools, and availability of tools, in the design process.

32 Component Design by Example

ARCHITECTURAL PLAN FOR AN ASYNCHRONOUS OR

SYNCHRONOUS 8 TO 32 BIT Universal Asynchronous

Receiver/Transmitter

Document #: __
Release Date: ___
Revision Number: ___
Revision Date: _
Originator
 Name: ____
 Phone: __
 email: ___

Approved:
 Name:
 Phone:
 email:

Revisions History:
Date:
Version:
Author:
Description:
--
…

Note: The Header page will vary with each organization because of different

needs. For example, a reviewer list (with name and signature only) may be more

appropriate that a single "approved" entry. This page is a placeholder for a

header page, and is not meant to represent an absolute format.

The numbering system for the architectural plan starts at 1.0 because it is

intended to represent a stand-alone document. Therefore, it does not follow the

chapter numbering system.

Architectural Plan 33

1. SCOPE
1.1 Scope

This document defines the architectural plan for the component

UART that provides a bridge between a microprocessor interface

and a transmit/receive asynchronous or synchronous, parameterized

eight to thirty-two bit serial interface, emulating a UART-like

protocol.

This plan is primarily targeted for designers.

1.2 Purpose

This plan will help assess the validity of the design and explore

alternatives.

1.3 Classification

This document defines the requirements for a hardware design.

2.0 DEFINITIONS
See section 3.2 for referenced document.

3. APPLICABLE DOCUMENTS
3.1 Government documents

3.1.1 TIA/EIA-232-F

Interface between Data Terminal Equipment and Data Circuit-

Terminating Equipment Employing Serial Binary Data Interchange

(ANSI/TIA/EIA-232-F-1997), October 14, 1997.

http://www.tiaonline.org/standards/search_results2.cfm?document_no=TIA/EIA-

232-F
Electronic Industries Alliance, 2500 Wilson Boulevard

Arlington, VA 22201-3834, (703) 907-7500

3.2 Non-government documents

Requirements for an asynchronous or synchronous 8 TO 32 BIT

Universal Asynchronous Receiver/Transmitter,

Document #: 01

3.3 Executable specifications

None.

Concise
abstract of the
coverage of the
specification

Target
audience

Purpose of
specification

System,
hardware,
software

Sources of
applicable
documents

Standard and
government
specifications
and
requirements

34 Component Design by Example

4. ARCHITECTURAL OVERVIEW
The UART model will consist of four partitions or subblocks that represent the

separate functional elements of the design, as shown in Figure 4.0.

1. CPU Subblock. This interface will provide the data transfer between the

UART and the CPU that controls it. It will also include the configuration

registers for the modem control (DTRn), and the receive and transmit

interrupt masks.

2. Receiver Subblock. This interface will include the receiver de-

serialization logic and the receive buffering of the received data over the

serial RxD interface.

3. Transmitter Subblock. This interface will include the transmitter

serialization logic and the transmit buffering of the data to be transmitted,

as commanded by the CPU.

4. Clock Subblock. This partition will provide the baud clocks, and bit

synchronization for the transmit and receive serial data.

4.1 CPU Subblock

The CPU interface will consist of the following logic:

1. Address decoding logic for the control of the UART.

2. Configuration registers for the storage of configuration information of the

design, including:

a. Data set ready

b. Interrupt masks for the transmit function

c. Interrupt masks for the receive function

3. Interrupt control logic for the generation of interrupts based on the status

of the transmit and receive buffers, and the interrupt masks.

4.2 Receiver Subblock

The receiver subblock will de-serialize the incoming data on the Rxd port, and

will store it into a FIFO buffer. This logic will alert the CPU interface of the

status of the FIFO, and the receive errors detected for each received word. These

errors will include:

1. Parity error, when parity is enabled

2. Overrun error, when the receive FIFO is full and a new word is received.

3. Framing error when the received data is not properly framed. The

unframed data, as expected from the state machine, will be stored in the

buffer.

The FIFO design will be custom designed to the requirements, rather than the

use of an intellectual property (IP) design because of limited financial

resources, and the desire to freely distribute the code for this book. The FIFO

design will be reused in the transmit subblock.

Architectural Plan 35

Figure 4.0 High Level View of UART Architecture

4.3 Transmit Subblock

The transmit subblock will serialize the CPU data stored into FIFO buffer onto

the Txd port, as per the protocol described in the requirement specification. This

logic will alert the CPU interface of the status of the FIFO, and the FIFO overrun

error. An overrun error will occur when the CPU attempts to store data into a full

FIFO.

The FIFO design will use the design defined for the receive subblock.

4.4 Clock Subblock

This partition will provide the baud clocks, and bit synchronization for the

transmit and receive serial data.

CPU

Decode

&

Control

Transmit Fifo
Management
Count
Read Pointer
Write Pointer
Fifo
Errors

Configuration
Control
Registers

- Modem
- Receive Fifo
- Transmit Fifo

CPU Interface

C

P

U

Transmitter
- Transmit serializer
- Transmit Fifo

Transmitter

Receiver
- Serial to Parallel
- Receiver Fifo

Receiver

TxD

Modem Control

Received Data & Status

Receive Fifo
Management

Count
Read Pointer
Write Pointer
 Fifo
 Errors

RxD

Status

Clock Control

16X CLK

Sys Clk

Synchr
XMT Clk

Synch
RCV Clk

Data/

Control

Data/

Control

XMIT Data /

Control

Transmit/Receive

Baud Clock

36 Component Design by Example

5. PHYSICAL LAYER
The physical hardware interfaces will be as specified in the

requirement specification. Figure 5.1 reiterates the interfaces.

Refer to section 5.0 of the requirement specification for the

description of the interface ports.

Figure 5.1 Interfaces of the UART

The design will be built with the FPGA device defined in Table 5.1 because this

component appears to meet the speed and power requirements, and it is currently

available in stock. The VHDL code is however portable, and is adaptable to any

technology supported by the compiler and the layout tools.

Table 5.1 Selected FPGA Component

FPGA CHARACTERISTIC VALUE

Technology Altera FLEX10K

Part Altera EPF10K10

Package LC84

Speed grade 3

Clocks

CPU Interface

UART
Virtual

Component

RS-232 Serial Interface

---> TxD Transmitted Data,

<--- RxD Received Data,

---> RTSn Request To Send

<--- CTSn Clear To Send

<--- DSRn Data Set Ready

<--- DCDn Data Carrier Detect

---> DTRn Data Terminal Ready

<--- RIn Ring Indicator

 Addr (2) --->

 CS0 --->

 CS1 --->

 CS2n --->

 Clk --->

 Din (8/16/32) --->

 RDn --->

 RIN --->

 Resetn --->

 WRn --->

 TC_synch --->

 RC_synch --->

 Clk16x --->
 DO (8/16/32) <---

 OutEnb <---

 Intrpt <---

Interfaces as
seen from the
pinout
viewpoint

Architectural Plan 37

6. PROTOCOL LAYER
The transmit and receive logic will abide by the rules of the protocol, as defined

in the requirement specification.

7. ROBUSTNESS
The error detection types, as defined in the requirement specification, will be

observed.

8. HARDWARE AND SOFTWARE

8.1 Fixed Parameterization

Parameterization of the word size, buffer depth, and buffer threshold (e.g.,

almost-empty) will be specified with generics.

8.2 Software Interfaces

The address decoding and control fields, as defined in the requirement

specification, will be observed.

9. PERFORMANCE
Design rules that enable higher operating frequency will be followed. These rules

are defined in the RMM1. They include rules such as sourcing outputs off

subblocks through registers. Additional constraints will be imposed on the

synthesizer and layout tools to achieve the desired performance. The synthesis

and layout tools for the targeted device will verify frequency performance.

10. TESTABILITY
No testability hardware is required.

1 Reuse Methodology Manual for System-on-a-Chip, Second Edition, Michael

Keating amd Pierre Bricaus, Kluwer Academic Publishers 1999

38 Component Design by Example

11. DESIGN TOOLS
Table 11.1 summarizes the design tools to be used in this project.

Table 11.1 Tools Used in Design Process

TOOL VENDOR FUNCTION

ModelSim EE 5.4b with

Code Coverage

Model

Technology,

Mentor Graphics

VHDL/Verilog co-

simulator with code

coverage

Synplify Synplicity 5.3.1

with HDL

Analyst

VHDL and Verilog

synthesis for FPGAs and

CPLDs. Produces EDIF

files, performance and

timing reports, RTL and

gate level views, and

Extraction views of

desired paths.

Max+plusII version 9.4 Altera Layout tool for Altera

devices

Renoir V99.6 Mentor Graphics Design environment

Emacs 20.6.1 with

Vhdl-mode 3.31.6 beta

GNU Language sensitive editor

This list summarizes the tools used in the design of the UART for this book. Users need

to identify the tools they intend to use in their project. Other tools, not included here

include debuggers, lint, memory makers, behavioral compilers, ASIC layout, timing

analyzers, testability insertion, power estimator, etc.

An example of a degugging tool is Novas' Debussy2(r) Total Debug (tm) system

for complex designs at the gate, RTL and behavioral levels. Debussy compiles the

original HDL source files and uses pre-synthesis techniques to extract knowledge of the

design such as flip-flops, latches, and multiplexers. It uses this knowledge to intelligently

generate schematic diagrams that isolate any portion of the RTL or netlist, such as a

single logic cone, a critical path, or the interconnection between particular blocks, and to

analyze the reasons for problems such as unknown (X) values. Open interfaces allow

integration with a wide range of simulators as well as formal verification and

timing analysis tools.

2 http://www.novas.com/

http://www.novas.com/

4 VERIFICATION PLAN

The verification plan is a specification for the verification effort. It is used to

define what is first-time success, how a design is verified, and which testbenches

are written1. This chapter addresses the description of a verification plan for the

UART specified in chapter 2 and with the implementation plan defined in chapter

3. The verification plan makes use of suggestions written in Writing Testbenches

and Reuse Methodology Manual2. The types of verification tests can comprise of

compliance, corner case, random, real code, and regression testing.

In addition to the verification plan, this chapter provides a discussion on

verification languages, general verification requirements for components, and the

rationale for the selection of VHDL for this book. This material is included

because the verification plan addresses the verification language, and there is a

growing trend3 in the migration toward the use of languages specifically designed

for verification, rather than HDL designs.

1 Writing testbenches, Functional verification of HDL models, Janick Bergeron,

Kluwer Academic Publishers 2000

2 Reuse Methodology Manual for System-on-a-Chip, Second Edition, Michael

Keating and Pierre Bricaus, Kluwer Academic Publishers 1999

3 Verification Guild, http://janick.bergeron.com/guild

40 Component Design by Example

4.1 METHODOLOGIES

4.1.1 What is a Verification Plan

A verification plan is a document that defines the following:

1. Tests or transactions applied to the design. These tests are used to

verify the design functional correctness as specified in the requirement

specification. This includes tests at the top-level of the design as well as

the subblocks.

2. Testbench environment for the design-under-test. This includes the

definition of the verification language, the structure of the testbench, and

special instructions. The structure encompasses the component models (at

the interface level), packages (at the declaration or higher level), and file

structures (if files are used).

3. Validation environment for the design-under-test. This includes the

definition of the verifying and predicting software, the error reporting

methods, and the types of errors detected.

4.1.2 Why a Verification Plan

A verification plan provides a strawman document that can be used by the unit-

under-test (UUT) design community to identify, early in the project, how the

design will be tested. Early mistakes in the verification approach can be

identified and corrected. A byproduct of the verification plan exercise is the

revisit on the validity and definition of the requirements. This enforces the

process of verifying those requirements, thus helping in the identity of poorly

specified or ambiguous requirements.

4.1.2.1 Testbench Style

Style is important in the design of the testbench because style guides the

verification approaches and reuse of testbench models. Reuse is an important

consideration in the design of the verification models because the testbench must

adapt to the lifecycle of the unit-under-test. The UUT will typically undergo

several design iterations, refinements, and even changes in requirements. During

the review process of the verification plan, poor forms of testbench architectures

will be flagged.

4.1.2.1.1 Poor Testbench styles4

Some examples of poor testbenches for re-use would include any of the

following, ordered from worst to workable-but-ugly methods.

Vector Stimulus

A vector set is a group of 1’s and 0’s that contain input stimulus to the input pins

4 Test Benches: The Dark Side of IP Reuse, Gregg D. Lahti, SNUG San Jose

2000

Verification Plan 41

and usually expected output from the output pins. The ability to understand what

the vectors are doing (i.e., documentation of the stimulus) as well as the ability to

modify the tests to incorporate bug fixes or design improvements is lost due to the

low level format. The worst possible use of vectors is to create a “golden set” of

test vectors by visually verifying the waveforms, saving the stimulus vector file,

and then subsequently verifying any future simulations against the “golden”

vector set. This method of visually verifying the waveforms is not only time

consuming, but very prone to human error. Applying stimulus with A/C timing in

mind generally requires specific knowledge of the interfaces being tested. Once

this happens, the testbench becomes non-portable due to frequency constraints –

i.e., the tests cannot function at a faster frequency since the vector set will need to

get scaled differently or the tests cannot be modified to support a different A/C

timing environment.

Assembly Language Code

A proprietary, low-level language like assembly code to drive a Bus Functional

Model within a system-like environment with a processor, bus controller and

program memory is next on the worst possible usage list. Assembly code

generally means a lower level of abstraction of the test and limits the engineer in

easily creating a functional test description to perform large, complex testing

operations. The assembly language code testbench will work, but the effort to

reuse it requires more overhead in terms of tools used to compile the assembly to

object code and the effort to create the test. By using an assembly-code driven

testbench, reusability gets limited to a platform-specific tool for code compiling,

i.e., the compiler only works on a Sun Solaris ® 2.5.1 solution or worse, a

Windows NT ® solution. The full-system environment used (processor in BFM

form, bus controller, and program memory) also limits reuse since the entire

environment must be re-created as the testbench in order to reuse the tests.

Finally, assembly code is not portable across different micro

processors/controllers. If an engineer created a special function I/O block like a

USB ® controller and wrote the tests in assembly targeting an X86 ®

microprocessor, the tests would need to be recoded if the block was to be reused

for a System On Chip (SOC) solution using a StrongArm ® core. The use of

specific-architecture assembly code forces the whole X86 ® system architecture

to be emulated in the X86 ® system testbench to test one block. Once again,

testbench reuse is now limited.

Scripts and Environments from Hell

EDA tools are never perfect, and no testing solution will always fit the

requirements. To patch problems at hand, the engineer winds up creating a script-

based workaround, usually in Perl. What can turn a testbench into a non-reusable

nightmare is the when engineers break away from an industry standard, widely

used, HDL language (VHDL, Verilog, C/C++) to do the testing and create a

whole environment of support scripts, test language scripts, and pre/post-

42 Component Design by Example

processing scripts. It is difficult to create a modular testbench for a design when

the testbench needs to incorporate a dozen 3000-line Perl scripts relying on many

environment variables, hardcoded paths, and a chain of scripts calling more

scripts. It also turns into a support nightmare when the script and environment are

ill documented and the engineer is no longer working in the department or

company. Engineers like writing solution scripts, but commenting and

documentation is usually sacrificed for quick implementation and schedule time.

4.1.2.1.2 Good Testbench styles

A good testbench design style has, at a minimum, the following characteristics:

1. The resultant code is readable and maintainable.

2. Code is written in an approved, portable, open, modern, and preferably

object oriented language.

3. Code is abstracted to as high of levels as possible. Thus, instead of

"waveforms", code must address the "transactions" or "tasks" that are then

transformed into waveforms by subprograms, methods, or server

component models. A transaction identifies the parameterized task that

must be performed on the UUT. For example, a WRITE transaction

would include an address and data. The waveforms used in the protocol

to activate the WRITE (e.g., chip selects, write enables) are described in

another structure.

4. The verifier model has knowledge of the transactions asserted on the

UUT, and makes use of that information in the detection of errors.

4.1.3 Verification Languages

Studies on engineering design efforts have shown that more engineering time is

spent validating than writing an RTL description and synthesis. There is at least a

1:1 validation to design engineering task ratio (Figure 4.1.3), and in some cases

more of a ratio. Because of this heavy verification effort, several EDA vendors

have introduced new proprietary verification languages such as Synopsys5 Vera-

HVL
TM

Hardware Verification Language, Verisity's Specman Elite™6, and

Chronology QuickBench/Rave7. Cadence Design Systems is making its

TestBuilder testbench class library8 available using open source licensing, thus

allowing designers, IP developers and EDA vendors to develop interoperable

testbenches for chip or system design verification. These languages are marketed

as verification languages designed to provide the necessary abstraction level to

develop reliable test environments for all aspects of verification: automatic

5 http://www.synopsys.com/

6 http://www.verisity.com/html/specmanelite.html

7 http://www.chronology.com/

8 http://www.testbuilder.net

Verification Plan 43

generation of functional tests, data and temporal checking, functional coverage

analysis, and HDL simulation control. These verification languages typically

implementation object oriented programming methodologies to enhance the

ability to work with complicated designs and sophisticated testbenches.

Figure 4.1.2 Breakdown of Engineering Effort9

Verification languages are beginning to make an impact on how designs are

verified. People who have used them praise the efficiency of those tools10.

Below is a quick overview of Spec-Based Verification11, one of the commercially

available verification languages.

"Spec-based verification is an emerging methodology for functional verification

that solves many of the problems design and verification engineers encounter with

today's methodologies. This is done by capturing the rules embodied in the

specifications (design/interface/functional test plan) in an executable form. An

effective application of this methodology provides four essential capabilities to

help break through the verification bottleneck:

1. Automates the verification process, reducing by as much as four times the

amount of manual work needed to develop the verification environment

and tests;

2. Increases product quality by focusing the verification effort to areas of

new functional coverage and by enabling the discovery of bugs not

anticipated in the functional test plan;

3. Provides functional coverage analysis capabilities to help measure the

progress and completeness of the verification effort;

9 Test Benches: The Dark Side of IP Reuse, Gregg D. Lahti, SNUG San Jose

2000

10 see http://janick.bergeron.com/guild

11 From http://www.verisity.com/

http://janick.bergeron.com/guild
http://www.verisity.com/

44 Component Design by Example

4. Raises the level of abstraction used to describe the environment and tests

from the RTL level to the specification level, capturing the rules defined in

the specs in a declarative form and automatically ensuring conformance

to these rules."

Key benefits provided by VERA12 Testbench Automation for Functional

Verification include:

1. Reduce verification time with automated testbench creation and analysis

2. Create modular, re-useable testbenches with VERA HVL -- the high-level

language optimized for verification

3. Use the same testbench for VHDL and Verilog HDL designs

4. Perform thorough coverage analysis of even difficult corner cases

5. Increase simulation efficiency with closed-loop reactive tests

6. Increase simulation throughput with distributed processing capability

7. Do full system simulation through tight integration with Synopsys'

industry-leading Synopsys Eaglei(R) HW/SW co-verification environment,

and SmartModel(R) library

Cadence's document on Creating a C++ Library for Test Bench Authoring,

Testbuilder
8
 states that to support test bench authoring in C++, we have

encapsulated three sets of concepts in a library: hardware concepts, testbench

concepts, and transaction concepts. The resulting library provides an easy-to-use

interface for writing test benches in C++, with transparent connection to an HDL

simulator. Significant productivity gain in creating reusable benches and in

debugging simulation runs have been achieved.

The above information was intended only as a very brief introduction to

verification languages. The reader is invited to get more information on that topic

from the web.

12 from http://www.synopsys.com

http://www.synopsys.com/

Verification Plan 45

This author's view of verification languages is as follows:

1. Tools are not methodologies, yet methodologies may use tools to help

in the implementation of the methodology. A hammer is not a

methodology in building a house, but a hammer is a tool used to build a

house.

2. Tools, by themselves, do not guarantee quality of work. Yet, tools

may enhance the quality of work in the hands of a good artisan. A

high quality, state-of-the-art electric saw does not guarantee that a house

will be framed correctly. However, in the hands of a good framer, that

saw definitely helps.

3. A good methodology with low technology tools is better than a poor

methodology with high technology tools. A house with a good building

process can be built with low technology tools. However, a poor building

process with high technology tools will not yield a good product.

4. Verification languages are tools. By themselves, verification

languages are not the panacea to verifying that a design is correct.

5. Verification languages can be very beneficial when mixed with a good

methodology and in the hands of good craft persons. This would be

like building a house with an approved and reliable process, with

advanced tools, and excellent craft persons.

6. Users need to tradeoff the benefits of verification languages versus the

costs associated with those tools, including the tool purchase/lease,

training, and manpower for the verification specialists. With qualified

verification specialists, the manpower should be a lesser effort than if the

verification were done in HDL. However, resource allocation may be an

issue.

This book will use VHDL as the verification language because it is an open

language (IEEE Standard 1076.6). VHDL provides powerful data and HDL

constructs applicable to verification. The use of an open language for components

provides greater portability for the verification and regression models. For this

author, another reason for using VHDL is also economics, with access to VHDL

tools (compilers and simulators), and the unrestricted freedom to publish code

written in this open verification language. Good testbench design practices with

reuse in-mind are applied, and could be migrated to other languages. This will

include a self-checking testbench that is easily modifiable and well documented.

The concepts of verification are generic, and not language oriented.

46 Component Design by Example

4.2 VERIFICATION PLAN

VERIFICATION PLAN FOR ASYNCHRONOUS OR
SYNCHRONOUS 8 TO 32 BIT Universal Asynchronous
Receiver/Transmitter

Document #: 01s
Release Date: __/__/__
Revision Number: ____
Revision Date: __/__/__
Originator
 Name:
 Phone:
 email:

Approved:
 Name:
 Phone:
 email:

Revisions History:
Date:
Version:
Author:
Description:
--
…

Note: The Header page will vary with each organization because of different

needs. For example, a reviewer list (with name and signature only) may be more

appropriate that a single "approved" entry. This page is a placeholder for a

header page, and is not meant to represent an absolute format.

The numbering system for the verification plan starts at 1.0 because it is intended

to represent a stand-alone document. Therefore, it does not follow the chapter

numbering system.

Header page

Pertinent
logistics data
about the
requirements.

Conform to
company
policies and
style

Verification Plan 47

1. SCOPE
1.1 Scope

This document establishes the verification plan for the UART

design specified in the requirement specification. It identifies the

features to be tested, the test cases, the expected responses, and the

methods of test case application and verification.

The verification plan is primarily targeted for component

developers, IP integrators, and system OEMs.

1.2 Purpose

The verification plan provides a definition of the testbench and

verification environment, test sequences, application of test cases,

and verification approaches for the Universal Asynchronous

Receiver/Transmitter (UART) design as specified in the

requirement specification number __01, and in the implementation

specification number __01.

The goals of this plan is not only to provide an outline on how the component will

be tested, but also to provide a strawman document that can be scrutinized by

other design and system engineers to refine the verification approach.

1.3 Classification

This document defines the test methods for a hardware design.

2 DEFINITIONS

2.1 BFM

A Bus Functional Model that emulates the operation of an interface (i.e., the bus),

but not necessarily the internal operation of the interface.

2.2 Client

An interface that is responsible for the definition and creation of the transactions

to be asserted onto the UUT.

2.3 Transaction

Tasks and parameters that need to be executed. An example of a transaction

would be a WRITE at a specified ADDRESS, with specified DATA, onto a

specific interface, with specific FAULT modes, and at a specific time.

2.4 Server

A model or process that is responsible for executing the transaction issued by a

client. The server provides the appropriate waveforms onto the BFM interface.

Concise
abstract of the
coverage of the
testplan

Target
audience

Defining the

verification

plan often

uncovers

misunderstan-

dings in the

original

requirements

48 Component Design by Example

The server may alert the client of the completion of a requested transaction. The

server may also be involved in the collection of data from the bus, and in the

offering of this collected data to a client, typically in the form of a record.

3. APPLICABLE DOCUMENTS

3.1 Government Documents

None.

3.2 Non-government Documents

Document #: ____01, Requirement Specification for an Asynchronous Or

Synchronous 8 To 32 Bit Universal Asynchronous Receiver/Transmitter

3.3 Executable specifications

None.

3.4 Reference Sources

1. VHDL Coding Styles and Methodologies, 2
nd

 Edition, Ben Cohen, KAP, 1999.

2. Writing Testbenches: Functional Verification of HDL Models, Kluwer

Academic Publishers (2000), Janick Bergeron, http://janick.bergeron.com

3. Reuse Methodology Manual (RMM), 2
nd

 Edition, Kluwer Academic

Publishers, 1999, Michael Keating and Pierre Bricaud.

Verification Plan 49

4. COMPLIANCE PLAN
VHDL will be used as the verification language because it is an open language

(IEEE Standard 1076.6). This plan consists of the following:

 Feature extraction and test strategy

 Test application approach for the UART and its subblocks

 Test verification approach

4.1 Feature Extraction and Test Strategy

The design features are extracted from the requirement

specification. For each feature of the design, a directed test strategy

is recognized, and a test sequence is identified. A verification

criterion for each of the design feature is documented. This feature

definition, test strategy, test sequence, and verification criteria

forms the basis of the functional verification plan. Table 4.1

summarizes the feature extraction and verification criteria for the

functional requirements.

For corner testing, pseudo-random transmit and receive transactions will be

simulated to emulate a UART in a system environment. The CPU will perform

the following transactions at pseudo-random intervals:

1. Write transmit messages

2. Respond to transmit and receive interrupts by reading the PIR registers

The testbench environment will send receive-data at pseudo-random intervals.

Features are

implicitly or

explicitly

defined in the

requirements

specification.

50 Component Design by Example

Table 4.1 Feature Extraction and Verification Criteria

Tst

FEATURE

&

DIRECTED TEST STRATEGY

SPEC

Pr

io

rit

y

TEST SEQUENCE VERIFICATION

CRITERIA

1 Fixed Parameterization

- Word size

- Buffer Depth

- Buffer Almost Empty

- Buffer Almost Full

- Synchronous/

 Asynchronous Mode

- Instantiation transmit function

- Instantiation receive function

8.1 1 Configuration Setup

8 bits/word

4

1

3

asynchronous

transmit function instantiated

receive function instantiated

Design compiles and

elaborates correctly.

Configuration to be

used in testcases

 With test configuration #1.

DO tests #2 thru #25

2 RESET

. UART to be in idle state, all

software visible registers to be

reset, no interrupt outputs

5.1.2.7

8.2.3
8.2.5

1 - Resetn = 0,

- Resetn = 1 after 1 cycle

- READ 01 -- RCV PIR

- READ 10 – XMT PIR

No Interrupt outputs

DO(7..0) = 00000000

DO(7..0) = 00000000

Verification Plan 51

Table 4.1 Feature Extraction and Verification Criteria (Continued)

Tst

FEATURE

&

DIRECTED TEST STRATEGY

SPEC

Pr

io

rit

y

TEST SEQUENCE VERIFICATION

CRITERIA

 3 Modem Status

. I/O BFM to Toggle modem

status:
 RINn CTSn DSRn DCDn

. CPU to read data

. I/O BFM to Toggle modem

status:
 RINn CTSn DSRn DCDn

. CPU to read data

8.2.1

1 - Set RINn CTSn DSRn DCDn = 0000

- READ 00 -- Modem status

- Set RINn CTSn DSRn DCDn = 0001

- READ 00 -- Modem status
- Set RINn CTSn DSRn DCDn = 0010

- READ 00 -- Modem status

- Set RINn CTSn DSRn DCDn = 0100

- READ 00 -- Modem status
- Set RINn CTSn DSRn DCDn = 1000

- READ 00 -- Modem status
- Set RINn CTSn DSRn DCDn = 1111

- READ 00 -- Modem status

DO(3 ..0) = 0000

DO(3 ..0) = 0001

DO(3 ..0) =0010

DO(3 ..0) =0100

DO(3 ..0) = 1000

DO(3 ..0) = 1111

 4 Modem Control

.CPU to Toggle DTRn

Set no parity mode

8.2.2 1 - WRITE 00 000

- WRITE 00 100 – NO parity
- WRITE 00 000

DTRn = 0

DTRn = 1
DTRn = 0

5 Transmit protocol

CPU writes 1 word into buffer,

 interrupt on empty
. Set modem interface to

 disabled transmission mode.

. Enable empty transmit interrupt.

. Write 1 random data to transmit

 buffer

8.2.6

8.2.8
6.0, 5.1.1

1 - Set RINn CTSn DSRn DCDn = 0111

- WRITE 10 010000 – Xmt buffer setup
- WRITE 11 RandomData – fill xmt buffer
- Wait for 2 baud cycles
- Set RINn CTSn DSRn DCDn = 0011

- Wait for 51 cycles

- Set RINn CTSn DSRn DCDn = 0001
- Wait for 51 cycles

- No serial output

- No serial output

- No serial output

52 Component Design by Example

. Modify modem interface until

 Enable of transmission mode.

. Check for interrupt.

. Read transmit PIR

5.1.2.11
6.0

8.2.5

- Set RINn CTSn DSRn DCDn = 0000

- Enable all transmit interrupts

- Read 10 – read/clr xmt PIR status until

message is sent. (PIR(4) = '1'

- Verify serial output sequence.

- Verify Transmit interrupt (bit 1) is active and

is reset with xmt PIR read

- Serial transmission

Protocol per 3.3. Interrupt

at end of transmission,

6 Transmit protocol . CPU writes

"n" words into buffer,

 interrupt on empty (MT)
. Set modem interface to

 enabled transmission mode.

. Enable empty transmit interrupt.

. Write buffer-depth random data

 to transmit buffer.

. Check for interrupt.

. Read transmit PIR

8.2.6

8.2.8

5.1.2.11

6.0

8.2.5

1 - Set RINn CTSn DSRn DCDn = 0000

- WRITE 10 10 -- hex – – Interrupt on MT
- Fill xmt buffer with random data
 for K in 1 to buffer_depth loop

 WRITE 11 RandomData – fill xmt buffer
 end loop;
- Read 10 – read/clr xmt PIR status until message

is sent. (PIR(4) = '1'

- Verify serial output sequence.
- Verify Transmit interrupt (bit 1) is active and is

reset with xmt PIR read

- Serial transmission.

Protocol per 6.0. Interrupt

at end of transmission of

all words in buffer,

Verification Plan 53

Table 4.1 Feature Extraction and Verification Criteria (Continued)

Tst

FEATURE

&

DIRECTED TEST STRATEGY

SPEC

Pr

io

rit

y

TEST SEQUENCE VERIFICATION

CRITERIA

7 Transmit protocol. CPU writes

"n" words into buffer,

interrupt on Almost empty

. Set modem interface to

 enabled transmission mode.

. Enable empty transmit interrupt.

. Write buffer depth random data

 to transmit buffer.

. Check for interrupt.

. Read transmit PIR

8.2.6

8.2.8

5.1.2.11

6.0

8.2.5

1 - Set RINn CTSn DSRn DCDn = 0000

- WRITE 10 001000 – Intrpt Almost empty
- Fill xmt buffer with random data
 for K in 1 to buffer_depth loop

 WRITE 11 RandomData

 – fill xmt buffer

 end loop;
- Read 10 – read/clr xmt PIR status

until message is sent. (PIR(3) = '1'

- Verify serial output sequence.

- Verify Transmit interrupt (bit 1) is

active and is reset with xmt PIR

read

- Serial transmission.

Protocol per 6.0. Interrupt

when transmit buffer

reaches down to the

almost empty level.

54 Component Design by Example

Tst

FEATURE

&

DIRECTED TEST STRATEGY

SPEC

Pr

io

rit

y

TEST SEQUENCE VERIFICATION

CRITERIA

8 Transmit protocol. CPU writes

"n" words into buffer,

interrupt on half-full

. Set modem interface to

 enabled transmission mode.

. Enable empty transmit interrupt.

. Write buffer depth random data

 to transmit buffer.

. Check for interrupt.

. Read transmit PIR

8.2.6

8.2.8

5.1.2.11

6.0

8.2.5

1 - Set RINn CTSn DSRn DCDn = 0000

- WRITE 10 000100 – Intrpt half-full
- Fill xmt buffer with random data
 for K in 1 to buffer_depth loop

 WRITE 11 RandomData – fill xmt buffer
 end loop;

- Read 10 – read/clr xmt PIR status until

message is sent. (PIR(2) = '1'

- Verify serial output sequence.

- Verify Transmit interrupt (bit 1) is active and

is reset with xmt PIR read

- Serial transmission.

Protocol per 6.0. Interrupt

when transmit buffer

reaches down to the half-
full.

9 Transmit protocol. CPU writes

"n" words into buffer,

interrupt on almost-full

.Set modem interface to

 enabled transmission mode.

. Enable empty transmit interrupt.

. Write buffer depth random data

 to transmit buffer.

. Check for interrupt.

. Read transmit PIR

8.2.6

8.2.8

5.1.2.11

6.0

8.2.5

1 - Set RINn CTSn DSRn DCDn = 0000

- WRITE 10 000010 – intrpt almost-full
- Fill xmt buffer with random data
 for K in 1 to buffer_depth loop

 WRITE 11 RandomData – fill xmt buffer
 end loop;

- Read 10 – read/clr xmt PIR status until

message is sent. (PIR(1) = '1'

- Verify serial output sequence.

- Verify Transmit interrupt (bit 1) is active and

is reset with xmt PIR read

- Serial transmission.

Protocol per 6.0. Interrupt

when transmit buffer

reaches down to the

almost-full level.
Table 4.1 Feature Extraction and Verification Criteria (Continued)

Tst

FEATURE

&

SPEC

Pr

io

TEST SEQUENCE VERIFICATION

CRITERIA

Verification Plan 55

DIRECTED TEST STRATEGY rit

y

10 Transmit protocol. CPU writes

"n" words into buffer,

interrupt on full

. Set modem interface to

 enabled transmission mode.

. Enable empty transmit interrupt.

. Write buffer depth random data

 to transmit buffer.

. Check for interrupt.

. Read transmit PIR

8.2.6

8.2.8

5.1.2.11

6.0

8.2.5

1 - Set RINn CTSn DSRn DCDn = 0000

- WRITE 10 000001 – intrpt full
- Fill xmt buffer with random data
 for K in 1 to buffer_depth loop

 WRITE 11 RandomData – fill xmt buffer
 end loop;

- Read 10 – read/clr xmt PIR status until
message is sent. (PIR(0) = '1'

- Verify serial output sequence.

- Verify Transmit interrupt (bit 1) is active and

is reset with xmt PIR read

- Serial transmission.

Protocol per 6.0. Interrupt
when transmit buffer

reaches off to the full

level.

56 Component Design by Example

Table 4.1 Feature Extraction and Verification Criteria (Continued)

Tst

FEATURE

&

DIRECTED TEST STRATEGY

SPEC

Pr

io

rit

y

TEST SEQUENCE VERIFICATION

CRITERIA

11 Receive protocol

 interrupt on not empty
. Set modem interface to

 enabled transmission mode.

. Enable empty receive interrupt.

. Send buffer-depth words to data

 to Rxd port.

. Check for interrupt.

. Read receive status and PIR

8.2.6

6.0

8.2.3

5.1.2.11
8.2.7

1 - Set RINn CTSn DSRn DCDn = 0000

- WRITE 01 010000 intrpt on not MT
- send buffer-size words to RxD port

with random data

- Wait for interrupt within serial

 transmission time

- Read 01 – read/clr rcv buffer status

until message is received. (PIR(4) =

'1'

- Verify receive interrupt (bit 0) is

active and is reset with xmt PIR

read

- Read data

Received data (all words)

= transmitted data.(all

words)

Status register is as

expected.

12 Receive protocol

 interrupt on almost-empty

. Set modem interface to

 enabled transmission mode.

. Enable empty receive interrupt.

. Send buffer-depth words to data

 to Rxd port.

. Wait for interrupt.

. Read receive status and PIR

8.2.6

6.0

8.2.3

5.1.2.11

8.2.7

1 - Set RINn CTSn DSRn DCDn = 0000

- WRITE 01 001000 intrpt on almost- MT
- send buffer-size words to RxD port

with random data

- Wait for interrupt within serial

 transmission time

- Read 01 – read/clr xmt buffer

status

Received data (all words)

= transmitted data.(all

words)

Status register is as
expected.

Verification Plan 57

- Read data
Table 4.1 Feature Extraction and Verification Criteria (Continued)

Tst

FEATURE

&

DIRECTED TEST STRATEGY

SPEC

Pr

io

rit

y

TEST SEQUENCE VERIFICATION

CRITERIA

13 Receive protocol

 interrupt on half-full

. Set modem interface to

 enabled transmission mode.

. Enable empty receive interrupt.

. Send buffer-depth words to data

 to Rxd port.

. Wait for interrupt.

. Read receive status and PIR

8.2.6

6.0

8.2.3

5.1.2.11

8.2.7

1 - Set RINn CTSn DSRn DCDn = 0000

- WRITE 01 000100 intrpt on half-full
- send buffer-size words to RxD port with

random data
- Wait for interrupt within serial

 transmission time

- Read 01 – read/clr xmt buffer

status

- Read data

Received data (all words)

= transmitted data.(all

words)

Status register is as

expected.

14 Receive protocol

 interrupt on Almost-full

. Set modem interface to

 enabled transmission mode.

. Enable empty receive interrupt.

. Send buffer-depth words to data

 to Rxd port.

. Wait for interrupt.

. Read receive status and PIR

8.2.6

6.0

8.2.3

5.1.2.11

8.2.7

1 - Set RINn CTSn DSRn DCDn = 0000

- WRITE 01 000010 intrpt on almost-full
- send buffer-size words to RxD port

with random data

- Wait for interrupt within serial

 transmission time

- Read 01 – read/clr xmt buffer

status

- Read data

Received data (all words)

= transmitted data.(all

words)

Status register is as

expected.

58 Component Design by Example

Table 4.1 Feature Extraction and Verification Criteria (Continued)

Tst

FEATURE

&

DIRECTED TEST STRATEGY

SPEC

Pr

io

rit

y

TEST SEQUENCE VERIFICATION

CRITERIA

15 Receive protocol

 interrupt on full

. Set modem interface to

 enabled transmission mode.

. Enable empty receive interrupt.

. Send buffer-depth words to data

 to Rxd port.

. Wait for interrupt.

. Read receive status and PIR

8.2.6

6.0

8.2.3

5.1.2.11
8.2.7

1 - Set RINn CTSn DSRn DCDn = 0000

- WRITE 01 000001 intrpt on full
- send buffer-size words to RxD port

with random data

- Wait for interrupt within serial

 transmission time

- Read 01 – read/clr xmt buffer

status

- Read data

Received data (all words)

= transmitted data.(all

words)

Status register is as

expected.

 16 Tests 2 to 15,

with PARITY ON, ODD
8.2.2 1 - WRITE 00 111 -- Odd parity

- Repeat tests 1 through 15
DTRn = 0

 17 Tests 2 to 15,

with PARITY ON, EVEN
8.2.2 1 - WRITE 00 110 – Even parity

- Repeat tests 1 through 15
DTRn = 0

18 Receive framing error,

Even Parity
7.1.1 1 Same conditions as 15, except:

Force a framing error on the receive

RxD, READ Status

19 Receive parity error,

Even Parity
7.1.2 1 Same conditions as 15, except:

Set parity ON and force a parity

error on the receive RxD data

20 Receive buffer overrun error,

Even Parity
7.1.3 1 Same conditions as 15, except:

Do not flush receive buffer.

Verification Plan 59

Table 4.1 Feature Extraction and Verification Criteria (Continued)

Tst

FEATURE

&

DIRECTED TEST STRATEGY

SPEC

Pr

io

rit

y

TEST SEQUENCE VERIFICATION

CRITERIA

21 Transmit buffer overrun error,

even Parity
7.1.4 1 Same conditions as 10, except:

Force a more data write into the

transmit buffer than the buffer can

hold.

22 Receive framing error,

Odd Parity
7.1.1 2 - WRITE 00 111 -- Odd parity

Same conditions as 15, except:

Force a framing error on the receive

RxD

23 Receive parity error,

Odd Parity
7.1.2 2 Same conditions as 15, except:

Set parity ON and

force a parity error on the receive

RxD data

24 Receive buffer overrun error,

Odd Parity
7.1.3 2 Same conditions as 15, except:

Do not flush receive buffer.

25 Transmit buffer overrun error,

Odd Parity
7.1.4 2 Same conditions as 10, except:

Force a more data write into the

transmit buffer than the buffer can

hold.

60 Component Design by Example

4.2 Testbench Architecture

Several architectural elements must be considered in the definition of the

testbench environment, including the following:

 Reusability / ease of use / portability / verification language

 Number of BFMs to emulate the separate busses

 Synchronization methods between BFMs

 Transactions definition and sequencing methods

 Transactions driving methods

 Verification strategies for design and its subblocks

4.2.1 Reusability / ease of use / portability / verification language

VHDL code will be used for this design because VHDL is an IEEE standard

language, and is portable across platforms. A reusable design style will be

applied as discussed in the following subsections.

4.2.2 Number of BFMs

The UART consists of two independent channels, one channel representing the

CPU interface to send data (onto the TXD line) and read status and received data,

and the other channel representing the RECEIVE data (onto the RXD line). To

maintain the modeling integrity of the system, it is important that those two

channels be modeled with BFMs that can emulate the asynchronism of those

channels. However, a synchronization scheme between those BFMs is essential

to control order of execution, when necessary.

For this design, two BFMs will be modeled as shown in Figure 4.2.2. One BFM

will represent the HOST or CPU environment that initializes the UART, reads

status information, sends transfer data (to be sent by UART over the TXD signal),

and reads collected data (to be collected by the UART over the RXD signal). The

other BFM will represent the RECEIVE BFM to emulate the serial interface sent

over the RXD signal.

Verification Plan 61

Figure 4.2.2 BFMs for UART Model

4.2.3 BFMs Synchronization Methods
The synchronization of transactions is often referred as concurrency control.

There are several synchronization methods known in the computer science field

that can be implemented in VHDL and in many verification languages. These

concurrency control techniques include the following:

1. Fork and Join. The fork statement and join statement is similar to

Verilog Fork Join [Verilog LRM 9.8.2], and allows the execution of two

or more parallel threads in a parallel block. VHDL does not directly have

this syntax. However, it can be emulated with events.

2. Events. Events are signals used to synchronize concurrent processes. For

example, one signal (e.g., Sync) can be used to block a process, and

another signal (e.g., Trigger) can be used to release, or unblock the

blocked process. Another example is a handshake where the requesting

process that wishes to execute a transaction makes a request to an arbiter

logic. Because VHDL allows user defined resolution functions, the events

synchronization method can be implemented with a single resolved signal

of resolved integer type, where the signal gets resolved to the lowest value

being driven. A unit asserting a value on this resolved bus must wait until

that bus has a value equal to the asserted value. In VHDL, the algorithm

is as follows:

UART
Virtual

Component TXD

RXDCPU Bus

HOST

BFM

RCV

BFM

Synchronization
(when needed)

62 Component Design by Example

 SYNCS <= IntegerValue; -- new value asserted onto resolved integer
 Wait until Clk = '1'; -- SYNCS is updated

 while SYNCS /= IntegerValue loop

 -- Wait until level adjusts to required sync level
 Wait until Clk = '1';

 end loop;

Figure 4.2.3 demonstrates this concept via an example. Driver A initially holds

the resolved integer signal to a –100 value, preventing process B from continuing

since it awaits a ZERO. When Driver-A finally assigns a ZERO onto the SYNCS

bus, the resolved integer signal resolves to ZERO, thus enabling process B to

continue. Now Driver B executes for a period, and then assigns a ONE onto the

resolved integer signal. In the meantime, process A continues, and assigns a ONE

after a period. If the signal gets resolved to ONE, then process B is granting

process A permission to continue. Process A assigns a TWO after some period of

work. The signal is resolved to ONE, and process A must now wait until process

B enables process A to continue by assigning a TWO.

 Figure 4.2.3 Application of Resolved Integer Signal where Low Value

Wins

1. Semaphore. A semaphore is a primitive operation used for mutual

exclusion and synchronization. A flag variable is used to govern access to

shared system resources. A semaphore indicates to other potential users

that a file or other resource is in use and prevents access by more than one

 -100 0 1

 2

DRIVER A

DRIVER B

RESOLVED-BUS

 0 1

 -100 0 1

 2

 2

A Activity

B Activity

 3

Time

Waiting for Resolved-bus

 to go to 0

Waiting

for R-bus

 to go to 1

Waiting

for R-bus

 to go to 2

Waiting

for R-bus

 to go to 3

Verification Plan 63

user. Semaphores can be created in VHDL, and are typically supported in

verification languages.

4. Mailbox. A mailbox is a mechanism to exchange messages between

processes. Data can be sent to a mailbox by one process and retrieved by

another. This can be implemented in VHDL with shared variables and link

lists.

5. Timeout. This represents the maximum amount of time a process will

wait for a request or synchronization. VHDL supports the timeout

concept with the statement:

 wait until condition for timeout_time;

The UART design will use the event synchronization technique

using the resolved integer method. This technique will be used

because it is relatively simple and is automatically adaptable to the

synchronization of additional concurrent BFMs.

4.2.4 Transactions definition and Sequencing methods

There are several methods to define the transactions asserted by the BFMs.

Potential methods considered for the UART testbench include the following:

1. Command files with Instruction Set (ISA). This technique defines a

high level ISA for the commands that are stored in a file. This is typically

a limited set of instructions with parameters. For example, a WRITE

instruction at a specific address, with some data. This method requires a

parser to parse the instructions into its components.

2. Command procedures. This technique uses procedures to define the

waveforms asserted onto the formal parameters of the procedure. The

procedure calls (e.g., WRITE, READ) can be initiated from either VHDL

code, or from the parsed instruction read from a file.

3. VHDL code. This technique uses the diverse features of VHDL to assert

the desired waveforms. Subprograms may be used to enhance reusability.

All transactions sequencing is defined in VHDL.

The UART testbench will use the command files with an instruction set because

this technique is easier to maintain since the user does not need to know or

modify VHDL code to update the transaction sequences. Section 4.2.7 expands

the application of command files for the UART.

4.2.5 Transactions driving methods

Another tradeoff to make in the architecture of BFMs is the driving methods of

transactions. The low level transactions can emanate from procedures,

components, or inline VHDL code. In the UART BFMs, each BFM (host and

receive) will consist of two components, the client component and the server

Resolved
integer is
adaptable to
mutiple
processes

64 Component Design by Example

component1. The client, or executive, makes high-level transaction requests (e.g.,

Read, Write) to the server. The server detects the arrival of new messages and

honors the requests by providing the actual bus interfaces (the handshakes and

protocol) to the UUT. The server also collects any interface data (using the

protocol) and transfers that information to the client through a signal. The clients

and servers are modeled as components. This object-oriented approach for the

design of scenario generators enhances the concepts of model reusability and

maintainability. The advantages of this approach are:

 Separation between the tasking of jobs (e.g., WRITE) by the client, and

the execution of the jobs (i.e., protocol, or twiddling of the many interface

signals by server).

 Reuse of client when interface changes because of changes or testing of

subblocks. The client is unchanged when the protocol changes.

 Reuse of server when different transactions or tasks are needed. The

server is unchanged when the sequence of tasks (in client) is changed.

4.2.6 Verification strategies for design and its subblocks

The UART design will be verified with an automatic verifier component that

performs the automatic detection of protocol violations and transaction logging.

Section 4.3 discusses the verifier model.

4.2.7 Detailed Testbench Architecture

The testbench architecture for the UART consists of the following functional

elements, as shown in Figure 4.2.7-1.

1. UART, representing the UUT.

2. HOST BFM, emulating the host interface to the UART

3. RECEIVE BFM, emulating the UART RXD receive serial port

4. VERIFIER, providing the verification and reporting of the UART

behavior.

The two clients are synchronized with a resolved integer SYNCS signal, as discussed in

section 4.2.3. An alternate approach to the dual-command file method is to use a single-

command file that control the host server and the receive server, as shown in Figure

4.2.7-2. The single-command file is easier conceptually since there is no synchronization

between multiple BFMs. However, more fields are required to identify which server is

the recipient of the command. In addition, this technique is less flexible in generating

asynchronous transactions in each BFM because of the sequential dependency in the

control of the transactions (e.g., from one source). The single-command approach is not

selected for this testbench because it is less flexible in the control of concurrent

transactions.

1 VHDL Coding Styles and Methodologies, 2
nd

 Edition, Ben Cohen, KAP, 1999.

Verification Plan 65

Figure 4.2.7-1 Testbench Architecture Overview

using BFMs and Automatic Verification

Figure 4.2.7-2 Testbench Architecture Potential

using Single-Command File (Not used)

TheTask

EOT

RdData

SYNCS

CPU Client

TheTask

EOT

RdData

Host Server

UART
Virtual

Component TXD

RXD

SYNCS

TheTask

EOT

RCV Client

TheTask

EOT

RCV Server

RCV

 Command

File

PARSER

Package

CPU

 Command

File

Verifier

Error

report

CPU Bus

HOST

BFM

RCV

BFM

TheTask

EOT

RdData

CPU Client

TheTask

EOT

RdData

Host Server

UART
Virtual

Component TXD

RXD

TheTask

EOT

RCV Server

PARSER

Package

CPU

& RCV

 Command

File

Verifier

Error

report

CPU Bus

HOST

BFM

RCV

BFM

66 Component Design by Example

4.2.8 Subblock Verification

For this project, a verifier will be used for verification of the UART. However,

the subblocks will be verified visually, with test vectors generated from BFMs

intended for the UART testbench. For this project, visual, instead of automatic,

verification of the subblocks will be performed for economic and scheduling

reasons. BFM reuse will be emphasized for the project. Specifically, the client

model will be reused for all the subblock models except for the clock control,

which only requires simple clocks. However, since every subblock has different

interfaces, separate subblock servers will be built. Figure 4.2.8 represents a view

of this concept. Each server will interpret the command tasks differently,

depending on the type of server it represents. For example, a WRITE task to a

CPU interface implies a WRITE protocol using the CPU bus protocol, whereas a

WRITE to a FIFO implies a PUSH of data into the FIFO.

Figure 4.2.8 Subblock Verification Overview

using BFMs and Visual Verification

TheTask

EOT

RdData

Hold

CPU Client

TheTask

EOT

RdData

Host Server

CPU I/F

Subblock

Hold

TheTask

EOT

RCV Client

TheTask

EOT

RCV Server

RCV

 Command

File

PARSER

Package

CPU

 Command

File

HOST

BFM

RCV

BFM

RCVSUBLK

Subblock

XMITSUBLK

Subblock

FIFO

Subblock

TRANSMITTER

Subblock

RECEIVER

Subblock

CLKCNTRL

Subblock

TheTask

EOT

RdData

TheTask

EOT

RdData

TheTask

EOT

RdData

TheTask

EOT

Verification Plan 67

4.2.9 Instruction File

When verifying compliance to the specifications, the directed testcases will use

instruction files to define the high-level test sequences. The client model reads

the instruction file, and the parser package parses those instructions. The client

transfers the parsed instructions through the TheTask signal to the server that

decodes the instructions, and provides the waveform protocol to the design under

test (e.g., UART or subblocks). An end-of-transfer (EOT) is emitted by the

server to the client to identify the end-of-execution of the requested instruction.

The benefits of this approach include:

 Readability. Instructions are English-like in mnemonics, and allow

comments for documentation. They represent high-level tasks, unlike low-

level assembly-language instructions. During simulation, the task can be

displayed on the wave-view of the simulator to identify which high-level

instruction is executed. The EOT pulses easily identify the end of

transactions.

 Maintainability/flexibility. A user can easily modify the instruction

sequence with a text editor, with no need to know or modify the VHDL

code.

 Compilation/elaboration speed. A change to the contents of the file

requires no recompilation or re-elaboration of the testbench code.

For corner and random testing, the testcases will first use instruction files for the

initial setup of the UUT environment. This will then be followed by VHDL code

for the generation of pseudo-random transactions at pseudo-random time

intervals. VHDL code is used because it is a powerful language with appropriate

constructs for looping and iterations. VHDL code and instructions defined in files

can freely be intermixed. The file instructions will be called from a procedure

call.

Table 4.2.2 defines the mnemonics used in the instruction files, and provides

application examples for those instructions.

Table 4.2.2 Transaction Instructions used in Files

INSTRU-

CTION

FUNCTION EXAMPLE

1 WRITE

WRIT *

Write a single word @

address (binary) with

data (hex)

WRITE 10 1F

-- Reset, xmt Intrpt enb(4..0)

2 RNDM_DATA
RNDM *

Write a single word @

address (binary) with

random data, sized to

width of UART

RNDM 11

68 Component Design by Example

Table 4.2.2 Transaction Instructions used in Files (Continued)

INSTR FUNCTION EXAMPLE

3 READ READ a single word

@address (binary),

READ 01

-- Read RcvFifoSts 5 bits

4 IDLE Stay in IDLE for n

system clocks

idle 10000 – wait for 1K cycles

5 RESET

RESE *

hardware reset for "n"

cycles

RESET 6

6 DISP Displays a message.

DISP End of XYZ test sequence

-- Client asserts the message.

7 MODE Sets the BFM to one of

the following modes:

NORMAL,

FRAME_ERR,

PARITY_ERR

MODE NORMAL

8 RDUNTIL

RDUT *

Read @ADDR (in bit)

MASK (in Hex) Interval

(in natural) until the

received masked data

has a ONE.

RDUNTIL 11 02 50

– addr="11", mask = X"02",

-- Interval = 50 cycle
-- Read data from address,

-- Temp := MASK AND fetched_data

-- If any bit in Temp = '1' then continue

-- else wait for Interval clock cycles

 -- Repeat

9 ENVSETU

P

ENVS *

 Sets the environment for

the uart

. Four-bit data in binary.

ENVSETUP 0000 – binary

(3) = RIn – Ring

(2) = CTSn -- Clear To Send

(1) = DSRn -- Data Set Ready

(0) = DCDn -- Data Carrier Detect

10

CALL Jump to subroutine CALL c:/uart/tests3to5,txt

11 SYNC Assigns a sync integer to

a resolved integer signal

SYNC 3

12 WT4INTR

PT

WT4I *

Wait for interrupt for n

cycles

Instruction continues

after "n" cycles if no

interrupt occurs

WT4INTRPT 10 100 – xmt intrpt, up

to 100 clk

13 STOP STOP Simulation STOP

-- Client asserts the message.
-- Server stops simulation if STOPSIM
-- generic is set to TRUE, else

instruction

-- is ignored

* Optional Instruction mnemonic. Parser considers only the first four characters

Verification Plan 69

4.3 Verifier

The verifier model will provide several services to facilitate the automatic

verification and debug of the UUT. The functions performed by the verifier willl

include:

 Verify compliance to requirements

 Reporting of errors linked to requirements

 Reporting of environment and transactions

The verifier will perform its automatic checking by first scoreboarding (i.e.,

keeping track of) all commanded transactions and setups instructed by the client

through the tasks. It will then monitor the interfaces of the UART, and will verify

that the expected UART transactions do occur within the allotted or required

latencies. For example, a WRITE task from the client should cause the data

written into the UART to be issued onto the TxD serial port within 2 baud cycles,

provided all the transmit conditions are satisfied. The verifier will then check that

this output event does occur, and that the RS232 protocol (i.e., serialization,

parity, format) is abided.

4.3.1 Error Detection by Verifier

When an error is detected, the verifier will report each error in the format shown

in Table 4.3.1-1.

Table 4.3.1-1 Error Reporting Format and Example

TIME
ns

ERROR REQUIREMENT OBSERVED
DATA

EXPECTED DATA

13700 UART Fails to detect

parity error

8.2.3 01100001 00110001

Table 4.3.1-2 provides the list of errors to be reported by the verifier.

4.3.2 Transaction Log
The verifier will log the transactions and errors in one log file. The information to

be logged will include:

1. Simulation time

2. Transaction, including

 CPU: Read, Write

 Serial data word sent out: Txd

 Serial data word read in: Rxd

 Modem control: RTSn, CTSn, DSRn, DCDn, DTRn, RIn

3. Errors See Table 4.3.1-2

70 Component Design by Example

Table 4.3.1-2 List of Errors Reported by Verifier

UART Fails to detect parity error

UART detects Parity error when none

Parity error in sent message on TXD

UART Fails to detect framing error on RXD

Framing error detected when none

Framing error in sent message on TXD

Failure to receive a message on RXD

Failure to send a message on TXD

Sending a message illegally on TXD

PIR Receive in error

RCV interrupt error

XMT Interrupt error

ERROR in read of modem data @ addr = 00

DTR output /= CPU commanded data

RCV PIR Empty Error

RCV PIR almost Empty Error

RCV PIR Half-full Error

RCV PIR Almost-full Error

RCV PIR full Error

XMT Data error

PIR transmit error or write to full buff

XMT PIR Empty Error

XMT PIR almost Empty Error

XMT PIR Half-full Error

XMT PIR Almost-full Error

XMT PIR full Error

Received data unequal to expected data

4.3.3 Coverage

A minimum of statement coverage will be executed, and 99% of statement

coverage will be verified.

4.3.4 Compliance Matrix

Table 4.3.4 is a summary of the compliance matrix for each requirement, and tests

that verify the requirement.

Table 4.3.4 Compliance Matrix

REQ # REQUIREMENT VERIFIER TESTCASE #

1.0 Scope NA

2.0 Definition NA

3.0 Applicable documents NA

4.0 Architectural Overview NA

5.0 Physical Layer -

5.1 Interface Port Description -

5.1.1 RS-232 Serial Interface -

Table 4.3.4 Compliance Matrix (Continued)

REQ # REQUIREMENT VERIFIER TESTCASE #

Verification Plan 71

5.1.1.1 TxD, Transmit Data 5, 6,7,8,9,10

5.1.1.2 RxD, Receive Data 11,12,13,14,15

5.1.1.3 RTSn, Request To Send 5, 6,7,8,9,10

5.1.1.4 CTSn, Clear To Send 5, 6,7,8,9,10

5.1.1.5 DSRn, Data Set Ready 3

5.1.1.6 DCDn, Data Carrier Detect 3

5.1.1.7 DTRn, Data Terminal Ready 3

5.1.1.8 RIn, Ring Indicator 3

5.1.2 CPU Interface 5, 6,7,8,9,10, 11,12,13,14,15

5.1.2.1 Addr 5, 6,7,8,9,10, 11,12,13,14,15

5.1.2.2 CS0 5, 6,7,8,9,10, 11,12,13,14,15

5.1.2.3 CS1 5, 6,7,8,9,10, 11,12,13,14,15

5.1.2.4 CS2n 5, 6,7,8,9,10, 11,12,13,14,15

5.1.2.5 Din 5, 6,7,8,9,10, 11,12,13,14,15

5.1.2.6 RDn 5, 6,7,8,9,10, 11,12,13,14,15

5.1.2.7 Resetn 2

5.1.2.8 WRn 5, 6,7,8,9,10,

5.1.2.9 DO 5, 6,7,8,9,10, 11,12,13,14,15

5.1.2.10 OutEnb 5, 6,7,8,9,10, 11,12,13,14,15

5.1.2.11 Intrpt 6,7,8,9.10.11,12,13,14,15

5.1.3 Clock Interface ALL

5.1.3.1 Clk ALL

5.1.3.2 TC_synch Not tested

5.1.3.3 RC_synch Not tested

5.1.3.4 Clk16x ALL

6.0 Protocol Layer 5, 6,7,8,9,10, 11,12,13,14,15

7.0 Robustness -

7.1 Error Detection. -

7.1.1 Receive framing error 18, 22

7.1.2 Receive parity error 19,23

7.1.3 Receive buffer overrun error 20,24

7.1.4 Transmit buffer overrun error 21,25

7.2 Error Handling NA

8.0 Hardware and Software -

8.1 Fixed Parameterization -

8.2 Software Interfaces -

8.2.1 Address "00", CPU READ,

Modem Status

3

Table 4.3.4 Compliance Matrix (Continued)

REQ # REQUIREMENT VERIFIER TESTCASE #

8.2.2 Address "00", CPU WRITE,

Modem Control

3, 16, 17

8.2.3 Address "01", CPU READ, Receive

Buffer Status

2, 11, 12, 13, 14, 15

72 Component Design by Example

8.2.4 Address "01", CPU WRITE,

Receive Buffer Control

11,12,13,14,15

8.2.5 Address "10", CPU READ,

Transmit Buffer Status

2,5, 6,7,8,9,10

8.2.6 Address "10", CPU WRITE,

Transmit Buffer Control

5, 6,7,8,9,10, 11, 12, 13

8.2.7 Address "11", CPU READ, Read Receive Data 11,12,13,15

8.2.8 Address "11", CPU WRITE, Write

Transmit data

5,6,7,8,9,10,14

8.3 Modes of Operation ALL

9.0 Performance -

9.1 Frequency Synthesis and layout tools

9.2 Power Dissipation Not performed

9.3 Electrical Not performed

9.4 Environmental Not performed

9.5 Technology NA

10.0 Testability Not performed

11.0 mechanical NA

5.0 Design Tools

Table 5.0 summarizes the list of tools used for verification.
Table 5.0 Tools Used for Verification

TOOL VENDOR FUNCTION

ModelSim EE 5.4b with

Code Coverage

Model Technology,

Mentor Graphics

VHDL/Verilog co-simulator

with code coverage

Emacs 20.6.1 with

Vhdl-mode 3.31.6 beta

GNU Language sensitive editor

This list summarizes the tools used in the design of the UART for this book. Users need

to identify the tools they intend to use in their project. Degugging tools such as Novas'

Debussy2(r) Total Debug (tm) system might be very helpful during the debugging stage.

2 http://www.novas.com/

http://www.novas.com/

5 DESIGN AND SYNTHESIS

This chapter describes the UART RTL model, the VHDL code edited with emacs

and vhdl-mode, and the synthesis and FPGA layout process using Synplicity's

Synplify 5.3.1 along with Altera's MAX+PLUS® II ver. 9.4. The design was also

compiled with ModelSim EE 5.4b with Code Coverage. Mentor Graphics' Renoir

v99.6 was also used for the documentation of the design.

5.1 RTL DESIGN

Per the architectural plan, the UART consists of the following major subblocks as

shown in Figure 5.1 (page 76). The UART makes use of two buffers, or FIFOs,

to store the data sent and the data received. Since this provides an opportunity for

reuse, a FIFO subblock is defined, and reused in the transmitter subblock and the

receiver subblock. The design Hierarchy is shown is Table 5.1. The function of

each level of the design is further described in the following subsections.

74 Component Design by Example

Table 5.1 UART Design Hierarchy

Uart Hierarchy (from Renoir's Design

Browser)

FILES

Uart.vhd

 cpuif.vhd

 clkcntrl.vhd

 rcvsublk.vhd

o fifo.vhd

o receiver.vhd

 xmitsublk.vhd

o fifo.vhd

o transmitter.vhd

5.1.1 CPU Interface (CpuIf) Subblock Design

Figure 5.1.1-1 represents a closer view of the CpuIF subblock component. This

subblock provides several services:

1. Setups the Data Terminal Ready (DTRn) signal to the modem, as

commanded by the CPU.

2. Stores and transfers to other partitions the configuration definitions for the

type of data transfer for the serial transmission, and for the control of the

UART. This includes:

a. Parity enable (EnbParity_r)

b. Parity bit (ParityBit_r)

c. Transmit interrupt masks for enables or masks of interrupts for the

transmit hardware (e.g., off-full, empty).

d. Receive interrupt masks for enables or masks of interrupts for the

receive hardware (e.g., full, not-empty).

e. Reset of the transmit logic from a hard or soft (i.e., CPU initiated)

reset. This signal is called XmtForcedResetn.

f. Reset of the receive logic from a hard or soft (i.e., CPU initiated)

reset. This signal is called RcvForcedResetn.

3. Loads CPU data (TxData_r) to be serialized into the transmit subblock

(xmtsulk) FIFO. This control signal is called LdXmtFifo_r and represents

a push into the transmit FIFO.

4. Transfers received data from the receive subblock (rcvsublk) FIFO to the

CPU data bus. This control signal is called RdRxData, and represents a

pop of the receive FIFO.

5. Provides interrupts to the CPU.

Design and Synthesis 75

6. Provides tri-state control of CPU data. This separate control is used

because the component may be applied into another level of hierarchy that

may have its own output buffer or drivers.

Figure 5.1.1-1 CpuIF Subblock (from Synplicity's Synplify)

The CpuIF subblock consists of five blocks with seven processes and one set of

concurrent signal assignments, as summarized in Figure 5.1.1-2 and Table 5.1.1

on pages 77 and 78. Figures 5.1.1-1 (page 77) represents the registers sourced

from the CPU data bus. A graphical view of the process blocks within the CpuIf

are demonstrated in Figure 5.11-3x (pages 79 through 81).

76 Component Design by Example

 Figure 5.1 UART Subblocks (from Synplicity's Synplify)

Design and Synthesis 77

Table 5.1.1 CpuIF Processes

CpuIF Processes
 (from Renoir's Design Browser)

Function

Receive Pending Interrupt Register

Receive status register for generation of PIR

Transmit Pending Interrupt Register

Transmit status register for generation of PIR

Delayed version of the forced reset

Control data from CPU

UART data to CPU

Chip Enable decode

Figure 5.1.1-1 High Level Functional View of the CPU Bus Interface for

Reception of Data

Figure 5.1.1-4 (page 82) represents a high level view of the logic generating the

transmit and receive interrupts. Data from the receive FIFO status (e.g., empty,

almost empty, full) is stored into a register, and edge detected for storage into the

pending interrupt register. The PIR and the interrupt masked are then processed

to generate the receive interrupt. The Transmit subblock provides the data to set

the transmit PIR.

CPU Interface

MdmCntrl_r

Addr, CTSn, ChipEnb, DCDn,

DSRn, RDn, RIn,

 RcvFifoData, RcvFifoSts_r,

XmtFifoSts_r

Address

decode and

Multiplexer

DO

OutEnb

 RdRxData

RcvFifoCntrl_r

XmtFifoCntrl_r

LdXmtFifo_r

TxData_r

Din
Modem control and Parity
DTR_r

EnbParity

ParityBit

Dtrn

To

transmit

Logic

To ReceiveLogic

78 Component Design by Example

Design and Synthesis 79

Figure 5.1.1-2 CPU Interface Blocks and Processes

(generated with YxI XE tools)

Design Hierarchy

and Blocks

Traversing the

Hierarchy

Traversing the

Hierarchy

Concurrent Signal

assignments

80 Component Design by Example

Figure 5.1.1-3a Graphical View of CpuIF processes (from Renoir's BD view)

Design and Synthesis 81

Figure 5.1.1-3b Graphical View of CpuIF processes (from Renoir's BD view)

82 Component Design by Example

Figure 5.1.1-3c Graphical View of CpuIF processes (from Renoir's BD view)
 TRANSMIT INTERRUPT RECEIVE INTERRUPT

Design and Synthesis 83

Figure 5.1.1-4 High Level View of Logic Generating the Interrupts

The CpuIF VHDL code (on CD in file vhdl/cpuif.vhd) is provided below on pages

83 through 89.

RcvFifoErr

RcvFifoSts_r

RcvFifoErr_r

RcvPIR_r
Pending Interrupt

Falling Edge

One-Shot

8

RcvFifoCntrl_r

Mask and

Reduce

88

Latch & Reset

Read Xmt

Status

Receive

Interrupt

8

8

RcvPIR0_r

RcvFramErr & RcvParityErr &

 RcvFiFOErr_r & RcvFifoSts;

SetxmtPIR_r

XmtFifoErr_r

XmtFifoErr_2r

XmtPIR_r
Pending Interrupt

6

XmtFifoCntrl_r
(5 .. 0)

Mask and

Reduce

66

Latch & Reset

Transmit

Interrupt

51

84 Component Design by Example

Insert 7 pages of cpuif.pdf

P1 cpuif.pdf

Design and Synthesis 85

P2 cpuif.pdf

86 Component Design by Example

P3 cpuif.pdf

Design and Synthesis 87

P4 cpuif.pdf

88 Component Design by Example

P5 P1 cpuif.pdf

Design and Synthesis 89

P6

P1 cpuif.pdf

90 Component Design by Example

P7 P1 cpuif.pdf

Design and Synthesis 91

5.1.2 Clock Control

The clock control logic serves several purposes:

1. For asynchronous transmission, it synchronizes the sixteen times clock

(Clk16X) to the system clock (Clk).

2. For asynchronous transmission, it generates the Transmit-Clock-Enable

(TxEnb) that represents a single pulse every sixteen synchronized sixteen

times clock.

3. For asynchronous transmission, it generates the Receive-Clock-Enable

(RxEnb) that represents a single pulse every sixteen synchronized sixteen

times clock, synchronized to the START cycle (from RxD) when the

receiver is in the IDLE state.

4. For synchronous transmission, it transfers the Transmit-Clock (TC_Synch)

and Receive-Clock (RC_Synch) to the TxEnb and RxEnb ports.

5. It reclocks the RxD signal to the system clock to reduce meta-stability

effects.

Figure 5.1.2-1 represents the interfaces of the Clock Control subblock. Figure

5.1.2-2 demonstrates the reclocking registers of the sixteen times clock and the

RxD signal. Figure 5.1.2-3 demonstrates the timing of the clock control logic in

asynchronous mode. The VHDL code for the clock control is file clkcntrl.vhd,

and is enclosed in page 92.

Figure 5.1.2-1 Clock Control Subblock (from Synplicity's Synplify)

92 Component Design by Example

Figure 5.1.2-2 Reclocking Registers of the Sixteen Times Clock and the RxD

signal (from Synplicity's Synplify)

Figure 5.1.2-3 Clock Control Timing (generated with ModelSim 5.4b)

 Note the Reclocking of the Clk16x and RxD, and the generation of the TxEnb

and RxEnb in Asynchronous Mode.

Design and Synthesis 93

Clkcntrl 1/2

Code

94 Component Design by Example

ClkCntrl code

Page 2/2

Design and Synthesis 95

5.1.3 Receiver Subblock (rcvsublk)

The receiver subblock (rcvsublk) is responsible for the following tasks:

1. De-serializes of serial data (RxD) to a word

2. Stores the received word into an internal FIFO

3. Performs error checks

i. Parity error

ii. Overflow error

iii. Framing error

4. Transfers received data to the CPU interface

5. Maintains FIFO pointers for WRITES and READS

The receiver subblock consists of two

other hierarchical subblocks as shown

in Figure 5.1.3-2.

1. Receiver component

2. FIFO component

Figure 5.1.3-1 represents a view of

the receiver finite state machine

(FSM).

The VHDL code for the rcvsublk,

receiver, and FIFO are in files

rtl/rcvsublk.vhd, rtl/receiver.vhd, and

fifo.vhd. The code for these designs is

shown on pages 97, 100, 103.

Figure 5.1.3-1 Receiver FSM

(automatically generated from RTL by

Novas' Debussy debugging tools)

96 Component Design by Example

The receiver component is responsible for the

following tasks:

1. It de-serializes serial data (RxD) to a word

for transmission to the FIFO

2. It transfers serial data state to the control

logic (InIdle state).

3. It performs error checks for storage into the

FIFO

i. Parity error

ii. Overflow error

iii. Framing error

4. It provides the PUSH and POP Controls for

FIFO control.

Figure 5.1.3-3 is view of the processes within the

Receiver component that consists of three major

processes:

1. Rcv_Proc for de-serialization process

2. Counter_Proc for the count of received

bauds, based on parity and number of bits

per word.

3. Frame_Proc for the detection of framing

error, based on parity and number of bits

per word.

Figure 5.1.3-4 is a view of the processes within the

FIFO component. The FIFO component is

responsible for the following tasks:

1. It Stores de-serialized data and error status

information into the FIFO

2. It supplies stored data to CPU

3. It maintains FIFO pointers for WRITES

and READS

The FIFO component is reused in the transmit

logic. However, the logic requires a different

pipeline delay for the FIFO output between the

FIFO used in the receiver logic versus the FIFO

used in the transmit logic. This difference in

behavior is handled within the code with the

"generate" feature of VHDL.

Figure 5.1.3-2 Receiver Subblock

Hierarchy (from Synplicity's

Synplify)

Design and Synthesis 97

Figure 5.1.3-3 Receiver Component processes (from Renoir's BD view)

Figure 5.1.3-4 FIFO Component processes (from Renoir's BD view)

SetXMtPIR

98 Component Design by Example

Rcvsublk

1/3

Design and Synthesis 99

Rcvsublk

2/3

100 Component Design by Example

Rcvsublk

3/3

Design and Synthesis 101

Receiver 1/3

102 Component Design by Example

Receiver 2/3

Design and Synthesis 103

Receiver 3/3

104 Component Design by Example

FIFO 1/3

Design and Synthesis 105

FIFO 2/3

106 Component Design by Example

FIFO 3/3

Design and Synthesis 107

5.1.4 Transmit Subblock (xmitsublk)

The transmit subblock (xmitsublk) is responsible for the following tasks:

1. It stores CPU transmit data into a local FIFO

2. It extracts data from the transmit FIFO

3. It serializes data to be transmitted to TxD port per required format

4. It performs overflow error check (CPU write to a full FIFO)

5. It maintains FIFO pointers for WRITES and READS

The transmit subblock consists of two

other hierarchical subblocks as shown

in Figure 5.1.4-3.

 1. Transmitter component
 2. FIFO component

Figure 5.1.4-1 represents a view of

the transmitter finite state machine

(FSM).
The VHDL code for the xmtsublk and

transmitter are in files rtl/xmtsublk.vhd

and rtl/transmiter.vhd. The code for

these designs is shown on pages 109,

112.

 Figure 5.1.4-1 Transmitter FSM

(automatically generated from RTL by

Novas' Debussy debugging tools)

Figure 5.1.4-2 demostrates the transmit

path initiated from the FIFO to the

transmit output TxD.

Figure 5.1.4-2 Transmit Path initiated from the FIFO to the transmit output

TxD (automatically generated from RTL by Novas' Debussy debugging tools)

108 Component Design by Example

The Transmitter component is

responsible for the following tasks:

1.It serializes FIFO data into the

TxD port per required format.

2. It performs Overflow error

3.It provides to a FIFO the PUSH

and POP controls. Data from the

CPU is pushed into the FIFO.

Data to be transmitted is

POPPED from the FIFO.

Figure 5.1.4-3 is view of the

processes within the Transmitter

component that consists of three

major processes:

1. Xmit_Proc for serialization

process

2. Counter_Proc for the count

of Transmit bauds, based on

parity and number of bits per

word.

3. FSM_Proc for the definition

of the transmit state machine.

4. Statereg_Proc for the storage

of the FSM
5. XmitFifoEmpty for the detection

of the FIFO empty logic

The FIFO component is the same as

described in the receive section.

However, the logic required a

different pipeline delay for the FIFO

output between the FIFO used in the

receiver logic versus the FIFO used

in the transmit logic. This difference

in behavior is handled within the

code with the "generate" feature of

VHDL.

Figure 5.1.4-3 Transmit Subblock Hierarchy

(from Synplicity's Synplify)

Design and Synthesis 109

Figure 5.1.4-3 Transmit Component processes (from Renoir's BD view)

5.1.5 UART Model

Figure 5.1 UART demonstrates the UART hierarchy and its subblocks. The

UART VHDL Code is in file rtl/uart.vhd, and is included on page 115.

110 Component Design by Example

Xmitsublk 1/3

Design and Synthesis 111

Xmitsublk 2/3

112 Component Design by Example

Xmitsublk 3/3/

Design and Synthesis 113

Transmitter 1/3

114 Component Design by Example

Transmitter 2/3

Design and Synthesis 115

Transmitter 3/3

116 Component Design by Example

 Uart.vhd1/5

Design and Synthesis 117

Uart top 2/5

118 Component Design by Example

Uart top 3/5

Design and Synthesis 119

Uart top 4/5

120 Component Design by Example

Uart top 5/5

Design and Synthesis 121

5.1.6 Compilation

Table 5.1.6 is a compilation script of the UART model for ModelSim compiler. It

demonstrates the compilation order. Users of Cadence Affirma NC VHDL

compiler/simulator can use the following command:

 ncvhdl -v93 -log ncvhdl.log -messages path/vhdl_file_name.vhd

Note that the file Size_Pkg.vhd is only used for testbench, but includes global

signals that are directed off through pragmas. The package is needed for normal

compilation because some RTL models assign to those global signals through

OFF directives. The code within the OFF directives is ignored by synthesis, but

not by VHDL compilation.

Table 5.1.6 Compilation Order for UART

vcom -explicit -work work_lib -93 vhdl/tb/Size_Pkg.vhd

vcom -explicit -work work_lib -93 vhdl/rtl/fifo.vhd

vcom -explicit -work work_lib -93 vhdl/rtl/transmitter.vhd

vcom -explicit -work work_lib -93 vhdl/rtl/xmitsublk.vhd

vcom -explicit -work work_lib -93 vhdl/rtl/receiver.vhd

vcom -explicit -work work_lib -93 vhdl/rtl/rcvsublk.vhd

vcom -explicit -work work_lib -93 vhdl/rtl/cpuif.vhd

vcom -explicit -work work_lib -93 vhdl/rtl/clkcntrl.vhd

vcom -explicit -work work_lib -93 vhdl/rtl/uart.vhd

5.1.7 Synthesis

Synplify from Synplicity was used for the synthesis and the generation of the

EDIF netlist for the chosen Altera FPGA. The project file, created by Synplify,

defines the compilation order, parameters, and device selection. It is shown in

Figure 5.1.7-1

#-- Synplicity, Inc.

#-- Synplify version 5.3.1

#-- Project file C:\path\VHDL\RTL\uart.prj

#-- Written on Wed Aug 09 13:46:45 2000

#device options

set_option -technology FLEX10K

set_option -part EPF10K10

set_option -package LC84

set_option -speed_grade –3

#add_file options

add_file -vhdl -lib work "c:/path/vhdl/tb/size_pkg.vhd"

add_file -vhdl -lib work "clkcntrl.vhd"

add_file -vhdl -lib work "fifo.vhd"

add_file -vhdl -lib work "transmitter.vhd"

122 Component Design by Example

add_file -vhdl -lib work "xmitsublk.vhd"

add_file -vhdl -lib work "receiver.vhd"

add_file -vhdl -lib work "rcvsublk.vhd"

add_file -vhdl -lib work "cpuif.vhd"

add_file -vhdl -lib work "uart.vhd"

add_file -constraint "uart.sdc"

#compilation/mapping options

set_option -default_enum_encoding onehot

set_option -symbolic_fsm_compiler false

set_option -resource_sharing true

#map options

set_option -frequency 25.000

set_option -map_logic true

set_option -cliquing true

#simulation options

set_option -write_verilog false

set_option -write_vhdl true

#automatic place and route (vendor) options

set_option -write_apr_constraint true

#MTI Cross Probe options

set_option -mti_root ""

#set result format/file last

project -result_file "uart.edf"

Figure 5.1.7-1 Synplify Project File

Design and Synthesis 123

The following information was extracted from the Synplify report log

1. Warnings

 UNUSED inputs
@W:"c:\path\vhdl\rtl\cpuif.vhd":80:4:80:13|Input xmtfifosts is unused

@W:"c:\path\vhdl\rtl\clkcntrl.vhd":39:4:39:11|Input tc_synch is unused

@W:"c:\path\vhdl\rtl\clkcntrl.vhd":40:4:40:11|Input rc_synch is unused

@W:"c:\path\vhdl\rtl\transmitter.vhd":87:9:87:14|

All reachable assignments to xmit_r(10) assign '0', register removed by optimization

@W:"c:\path\vhdl\rtl\fifo.vhd":57:4:57:9|Removing sequential instance

UART_1.xmitsublk_1.FIFO_1.Full_r of view:ALTERA.S_DFF(PRIM) because there

are no references to its outputs

@W:"c:\ path \vhdl\rtl\fifo.vhd":52:4:52:17|Removing sequential instance

UART_1.xmitsublk_1.FIFO_1.almost_Empty_r of view:ALTERA.S_DFF(PRIM)

because there are no references to its outputs

@W:"c:\ path \vhdl\rtl\fifo.vhd":58:4:58:14|Removing sequential instance

UART_1.xmitsublk_1.FIFO_1.half_Full_r of view:ALTERA.S_DFF(PRIM) because

there are no references to its outputs

@W:"c:\ path \vhdl\rtl\fifo.vhd":53:4:53:16|Removing sequential instance

UART_1.xmitsublk_1.FIFO_1.almost_Full_r of view:ALTERA.S_DFF(PRIM)

because there are no references to its outputs

@W:"c:\ path \vhdl\rtl\fifo.vhd":59:4:59:14|Removing sequential instance

UART_1.rcvrsublk_1.FifoRcv_1.SetxmtPIR_r[0] of view:ALTERA.S_DFF(PRIM)

because there are no references to its outputs

@W:"c:\path\vhdl\rtl\fifo.vhd":59:4:59:14|Removing sequential instance

UART_1.rcvrsublk_1.FifoRcv_1.SetxmtPIR_r[1] of view:ALTERA.S_DFF(PRIM)

because there are no references to its outputs

@W:"c:\path\vhdl\rtl\fifo.vhd":59:4:59:14|Removing sequential instance

UART_1.rcvrsublk_1.FifoRcv_1.SetxmtPIR_r[2] of view:ALTERA.S_DFF(PRIM)

because there are no references to its outputs

@W:"c:\path\vhdl\rtl\fifo.vhd":59:4:59:14|Removing sequential instance

UART_1.rcvrsublk_1.FifoRcv_1.SetxmtPIR_r[3] of view:ALTERA.S_DFF(PRIM)

because there are no references to its outputs

The removal of these signals was expected because the design did not attempt to

optimize for unused resources.

2. Performance Summary

 Requested Estimated Requested Estimated

Clock Frequency Frequency Period Period Slack

--

System 25.0 MHz 69.4 MHz 40.0 14.4 25.6

CLK 25.0 MHz 52.9 MHz 40.0 18.9 21.1

===

124 Component Design by Example

3. Interface Information (output information shown here)
Port Reference User Arrival Required

Name Clock Constraint Time Time Slack

DO[0] CLK [rising] 0.0 16.7 40.0 23.3

…

DO[7] CLK [rising] 0.0 16.7 40.0 23.3

DTRn CLK [rising] 0.0 3.9 40.0 36.1

INTRPT[0] CLK [rising] 0.0 8.7 40.0 31.3

INTRPT[1] CLK [rising] 0.0 8.8 40.0 31.2

OutEnb System 0.0 4.9 40.0 35.1

RTSn CLK [rising] 0.0 1.0 40.0 39.0

TXD CLK [rising] 0.0 1.0 40.0 39.0

==

4. Critical Path with worst case slack = 21.1 ns:

The start and the end point of this path are clocked by the CLK [rising]

Instance/Net Pin Pin Arrival Delta Fan
Name Type Name Dir Time Delay Out
--
rcvrsublk_1.FifoRcv_1.count_r[2] S_DFF Q Out 3.0 3.0
rcvrsublk_1.FifoRcv_1.count_r[2] Net 6
rcvrsublk_1.FifoRcv_1.G_159 S_LUT I0 In 3.0
rcvrsublk_1.FifoRcv_1.G_159 S_LUT OUT Out 7.1 4.1
rcvrsublk_1.FifoRcv_1.G_159 Net 4
rcvrsublk_1.FifoRcv_1.un1_un1_un5_count_r_i_or2 S_LUT I0 In 7.1
rcvrsublk_1.FifoRcv_1.un1_un1_un5_count_r_i_or2 S_LUT OUT Out 11.2 4.1
rcvrsublk_1.FifoRcv_1.un1_un1_un5_count_r_i_or2 Net 4
rcvrsublk_1.FifoRcv_1.un1_count_r_1_add1 S_CAR I0 In 11.2
rcvrsublk_1.FifoRcv_1.un1_count_r_1_add1 S_CAR COUT Out 12.4 1.2
rcvrsublk_1.FifoRcv_1.un1_count_r_1_carry_1 Net 1
rcvrsublk_1.FifoRcv_1.un1_count_r_1_add2 S_CAR CIN In 12.4
rcvrsublk_1.FifoRcv_1.un1_count_r_1_add2 S_CAR OUT Out 14.6 2.2
rcvrsublk_1.FifoRcv_1.un1_count_r_1_add2 Net 1
rcvrsublk_1.FifoRcv_1.Pointers_Proc_count_r_8_0_and2[2] S_LUT I1 In 14.6
rcvrsublk_1.FifoRcv_1.Pointers_Proc_count_r_8_0_and2[2] S_LUT OUT Out 16.7
2.1
rcvrsublk_1.FifoRcv_1.Pointers_Proc_count_r_8_0_and2[2] Net 1
rcvrsublk_1.FifoRcv_1.count_r[2] S_DFF D In 16.7
==

Setup requirement on this path is 2.2 ns.

This path was generated from Synplify and is shown in Figure 5.1.7-2

Design and Synthesis 125

Figure 5.1.7-2 Worst Case Path as Identified, and viewed with Synplify

5.1.8 Layout

The EDIF output of Synplify was used with the Altera MaxPlus layout and timing

analysis tool. After layout, the following paths were reported as worst case.

Info: Delay path from '|xmitsublk:xmitsublk_1|fifoz0:FIFO_1|count_r_0_.Q' to

 '|xmitsublk:xmitsublk_1|fifoz0:FIFO_1|count_r_2_.D': 20.6ns (Clock period: 22.8ns)

Info: Delay path from '|xmitsublk:xmitsublk_1|transmitter:Transmitter_1|state_r_0_.Q' to

 '|xmitsublk:xmitsublk_1|fifoz0:FIFO_1|count_r_2_.D': 20.3ns (Clock period: 22.5ns)

Info: Delay path from '|xmitsublk:xmitsublk_1|fifoz0:FIFO_1|count_r_2_.Q' to

 '|xmitsublk:xmitsublk_1|fifoz0:FIFO_1|count_r_2_.D': 19.9ns (Clock period: 22.1ns)

Info: Delay path from '|xmitsublk:xmitsublk_1|transmitter:Transmitter_1|state_r_i_1_.Q'

to

 '|xmitsublk:xmitsublk_1|fifoz0:FIFO_1|count_r_2_.D': 19.8ns (Clock period: 22.0ns)

Info: Delay path from '|xmitsublk:xmitsublk_1|fifoz0:FIFO_1|count_r_1_.Q' to

 '|xmitsublk:xmitsublk_1|fifoz0:FIFO_1|count_r_2_.D': 19.4ns (Clock period: 21.6ns)

Info: Delay path from '|clkcntrl:ClkCntrl_1|RxENb1.Q' to

 '|rcvrsublk:rcvrsublk_1|fifoz1:FifoRcv_1|count_r_2_.D': 19.4ns (Clock period: 21.6ns)

Info: Delay path from '|clkcntrl:ClkCntrl_1|RxENb1.Q' to

 '|rcvrsublk:rcvrsublk_1|fifoz1:FifoRcv_1|count_r_1_.D': 19.4ns (Clock period: 21.6ns)

Info: Delay path from '|rcvrsublk:rcvrsublk_1|receiver:Receiver_1|state_r_0_.Q' to

 '|rcvrsublk:rcvrsublk_1|fifoz1:FifoRcv_1|count_r_2_.D': 19.2ns (Clock period: 21.4ns)

Info: Delay path from '|rcvrsublk:rcvrsublk_1|receiver:Receiver_1|state_r_0_.Q' to

 '|rcvrsublk:rcvrsublk_1|fifoz1:FifoRcv_1|count_r_1_.D': 19.2ns (Clock period: 21.4ns)

Info: Delay path from '|xmitsublk:xmitsublk_1|fifoz0:FIFO_1|count_r_0_.Q' to

 '|xmitsublk:xmitsublk_1|fifoz0:FIFO_1|fifo_r_3_6_.D': 18.6ns (Clock period: 20.8ns)

With Synplify RTL view and the "extract net", "filter schematic, and "expand to

register/port" features of the tool, the path from the counter to the FIFO is

demonstrated in Figure 5.1.7-2. The most critical path was identified by Synplify

and is shown in Figure 5.1.8-1.

126 Component Design by Example

Figure 5.1.8-1 Worst-Case Path as Defined by MaxPlus and Drawn by

Synplify

The MaxPlus timing report and expected operating frequency is shown is Figure

5.1.8-2 and 5.1.8-3.

 Figure 5.1.8-2 MaxPlus Layout Timing report

Design and Synthesis 127

Figure 5.1.8-3 MaxPlus Layout Timing report

128 Component Design by Example

5.1.9 Area Statistics

Table 5.1.9 is a summary of the resources used by the UART, as reported by

Altera's MaxPlus II layout tool. The complete report is available on disk in file

altera/uart.rpt.

Table 5.1.9 MaxPlus II Resource Report

Embedded Column Row

Array Embedded Interconnect Interconnect Read/

External

Block Cells Driven Driven Clocks Write

Interconnect

Total dedicated input pins used: 6/6 (100%)

Total I/O pins used: 31/53 (58%)

Total logic cells used: 419/576 (72%)

Total embedded cells used: 0/24 (0%)

Total EABs used: 0/3 (0%)

Average fan-in: 3.00/4 (75%)

Total fan-in: 1258/2304 (54%)

Total input pins required: 23

Total input I/O cell registers required: 0

Total output pins required: 14

Total output I/O cell registers required: 0

Total buried I/O cell registers required: 0

Total bidirectional pins required: 0

Total reserved pins required 0

Total logic cells required: 419

Total flipflops required: 219

Total packed registers required: 0

Total logic cells in carry chains: 0

Total number of carry chains: 0

Total logic cells in cascade chains: 0

Total number of cascade chains: 0

Total single-pin Clock Enables required: 0

Total single-pin Output Enables required: 0

Synthesized logic cells: 78/ 576 (13%)

Design and Synthesis 129

6 DESIGN VERIFICATION

This section provides the verification models and test results of the UART that was

specified in the requirement document. The verification models follow the

directives defined in the verification plan. A description of the testbench models is

first provided and is then followed by the test verification control files for the

generation of directed test scenarios, and the test results.

132 Component Design by Example

6.1 OVERVIEW

Functional verification of the UART design is performed through simulation of the

RTL code, and regression testing of the gate level model generated by the layout

tool. The UART testbench represents the test environment described in the

verification plan, and is shown graphically in Figure 6.1-1. Table 6.1 displays the

testbench elements.

Figure 6.1-1 Testbench Architecture Overview

The testbench provides stimulus waveforms to the unit under test, and can provide

means for automatic verification of the model for compliance to requirements. In

the generation of the stimulus vectors, the process starts with the client models

responsible for the creation of tasks or jobs to be expanded into waveforms by the

server models. The definition of the sequence of tasks can be expressed in text

files, and /or VHDL code. The verifier makes use of the tasks to be transacted and

the interface signals of the UUT to validate the operations of the UART.

6.2 PARSER PACKAGE

One of the key design units for this testbench design is the parser package that

provides the following functions:

1. It defines data types for the transactions and tasks.

TheTask

EOT

RdData

SYNCS

CPU Client

TheTask

EOT

RdData

Host Server

UART
Virtual

Component TXD

RXD

SYNCS

TheTask

EOT

RCV Client

TheTask

EOT

RCV Server

RCV

 Command

File

PARSER

Package

CPU

 Command

File

Verifier

Error

report

CPU Bus

HOST

BFM

RCV

BFM

Design Verification 133

2. It defines the subprograms necessary to parse instructions defined in text

files.

3. It defines the subprograms to execute the process of reading files and

generating the tasks.

Figure 6.2-1 demonstrates an example of a task command for a CPU READ

instruction, the execution of the task, and the transmission of the end-of-task

(EOT) back to the client to enable the generation of another task. The code for the

parser package is in file tb/parser_tb.vhd and is included on page 133.

 Figure 6.2-1 Task Command and Execution Example (ModelSim EE 5.4b)

Task

End of

Task

Execution

of Task

134 Component Design by Example

Table 6.1 Testbench Elements (ModelSim EE 5.4b)

TESTBENCH ELEMENTS DESCRIPTION

- Top level testbench

- CPU Client for definition of transactions

- CPU Server for implementation of

 transactions

- UART model, representing the

 unit under test

- Receiver Client for receive transactions

- Receive Server for receive interface

- Verifier monitor for automatic

 verification and logging of transactions

 and errors.

- Package supporting instruction parsing

- Package defining width of word for TB

- Package for pseudo-random numbers

- Package for conversion to strings

- Package for conversion functions

- Package for Reduce operator

- Referred package

- Package for fileIO of Std_Logic objects

- Package for textIO

- Package for addition operators

- Package for conversion functions

- Package for definition of Std_Logic

- Default package

Design Verification 135

Parser_pb.vhd 1/9

136 Component Design by Example

Parser_pb.vhd 2/9

Design Verification 137

Parser_pb.vhd 3/9

138 Component Design by Example

Parser_pb.vhd 4/9

Design Verification 139

Parser_pb.vhd 5/9

140 Component Design by Example

Parser_pb.vhd 6/9

Design Verification 141

Parser_pb.vhd 7/9

142 Component Design by Example

Parser_pb.vhd 8/9

Design Verification 143

Parser_pb.vhd 9/9

144 Component Design by Example

6.3 CLIENT MODEL

The client model may fetch and parse the sequence of instructions from files, as

described in the verification plan. The parser package includes all the necessary

supporting types and subprograms to achieve the parsing function of the text file

into the task elements. The user needs only to call the ExecuteControlFile

subprogram as shown below:

ExecuteControlFile (

 FileName_c => ControlFile_g, --string: file path & name or generic

 Task => Task, -- signal: output of client

 ServerData => ServerData, --signal: Data back to client from server

 EOT => EOT, -- signal: end of task from server

 Clk => ClkSys, -- signal: System clock

 Task_v => Task_v, -- Local variable: used for subroutine call

 LfsrData_v => LfsrData_v); – Local variable: Pseudo-random data

The UART client model is also capable of generating the tasks directly from

VHDL, without the parsing of files. This is used in the UART verification to

generate a set of pseudo-random tasks, and to then wait for interrupts prior to

generating other tasks based on the source of the interrupts. This emulates the

operations of a CPU. Sample code demonstrating this concept is shown below.

 -- Send random data, check for interrupts

 if SendDATA then – Write "n" data words to UART

 for I in 0 to conv_integer(LfsrData_v(1 downto 0)) loop

 Task_v.Instr := WRITE1;

 Task_v.Addr := "11";

 Task_v.Data := LfsrData_v;

 LfsrData_v := LFSR(LfsrData_v);

 wait until ClkSys = '1';

 Task <= Task_v;

 wait until EOT;

 wait for conv_integer(LfsrDelay_v(1 downto 0)) * ClkPeriod_c;

 end loop; -- I

 end if;

 SendDATA <= False; -- wait till MT interrupt

 wait on INTRPT; -- wait for an interrupt

 wait until ClkSys = '1';

 if INTRPT(0) = '1' then -- Check which interrupt is active

 -- Receive interrupt, Read data

 Task_v.Instr := READ1; -- read receive PIR

 Task_v.Addr := "01"; -- receive status

 Task <= Task_v;

 wait until EOT;

Instructions from the client model are processed by the server model. Figure 6.3-1

is a block diagram view of the CPU client/server interface, and Figure 6.3-2 is a

block diagram view of the receive side of the client /server interface (i.e., the side

that generates the Rxd signal).

Specifiying pseudo-random
number of WRITE tasks with
pseudo-random data at pseudo-
random times (delays)

Wait for interrupts.

Determine which

interrupt to handle

Design Verification 145

Figure 6.3-1 CPU Client/Server Interface in Testbench (from Renoir's BD

view)

EOT

146 Component Design by Example

Figure 6.3-2 Receive Client/Server Interface in Testbench

(from Renoir's BD view)

The unused task is a signal that was originally intended for receipt of collected

data to the receive client. However, it was not used, and remained as spare.

The UART client model is in file tb/uart_clientrndm.vhd and is shown on page

145. The receiver client model is in file tb/rcv_client.vhd and is shown on page

150.

Design Verification 147

Uart_clientrndm 1/5

148 Component Design by Example

Uart_client 2/5

Design Verification 149

Uart_client 3/5

150 Component Design by Example

Uart_client 4/5

Design Verification 151

Uart_client 5/5

152 Component Design by Example

Rcv_client ½

Design Verification 153

Rcv client 2/2

154 Component Design by Example

6.4 SERVER

The server provides the following functions:

1. It detects a transaction (or new assignment) from the client, thus alerting it

of a new job request.

2. It decodes the kind of transaction requested (e.g., READ, WRITE, IDLE).

3. It executes the requested transaction per interface protocol.

4. It collects any data received over the bus interface, and transfers this data

back to the client.

5. It sends an End-Of-Transaction (EOT) signal back to the client to inform it

of completion of the task.

In this design, the CPU client was used with different servers to verify the

functionality of the subblocks. Table 6.4 summarizes the list of server components

using the same client. The FIFO server and testbench is included to demonstrate

how the same client can be used to verify different subblocks.

Table 6.4 List of Server Components using the same Client

Component Name File Name Function

Uart_server /tb/Uart_server.vhd

page 153

Server for the UART

component

Rcv_server /tb/rcv_server.vhd

page 157

Server for the Receiver

subblock

Fifo_server /tb/Fifo_server.vhd

page 160

Server to verify the FIFO

Fifo_Tb /tb/Fifo_tb.vhd

page 162

Testbench for FIFO

To emulate pseudo-random data and delays, the linear feedback shift register

(LFSR) package1 is used. To enable the conversion of various data types to

strings, the Image package2 is used. The code for these packages is included on

the CD in the testbench (TB) subdirectory for the user's convenience.

1 Public domain, available at http://www.vhdlcohen.com

2 Public domain, available at http://www.vhdlcohen.com

Design Verification 155

uart_server.vhd ¼

156 Component Design by Example

Uart_server.vhd 2 of 4

Design Verification 157

Uart_server.vhd 3 of 4

158 Component Design by Example

Uart_server.vhd 4/4/

Design Verification 159

rcv_server.vhd 1/3

160 Component Design by Example

rcv_server.vhd 2/3

Design Verification 161

rcv_server.vhd 3/3

162 Component Design by Example

fifo_server 1/2

Design Verification 163

fifo_server 2/2

164 Component Design by Example

fifo_tb 1/3

Design Verification 165

fifo_tb 2/3

166 Component Design by Example

fifo_tb 3/3

Design Verification 167

6.5 VERIFIER

6.5.1 ISSUES

The verifier serves several functions:

1. It detects and reports operating and requirements errors.

2. It logs UUT's transactions into a report file(s) to allow for off-line

debugging or analysis.

There are several issues to consider in the design of a verifier, including:

1. What is the definition of "expected results"?

2. To what level of timing accuracy is this "expected" data correct? This

accuracy can be data accuracy, and/or cycle timing accuracy (i.e., accurate

to the bit timing level).

3. When is the design considered verified?

For this design, "expected results" for the transmitted and received data means a bit

match to the commanded data, as defined by the tasks within the client model.

Thus, if the client instructs the UART to send the string "10110001", then that

string formatted in the appropriate serial format must appear on the TxD port,

provided all the conditions for transmission are enabled. Correspondingly, if the

client instructs the UART to receive a serial string, as formatted by the server, then

that data will be available at the CPU interface during a READ of the received

data.

The "expected results" for the control, status, and computed results is more

difficult to define because it is linked to the cycle level of accuracy. If the verifier

keeps track of these results at the functional level, but not at the cycle level, then

reports of the UUT's results (e.g., READ of PIR) may not match the verifier's

computation of those results at the time the READs are performed. The match

may eventually occur if enough settling time between the expected computed

results and observed results is provided. For example, if the UUT's PIR is updated

with a pipeline delay of three cycles, and the computed PIR is updated with zero or

one pipeline delay, then a READ of that status register may be misconstrued as an

error or mismatch if that READ occurs within this pipeline delay region. This

concept is demonstrated in Figure 6.5-1.

168 Component Design by Example

There are other issues involved if the verifier does not maintain "cycle accuracy"

with the UUT's timing. One such issue is the loss of state synchronization

between the verifier and the UUT. For example, if the UUT receives a PUSH into

a full FIFO (e.g., CPU WRITE of transmit data) while the UUT's internal logic is

performing in that same cycle a POP of that full FIFO (to transfer data onto the

serial output), then this IS NOT an error because the transaction is a simultaneous

PUSH and POP. Thus, the UUT reports no errors. However, if the verifier does

not consider this low level cycle performance of the UUT and is unaware of the

simultaneous POP, then the verifier may believe that the PUSH into a full FIFO is

an error, and would put it’s internal copy of the state (e.g., scoreboard) of the UUT

in the error state, rather than the normal state.

Figure 6.5-1 Mismatch between Verifier and UUT because

of Lack of Cycle Synchronization

This concept of cycle accuracy is very critical because it would guide the

verification approach. This concept is irrelevant of the language (e.g., VHDL,

Verilog, Vera, Specman) or tools used in the verification model. Maintaining

cycle accuracy can be achieved by several methods, including the following:

STATUS

Status computed

 in verifier

STATUS

Status computed

 in UUT

Time

Status read, and

not same as

expected by verifier

Cycle delays

may change

in UUT

Design Verification 169

1. Design a verifier that is cycle accurate with the UUT. This approach is

complex, and problematic because it requires a low level (RTL) like

modeling approach, with internal design information about the UUT,

including pipeline delays. The UUT pipeline timing may change during

the course of the design due to several factors, including timing margins, or

design changes for better interfaces to other subblocks. However, the

advantage of this modeling approach is that the UUT is treated as a black

box, and the same verifier can be used for recursive tests for all levels of

the UUT's implementation (e.g., RTL, gate).

2. Design a verifier that is synchronized to internal critical signals within

the UUT. This approach enables the design of a verifier at a higher level

of abstraction, yet is in synchronism with the UUT. Synchronization is still

maintained even if the cycle timing of the UUT changes. The disadvantage

of this approach is that the UUT is treated as a gray box, and the same

verifier cannot be directly used for recursive tests for all levels of the

UUT's implementation (e.g., RTL, gate). The testbench requires

modifications to the gate level code, or to the peeking path definition, for

the peeking of the critical synchronization signals. Access to the UUT's

internal signals can be achieved in VHDL either with assignments to global

signals, or with PLI interface calls. Verification languages provide access

to internal signals of a design.

Based on the above discussion, the "expected results" for the control, status, and

computed results should be synchronized to the UUT's cycle timing to achieve a

more accurate verification.

When is the design considered verified? This is a difficult answer to provide. The

best answer is probably when the level of confidence for the correctness of the

design meets a comfortable level. Other definitions would include when it works in

the system (real or emulated), when it meets the specified requirements, when all

the code was covered by a functional test pattern, or never. Code coverage is one

of the methods that can guide in the determination of when a design is considered

verified; but that, by itself is not enough. For this model, the set of compliance

tests, as defined in the testplan, and a set of pseudo-random tests will be

demonstrated. This will achieve the purpose of demonstrating the verification

methodology. A statement code coverage report generated by the built-in

coverage tool of ModelSim will be provided3.

6.5.2 Verifier Design Approach

For this design, the verifier will use a high-level, scoreboarding approach for the

3 For an excellent discussion on code coverage, refer to Verification Methodology

Manual for Code Coverage in HDL Designs, Michael Stuart & David Dempster,

Teamwork International , 2000, ISBN 0-9538-4820-5

170 Component Design by Example

posting of transactions (e.g., READ, WRITE) from the client model. Two versions

of the verifier will be built. The first version is a GRAY BOX approach

synchronized with two critical signals of the UART, the PUSH into the transmit

FIFO and the POP from the transmit FIFO. The second version is a BLACK BOX

method that makes a prediction on the PUSH timing, and determines that a POP

occurred when the verifier detects a START transaction on the TxD data. This is a

poor, but simplistic, prediction because the actual POP occurs a few cycles before

the START transaction. The actual cycle timing of the POP can vary because it is

a function of the state of the transmit state. The RTL design includes a look-ahead

prefetch of the FIFO data when there is data in the transmit FIFO and the current

serial transmission is about to be completed.

Figure 6.5.2-1 represents a high level view of the verification interfaces and

approach. Key features and operations of this design for the transmit verification

section include:

UART

CLIENT
TRANSMIT

SCOREBOARD

(Data to be Sent, Status)

RECEIVE

SCOREBOARD

(Data received, Status)

UART

SERVER

RECEIVE

CLIENT

RECEIVE

SERVER

CPU

TASK

UART

UUT

CPU

I/F

RxD

VERIFICATION

LOGIC

RCV

TASK

TxD

VERIFIER

ERROR

REPORTS

Internal

Sync

signals

Design Verification 171

 Figure 6.5.2-1 High Level View of the Verification Interfaces and

Approach

1. CPU Interface client passes the tasks or transactions to both the server and

the verifier.

2. The server is responsible for generating the interface protocol with the

UUT.

3. The verifier logs the task into a scoreboard structure. The scoreboard uses

a record structure to maintain the information, as shown below:
 DTRn : std_logic; -- Data terminal ready

 ParityEnb : std_logic; -- parity enable

 ParityBit : std_logic; -- parity bit

 MODEM : std_logic_vector(3 downto 0); -- 4 bits:RIn, CTSn, DSRn, DCn

 FIFO : Fiforeg_Typ; -- XMt FIFO registers

 Reset : std_logic; -- software reset

 IntrptEnb : std_logic_vector(7 downto 0); --ERR, MT, AMT, AF, HF, FL

 PIR : std_logic_vector(7 downto 0);

 Count : integer; -- range 0 to Depth_g; -- counts fullness of fifo

 WrPntr : integer; -- range 0 to Depth_g - 1; -- Write pointer

 RdPntr : integer; -- range 0 to Depth_g - 1; -- Read pointer

 Mode : Mode_Enum; -- NORMAL, FRAME_ERR, PARITY_ERR

4. The verifier maintains the status of the scoreboard based either on internal

signals of the UUT (e.g., transmit PUSH and transmit POP) or on derived

versions of these signals.

5. The verifier de-serializes the transmitted serial data from TxD into its

constituents (data word and parity), and compares it against the value

stored in the scoreboard. The verifier checks for proper protocol

observance.

6. The verifier monitors the UART CPU interface, and verifies that data

deposited by the UUT because of a READ matches the expected data

maintained in the scoreboard.

Key features and operations of this design for the receive verification section

include:

1. Receive client passes the tasks or transactions to both the server and the

verifier.

2. The server is responsible for generating RxD receive serial data.

3. The verifier logs the task into a scoreboard structure. The scoreboard uses

the same record structure defined above.

4. The verifier maintains the status of the scoreboard based on the

termination of the Rxd message (e.g., end of word at STOP cycle).

172 Component Design by Example

5. The verifier monitors the UART CPU interface, and verifies that data

deposited by the UUT because of a READ matches the expected data

maintained in the scoreboard.

Another task of the verifier (not shown in the figure) is the logging of the tasks and

the bus transactions for documentation and debugging. The logging is performed

at both the transaction level (as issued by the clients), and at the bus level (as

observed on the UUT's ports). Examples of logging transactions are shown in

Figure 6.5.2-2. The tasked command is prefixed with the word "Tasked", and is

originated from the task. The bus transactions are prefixed with a "**" and

provide useful information. Events generated by the UART, such as interrupts,

are also displayed. DISPLAY messages inserted in the text command file are also

displayed in the log file.

4080 ns Tasked: DTRn & Parity Ctrl = 1 00

4400 ns ** CPU WRITE @ 00 MODEM & PARITY: DTR, Parity Enb, Parity Bit = 00000100

…
5600 ns -- file c:/uart/cpu5to15.txt

5680 ns Test # 5 Transmit protocol

5720 ns Tasked: ENVSETUP RIn CTSn DSRn DCDn = 0111

5800 ns ** CPU WRITE @ 10 XMT INTRPT: Reset, Xmt Intrpt enb(4..0) = 00011111

5800 ns Tasked: Xmt reset & Xmt intrpt env = 111

5920 ns ** CPU WRITE @ 11 XMT DATA = X_56

5920 ns Tasked: Write Xmt data = X_56

8080 ns Tasked: ENVSETUP RIn CTSn DSRn DCDn = 0011

10200 ns Tasked: ENVSETUP RIn CTSn DSRn DCDn = 0001

12320 ns Tasked: ENVSETUP RIn CTSn DSRn DCDn = 0000

14480 ns ** CPU READ @ 10 XMIT PIR: (ERR, MT, AMT, HF, AF, FL) = 00000000

20520 ns Interrupt line = 10

34560 ns ** CPU READ @ 10 XMIT PIR: (ERR, MT, AMT, HF, AF, FL) = 00011000

34560 ns Interrupt line = 00

Bus Transaction

on ports of

UART
Client Task

Transaction

 Interrupt on ports of UART

 Interrupt reset as result of READ

Serial data not

transmitted yet

(i.e., out of FIFO)

FIFO XMT

count was ONE,

and is now

ZERO (off of

empty and off

of almost-

empty)

Design Verification 173

Figure 6.5.2-2 Example Log Messages of Tasked and Bus Transactions

Generated by Verifier

174 Component Design by Example

6.5.3 Verifier Design

Table 6.5.3 summarizes the processes within the verifier.

Table 6.5.3 Processes within Verifier (Generated by Renoir)

PROCESS FUNCTION

Verifies and counts and identifies end of RxD

Logs the SYNC signal

Checks the receive interrupt

Checks the transmit interrupt

Checks interrupts and directs timing for check

Updates receive scoreboard

Checks lack of TxD message when one is expected

Verifies that TxD data is correct as expected

Logs CPU Write data into UART

Logs CPU read data on DO

Generation of TC_synch and RC_Synch

Checks accuracy of commanded DTRn

Logs scoreboards

Concurrent signal assignments

Clock control for accurate timing

Figures 6.5.3a, b, c and d represent block level views of the processes within the verifier

model.

 Figure 6.5.3-a Block Level View of the Processes within the Verifier Model

(generated by Renoir)

Design Verification 175

Figure 6.5.3-b Block Level View of the Processes within the Verifier Model

(generated by Renoir)

176 Component Design by Example

Figure 6.5.3-c Block Level View of the Processes Within the Verifier Model

(generated by Renoir)

Design Verification 177

Figure 6.5.3-d Block Level View of the Processes Within the Verifier Model

(generated by Renoir)

The code for the verifier that makes use of the UUT's internal critical timing

signals (i.e., peek into the UART model) is in file tb/verifierpeek.vhd and is shown

on page 176.. The architecture for the black box verifier is in file

tb/verifierblkbox.vhd on CD. The peek verifier model requires the size package (in

file tb/size_pkg.vhd) for the access of global signals. This package is shown in

Figure 6.5.3-2.

-- file size_pkg.vhd

library ieee;

 use ieee.std_logic_1164.all;

package Size_Pkg is

 -- pragma translate_off

 constant WordWidth_c : integer := 8;

 signal pop_n : std_logic;

 signal push_n : std_logic;

 -- pragma translate_on

end package Size_Pkg;

Figure 6.5.3-2 Size Package (tb/size_pkg.vhd)

178 Component Design by Example

Some style features of the verifier model include the following:

1. Constant array for the display of error messages. This provides not

only a collocation of all errors detected by the verifier, but also a means to

easily convert an enumerated error type into a string. Example:

constant ErrorArray_c : ErrorArray_Typ :=
 (NONE => "--",

 PARITY_FAIL_DETECT => "`` UART Fails to detect parity error ",

 PARITY_ERR_WHEN_NONE => "`` UART detects Parity error when none ",

2. Application of the image package for text IO. This package converts

various types (such as integer, std_logic_vectors, time) into strings.

Example:

 Write(L_v, Image(now) &

 "Tasked: DTRn & Parity Ctrl = " &

 Image(not CpuTask.Data(2)) & Image(CpuTask.Data(1 downto 0)));

 Writeline(LogFile_f, L_v);

3. Application of pointers for writing messages into two files. Once a

message string is defined into a variable of type line, there is a need to

write that message into more than one output, such as the log file and the

error file. However, the WriteLine procedure deallocates the pointer, and

the variable will point to null, thus losing the content of the string. The

easiest method to maintain the information is to create a copy of the

original data pointed by the variable onto another variable, also of type

Line. For example:

 Lfault_v := new string'(L_v.all); -- make copy

 Writeline(LogFile_f, L_v); -- write to log

 Writeline(ErrFile_f, Lfault_v); -- write to error file

6.5.4 Top level Testbench

The top level testbench is in file tb/uart8_tb.vhd and is shown on page 192. It instantiates

the UART model, CPU client, UART server, Receiver client, receiver server, and the

verifier.

6.5.5 Configuration

The configuration files for the various models is in file uart_c.vhd and is shown on

page 198. The values for the UART generics and scenario control file paths can be

defined with configuration declarations.

Design Verification 179

Verifpeek 1/16

180 Component Design by Example

Vpk 2/16

Design Verification 181

Vpk 3/16

182 Component Design by Example

Vpk 4/16

Design Verification 183

Vpk 5/16

184 Component Design by Example

Vpk 6/16

Design Verification 185

Vpk 7/16

186 Component Design by Example

Vpk 8/16

Design Verification 187

Vpk 9/16

188 Component Design by Example

Vpk 10/16

Design Verification 189

Vpk 11/16

190 Component Design by Example

Vpk 12/16

Design Verification 191

Vpk 13/16

192 Component Design by Example

Vpk 14/16

Design Verification 193

Vpk 15/16

194 Component Design by Example

Vpk 16/16

Design Verification 195

 Uart8tb 1/6

196 Component Design by Example

Uart8tb 2/6

Design Verification 197

Uart8tb 3/6

198 Component Design by Example

Uart8tb 4/6

Design Verification 199

Uart8tb 5/6

200 Component Design by Example

Uart8tb 6/6

Design Verification 201

Config
uart_c 1/4

202 Component Design by Example

Uart_c 2/4

Design Verification 203

Uart_c ¾

204 Component Design by Example

Uart 4/4

Design Verification 205

6.5.6 Definition of Scenarios (test cases)

The transaction tests are defined in the testplan. Two methods are used to generate

those transactions:

1. Command files as called by the client model with the ExecuteControlFile

procedure. For example:
ExecuteControlFile (

 FileName_c => "path/commandfile.txt",

 Task => Task,

 ServerData => ServerData,

 EOT => EOT,

 Clk => ClkSys,

 Task_v => Task_v,

 LfsrData_v => LfsrData_v);

2. VHDL code from within the same client model. This code may precede or

follow the command file procedure call. The code may also call multiple

command files anywhere within the sequence.

The commanded sequence is defined in files for the sequential tests, and in VHDL

code in the client models for the pseudo-random tests. Two files are used for the

sequential tests, one for the CPU client, and one for the receive side of the model

(i.e., Rxd). Each of those file refer to subroutine files for the command of tests

setup under different environments (e.g., parity, no parity). This technique

promotes reuse. A SYNC instruction in conjunction with SYNCS signal of a

resolved integer type is used to synchronize the CPU and Receive model. This

method was explained in section 3.2.3. The scenario command files are listed in

Table 6.5.6.

Table 6.5.6 Scenario Command Files

File Figure

Page Function

instr1.txt 6.5.6-1 202 CPU Client main instruction stream

cpu5to15.txt 6.5.6-2 207 Subroutine for CPU client, tests 5 to 15

sw_reset.txt 6.5.6-3 211 Subroutine for CPU client, software reset

rcvinstr.txt 6.5.6-4 212 Receiver client main instruction stream

rcv11to15.txt 6.5.6-5 214 Receiver client subroutine for tests 11 to 15

-- (WRITE1, -- Write a single word @ address with data

-- RNDM_DATA, -- Write a single word @ address with ran

-- READ1, -- READ a single word @address

-- IDLE, -- Stay in IDLE (no load mode) "IDLE 5 -- 5 cycles"

-- RESET, -- hardware reset for "n" cycles

-- DISP, -- Displays a message

-- MODE, -- Uart TB mode

206 Component Design by Example

-- RDUNTIL, -- wait for n clocks and Read until a '1' condition is true,

-- ENVSETUP, -- Sets the hold signal to true/false

-- CALL, -- jump to subroutine

-- SYNC -- Sets sync level

-- WT4INTRPT -- wait 4 interrupt

-- STOP -- stop sim

-- Address Read Write Function Comments

-- 00 X - Modem status 4 bits: RIN, CTSn, DSRn, DCDn

-- 00 - X Modem Control DTR, Parity Enb, Parity Bit,

--

-- 01 X - Rcv PIR FE, PE, OVE, NMT, AMT, AF, HF, FL

-- 01 - X Rcv Fifo control 6 bits: Reset, Rcv Intrpt enb(4..0)

-- not empty, almost empty, almost full, half-full, full

-- 10 X - Xmt PIR ER, NMT, AMT, AF, HF, FL

-- 10 - X Xmt Fifo control 6 bits: Reset, xmt Intrpt enb(4..0)

-- empty, almost empty, almost full, half-full, full

--

-- 11 - X Write Xmt Data transmit data

-- 11 X - Read Rcv data Receive data

-- file c:/uart/instr1.txt

-- only the first 4 characters of the instruction are important

--

--==

-- Test # 1 Setup @elaboration, no tests

DISPLAY -- CPU -- file c:/uart/instr1.txt

-- Fixed Parameterization- Word size- Buffer Depth- Buffer Almost Empty

-- Buffer Almost Full- Synchronous/ Asynchronous Mode

-- Instantiation transmit function- Instantiation receive function

--==

IDLE 10
DISPLAY

===

DISPLAY -- CPU -- Test #2 Reset

-- RESETVC to be in idle state, all software visible registers to be reset,

-- no interrupt outputs

MODE NORMAL -- NORMAL, FRAME_ERR, PARITY_ERRx

SYNC -100 -- low number, below the receiver driver number

RESET 10 -- reset for 10 cycles

READ 01 -- RCV Buffer, DO(7..0) = 00000000

READ 10 -- XMT Buffer, DO(5..0) = 000000

IDLE 10
DISPLAY

===

DISPLAY -- CPU -- Test #3 Modem Status

-- I/O BFM to Toggle modem status bits: RINn CTSn DSRn DCDn CPU to read data

-- Set RINn CTSn DSRn DCDn = 0000

Design Verification 207

ENVSETUP 00

READ 00 -- Modem status

-- Set RINn CTSn DSRn DCDn = 0001

ENVSETUP 01

READ 00 -- Modem status

--Set RINn CTSn DSRn DCDn = 0010

ENVSETUP 02

READ 00 -- Modem status

-- Set RINn CTSn DSRn DCDn = 0100

ENVSETUP 04

READ 00 -- Modem status

--Set RINn CTSn DSRn DCDn = 1000

ENVSETUP 08

READ 00 -- Modem status

--Set RINn CTSn DSRn DCDn = 1111

ENVSETUP 0F

READ 00 -- Modem status

IDLE 10
DISPLAY

===

DISPLAY -- CPU -- Test #4 Modem ControlCPU to Toggle DTRn Set no parity mode

WRITE 00 00 -- DTR = 0

IDLE 4

WRITE 00 04 -- NO parity DTRn = 1

IDLE 4

WRITE 00 00 -- DTR = 0

IDLE 10

DISPLAY -- CPU -- **** *********** CPU 5 to 15 ***************************

CALL c:/uart/cpu5to15.txt -- IN @ set SYNC, then 0 to 9, out @ -100

CALL c:/uart/sw_reset.txt
DISPLAY

===

DISPLAY -- CPU -- Test #16 Parity bit, ODD

WRITE 00 03 -- DTRn = 0 DTR, Parity Enb, Parity Bit,

IDLE 10

DISPLAY -- CPU -- **** *********** CPU 5 to 15 ***************************

CALL c:/uart/cpu5to15.txt -- IN @ set SYNC, then 0 to 9, out @ -100

CALL c:/uart/sw_reset.txt
DISPLAY

===

DISPLAY -- CPU -- Test 17 Parity bit, EVEN

WRITE 00 02 -- DTRn = 0 DTR, Parity Enb, Parity Bit,

IDLE 10

208 Component Design by Example

DISPLAY -- CPU -- **** *********** CPU 5 to 15 ***************************

CALL c:/uart/cpu5to15.txt -- IN @ set SYNC, then 0 to 9, out @ -100

CALL c:/uart/sw_reset.txt
DISPLAY

===

DISPLAY -- CPU -- TEST 18 Receive framing error, Even Parity

IDLE 100

SYNC 9 -- enable rcv bfm to send RXD data --> GO RCV BFM

IDLE 100

SYNC 10 -- wait till end of RCV BFM

READ 01 -- rcv fifo status

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

IDLE 100

DISPLAY -- CPU -- --> end of test 18

CALL c:/uart/sw_reset.txt
DISPLAY

===

DISPLAY -- CPU -- TEST 19 Receive parity error, Even Parity

WRITE 00 02 -- DTRn = 0 DTR, Parity Enb, Parity Bit,

SYNC 11 -- enable rcv bfm to send RXD data --> GO RCV BFM

IDLE 100

SYNC 12 -- wait till end of RCV BFM

READ 01 -- rcv fifo status

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

IDLE 100

DISPLAY -- CPU -- --> end of test 19

CALL c:/uart/sw_reset.txt
DISPLAY

===

DISPLAY -- CPU -- TEST 20 Receive buffer overrun error, even Parity

WRITE 00 02 -- DTRn = 0 DTR, Parity Enb, Parity Bit,

SYNC 13 -- enable rcv bfm to send RXD data --> GO RCV BFM

IDLE 100

SYNC 14 -- wait till end of RCV BFM

READ 01 -- rcv fifo status

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

IDLE 100

DISPLAY -- CPU -- --> end of test 19

CALL c:/uart/sw_reset.txt

Design Verification 209

DISPLAY

===

DISPLAY -- CPU -- TEST 21, Transmit buffer overrun error, even Parity

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 100

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 100

READ 01 -- rcv fifo status

DISPLAY -- CPU -- End of test 20

CALL c:/uart/sw_reset.txt

IDLE 4
DISPLAY

===

DISPLAY -- CPU -- Test 22 Receive framing error, Odd Parity

WRITE 00 03 -- DTRn = 0 DTR, Parity Enb, Parity Bit,

SYNC 15 -- enable rcv bfm to send RXD data --> GO RCV BFM

IDLE 100

SYNC 16 -- wait till end of RCV BFM

READ 01 -- rcv fifo status

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

IDLE 100

DISPLAY -- CPU -- --> end of test 19

CALL c:/uart/sw_reset.txt
DISPLAY

===

DISPLAY -- CPU -- Test 23 Receive parity error, Odd Parity

WRITE 00 03 -- DTRn = 0 DTR, Parity Enb, Parity Bit,

SYNC 17 -- enable rcv bfm to send RXD data --> GO RCV BFM

IDLE 100

SYNC 18 -- wait till end of RCV BFM

READ 01 -- rcv fifo status

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

IDLE 100

DISPLAY -- CPU -- --> end of test 19

CALL c:/uart/sw_reset.txt
DISPLAY

===

DISPLAY -- CPU -- Test 24 Receive buffer overrun error, Odd Parity

WRITE 00 03 -- DTRn = 0 DTR, Parity Enb, Parity Bit,

210 Component Design by Example

SYNC 19

IDLE 100

SYNC 20

READ 01 -- rcv fifo status

DISPLAY -- CPU -- end of test 24

CALL c:/uart/sw_reset.txt
DISPLAY

===

DISPLAY -- CPU -- Test 25 Transmit buffer overrun error, Odd Parity

WRITE 00 03 -- DTRn = 0 DTR, Parity Enb, Parity Bit,

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 100

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 100

READ 10 -- xmt fifo status

DISPLAY -- CPU -- End of test 24

CALL c:/uart/sw_reset.txt

SYNC 21

DISPLAY -- CPU -- End of tests

-- STOP

Figure 6.5.6-1 CPU Client Main Instruction Stream (file instr1.txt)

DISPLAY -- file c:/uart/cpu5to15.txt

DISPLAY Test # 5 Transmit protocol

-- CPU writes 1 word into buffer,

-- Set RINn CTSn DSRn DCDn = 0111

ENVSETUP 07

-- Xmt Fifo control 6 bits: Reset, MT, AE, HF, AF, FL

WRITE 10 1F -- Xmt buffer setup

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 51 -- Wait for 51 cycles

ENVSETUP 03 -- Set RINn CTSn DSRn DCDn = 0011

IDLE 51 -- Wait for 51 cycles

ENVSETUP 01 -- Set RINn CTSn DSRn DCDn = 0001

IDLE 51 -- Wait for 51 cycles

ENVSETUP 00 -- Set RINn CTSn DSRn DCDn = 0000

-- Wait for interrupt within serial transmission time for one message

-- Read @ADDR (in bit) MASK (in Hex) Interval (in natural) until the received masked

data has a ONE.

IDLE 51 -- wait till start of send

RDUNTIL 10 10 500 -- Read data from address 10, MASK = X"10, if false, wait for

 -- 500 cycles

Design Verification 211

DISPLAY --> Test 5, XMT PIR EMpty reached
IDLE 8000 -- 10 bits * 16 16x_clk/bit * ~10 sysclk/16x_clk + spare -- end of serial message

DISPLAY

===

DISPLAY Test # 6 Transmit protocol CPU writes "n" words into buffer, interrupt on

empty (MT)

-- Read 10

-- read/clr xmt buffer status

WRITE 10 10 -- interrupt when MT

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 5 -- Wait for 5 cycles

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 1 -- Wait for 51 cycles

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 51 -- Wait for 51 cycles

WT4INTRPT 10 5000 -- wait 4 interrupt

RDUNTIL 10 10 200 -- Read data from address 01, MASK = X"10, if false, wait for

 -- 20 cycles

DISPLAY --> Test 6, XMT PIR Emptied reached

IDLE 9000 -- end of serial message

DISPLAY

===

DISPLAY Test #7 Transmit protocol CPU writes "n" words into buffer,interrupt on Almost empty

WRITE 10 08 -- interrupt when MT

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 5 -- Wait for 5 cycles

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 1 -- Wait for 51 cycles

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 51 -- Wait for 51 cycles

WT4INTRPT 10 5000

RDUNTIL 10 08 500 -- Read data from address 01, MASK = X"10, if false, wait for

 -- 20 cycles

DISPLAY --> Test 7, XMT PIR Almost Emptied reached

IDLE 9000 -- 10 bits * 16 clk/bit * ~10 clk/16x_clk -- end of serial message

DISPLAY

===

DISPLAY Test #8 Transmit protocol CPU writes "n" words into buffer,interrupt on half-

full

WRITE 10 04 -- interrupt when MT

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 5 -- Wait for 5 cycles

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

212 Component Design by Example

IDLE 1 -- Wait for 51 cycles

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 51 -- Wait for 51 cycles

WT4INTRPT 10 5000

RDUNTIL 10 04 500 -- Read data from address 01, MASK = X"10, if false, wait for

 -- 500 cycles

DISPLAY --> Test 8, XMT PIR Almost Emptied reached

IDLE 9000 -- 10 bits * 16 clk/bit * ~10 clk/16x_clk -- end of serial message

DISPLAY

===

DISPLAY Test #9 Transmit protocol CPU writes "n" words into buffer,interrupt on almost-full

WRITE 10 02 -- interrupt when MT

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 5 -- Wait for 5 cycles

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 1 -- Wait for 51 cycles

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 51 -- Wait for 51 cycles

WT4INTRPT 10 5000

RDUNTIL 10 02 20 -- Read data from address 01, MASK = X"10, if false, wait for

 -- 20 cycles

DISPLAY --> Test 9, XMT PIR Almost Emptied reached

IDLE 8000 -- 10 bits * 16 clk/bit * ~10 clk/16x_clk -- end of serial message

DISPLAY

===

DISPLAY Test #10 Transmit protocol CPU writes "n" words into buffer,interrupt on full

WRITE 10 01 -- interrupt when MT

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 5 -- Wait for 5 cycles

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 1 -- Wait for 51 cycles

RNDM_DATA 11 --WRITE 11 RandomData, fill xmt buffer

IDLE 51 -- Wait for 51 cycles

RDUNTIL 10 01 500 -- Read data from address 01, MASK = X"10, if false, wait for

 -- 500 cycles

DISPLAY --> Test 10, XMT PIR Almost Emptied reached

IDLE 10000 -- 10 bits * 16 16x_clk/bit * ~10 clk/16x_clk -- end of serial message

-- TEST 11 Receive protocol interrupt on not empty

-- setup control registers, and then enable te receiver to fire
DISPLAY

===

DISPLAY Test 11, Receive protocol interrupt on not empty

WRITE 01 10 -- interrupt on recvr not MT

Design Verification 213

SYNC 0 -- enable rcv bfm to send RXD data --> GO RCV BFM

IDLE 1

SYNC 1 -- wait till receiver tests are done --> Wait till RCV BFM DONE

READ 01 -- RCV Buffer,

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

DISPLAY

===

DISPLAY Test 12, Receive protocol interrupt on almost-empty

WRITE 01 08 -- interrupt on recvr AMT

SYNC 2 -- enable rcv bfm to send RXD data --> GO RCV BFM

IDLE 1

SYNC 3 -- wait till receiver tests are done--> Wait till RCV BFM DONE

READ 01 -- RCV Buffer,

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

IDLE 2000
DISPLAY

===

DISPLAY Test 13, Receive protocol interrupt on half-full

WRITE 01 04 -- interrupt on recvr AMT

SYNC 4 -- enable rcv bfm to send RXD data --> GO RCV BFM

IDLE 1

SYNC 5 -- wait till receiver tests are done--> Wait till RCV BFM DONE

READ 01 -- RCV Buffer,

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

DISPLAY

===

DISPLAY Test 14, Receive protocol interrupt on almost-full

WRITE 01 02 -- interrupt on recvr AMT

SYNC 6 -- enable rcv bfm to send RXD data --> GO RCV BFM

IDLE 1

SYNC 7 -- wait till receiver tests are done--> Wait till RCV BFM DONE

READ 01 -- RCV Buffer,

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

214 Component Design by Example

DISPLAY

===

DISPLAY Test 15, Receive protocol interrupt on full

WRITE 01 01 -- interrupt on recvr AMT

SYNC 8 -- enable rcv bfm to send RXD data --> GO RCV BFM

IDLE 1

SYNC 9 -- wait till receiver tests are done--> Wait till RCV BFM DONE

READ 01 -- RCV Buffer,

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

READ 11 -- Read received FIFO data

SYNC -100 -- take control of syncs

DISPLAY --> CPU driver reached end of tests

DISPLAY

===

DISPLAY

===

Figure 6.5.5-2 Subroutine for CPU client, tests 5 to 15 (file cpu5to15.txt)

-- File sw_reset.txt

-- SYNC -100 -- low number, below the receiver driver number

-- WRITE 10 40 -- reset XMT portion

-- IDLE 4

-- WRITE 01 40 -- reset receiver portion

-- IDLE 4

-- WRITE 10 0F -- Enable xmt interrupts

-- IDLE 4

-- WRITE 01 0F -- Enable rcv interrupts

IDLE 4

Figure 6.5.5-3 Subroutine for CPU Client, Software Reset (file sw_reset.txt)

(Instructions commented out, and not used in tests, demonstrates possibilities)

Design Verification 215

-- file c:/uart/rcvinstr.txt

-- only the first 4 characters of the instruction are important

--

-- file c:/uart/rcvinstr.txt

--==

DISPLAY -- RCV -- RCV for test 5 thru 15

WRITE 00 00 -- DTRn = 0

DISPLAY -- RCV -- -- <<<<<<<<<<< RCV 11 to 15

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

CALL c:/uart/rcv11to15.txt -- In @ SYNC 0, exits @ SYNC 9

--==

IDLE 200

DISPLAY -- RCV -- -- Test 16 Parity bit, ODD

WRITE 00 03 -- DTRn = 0 DTR, Parity Enb, Parity Bit,

IDLE 4

DISPLAY -- RCV -- -- <<<<<<<<<<< RCV 11 to 15

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

CALL c:/uart/rcv11to15.txt -- In @ SYNC 0, exits @ SYNC 9

--==

DISPLAY -- RCV -- -- Test 17 Parity bit, EVEN

WRITE 00 02 -- DTRn = 0 DTR, Parity Enb, Parity Bit,

IDLE 10

DISPLAY -- RCV -- -- <<<<<<<<<<< RCV 11 to 15

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

CALL c:/uart/rcv11to15.txt -- In @ SYNC 0, exits @ SYNC 9

--==

DISPLAY -- RCV -- -- TEST 18 Receive framing error, Even Parity

IDLE 100

MODE FRAME_ERR -- framing error mode

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

IDLE 100

RNDM_DATA 11 -- 11 is not used here

IDLE 10000

SYNC 10 -- Control back to CPU bfm

IDLE 10

SYNC 11 -- wait enable from cpu bfm

DISPLAY -- RCV -- --End of test 18

--==

DISPLAY -- RCV -- -- TEST 19 Receive parity error, Even Parity

MODE NORMAL

IDLE 1

WRITE 00 03 -- DTRn = 0 DTR, Parity Enb, Parity Bit,, wrong parity bit

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

216 Component Design by Example

IDLE 100

RNDM_DATA 11 -- 11 is not used here

IDLE 10000

SYNC 12 -- Control back to CPU bfm

DISPLAY -- RCV -- --End of test 19

--==

DISPLAY -- RCV -- TEST 20 Receive buffer overrun error, even Parity

MODE NORMAL

IDLE 1

SYNC 13 -- wait enable from cpu bfm

WRITE 00 03 -- DTRn = 0 DTR, Parity Enb, Parity Bit,, wrong parity bit

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

IDLE 100

RNDM_DATA 11 -- 11 is not used here -- overrun error

IDLE 10000

SYNC 14 -- Control back to CPU bfm

DISPLAY -- RCV -- --End of test 19

--==

SYNC 15 -- RCV -- Test 22 Receive framing error, Odd Parity

WRITE 00 01 -- DTRn = 0 DTR, Parity Enb, Parity Bit, --

IDLE 100

MODE FRAME_ERR -- framing error mode

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

IDLE 100

RNDM_DATA 11 -- 11 is not used here

IDLE 10000

SYNC 16 -- Control back to CPU bfm

DISPLAY -- RCV -- end of test 22

--==

DISPLAY -- RCV -- Test 23 Receive parity error, Odd Parity

MODE NORMAL

IDLE 1

SYNC 17 -- wait enable from cpu bfm

WRITE 00 02 -- DTRn = 0 DTR, Parity Enb, Parity Bit,, wrong parity bit

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

IDLE 100

RNDM_DATA 11 -- 11 is not used here

IDLE 10000

SYNC 18 -- Control back to CPU bfm

DISPLAY -- RCV -- --End of test 23

Design Verification 217

--==

DISPLAY -- RCV -- TEST 24 Receive buffer overrun error, Odd Parity

MODE NORMAL

IDLE 1

SYNC 19 -- wait enable from cpu bfm

WRITE 00 03 -- DTRn = 0 DTR, Parity Enb, Parity Bit,,

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

IDLE 100

RNDM_DATA 11 -- 11 is not used here -- overrun error

IDLE 10000

SYNC 20 -- Control back to CPU bfm

DISPLAY -- RCV -- --End of test 24

--==

SYNC 21

DISPLAY -- RCV -- --End of tests

Figure 6.5.5-4 Receiver Client Main Instruction Stream (file rcvinstr.txt)

--

-- file c:/uart/rcv11to15instr.txt
DISPLAY

===

DISPLAY

===

DISPLAY TEST 11 Receive protocol interrupt on not empty

IDLE 10

-- RESETVC to be in idle state, all software visible registers to be reset,

-- no interrupt outputs

MODE NORMAL -- NORMAL, FRAME_ERR, PARITY_ERRx

SYNC 0 -- --> wait till GO RCV BFM
DISPLAY

===

DISPLAY Test #11 RCV BFM, send 4 data word to RXD

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

IDLE 100

RNDM_DATA 11 -- 11 is not used here

IDLE 10000

SYNC 1 -- end of test 11 --> RCV BFM DONE

IDLE 1 --

SYNC 2 -- let CPU setup for test 12, --> wait till GO RCV BFM
DISPLAY

===

218 Component Design by Example

DISPLAY TEST 12 Receive protocol interrupt on AMT

IDLE 1000

-- RESETVC to be in idle state, all software visible registers to be reset,

-- no interrupt outputs

MODE NORMAL -- NORMAL, FRAME_ERR, PARITY_ERRx

DISPLAY Test #12 RCV BFM, send 4 data word to RXD

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

IDLE 100

RNDM_DATA 11 -- 11 is not used here

IDLE 10000

SYNC 3 -- end of test 12 --> RCV BFM DONE

IDLE 1 --

SYNC 4 -- let CPU setup for test 12, --> wait till GO RCV BFM
DISPLAY

===

DISPLAY TEST 13 Receive protocol interrupt on half-full

IDLE 1000

-- RESETVC to be in idle state, all software visible registers to be reset,

-- no interrupt outputs

MODE NORMAL -- NORMAL, FRAME_ERR, PARITY_ERRx

DISPLAY Test #13 RCV BFM, send 4 data word to RXD

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

IDLE 100

RNDM_DATA 11 -- 11 is not used here

IDLE 10000

SYNC 5 -- end of test 13 --> RCV BFM DONE

IDLE 1 --

SYNC 6 -- let CPU setup for test 12, --> wait till GO RCV BFM
DISPLAY

===

DISPLAY TEST 14 Receive protocol interrupt on almost-full

IDLE 1000

-- RESETVC to be in idle state, all software visible registers to be reset,

-- no interrupt outputs

MODE NORMAL -- NORMAL, FRAME_ERR, PARITY_ERRx

DISPLAY Test #14 RCV BFM, send 4 data word to RXD

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

IDLE 100

RNDM_DATA 11 -- 11 is not used here

IDLE 10000

SYNC 7 -- end of test 14 --> RCV BFM DONE

Design Verification 219

IDLE 1 --

SYNC 8 -- let CPU setup for test 12, --> wait till GO RCV BFM
DISPLAY

===

DISPLAY TEST 15 Receive protocol interrupt on full

IDLE 1000

-- RESETVC to be in idle state, all software visible registers to be reset,

-- no interrupt outputs

MODE NORMAL -- NORMAL, FRAME_ERR, PARITY_ERRx

DISPLAY Test #15 RCV BFM, send 4 data word to RXD

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

RNDM_DATA 11 -- 11 is not used here

IDLE 100

RNDM_DATA 11 -- 11 is not used here

IDLE 10000

SYNC 9 -- end of test 15 --> RCV BFM DONE

IDLE 1 --

--==

--SYNC 4 -- Let cpu setup for test 13

DISPLAY --> end of RCV rcv11to15 subroutine
DISPLAY

===

DISPLAY

===

Figure 6.5.5-5 Receiver Client Subroutine for Tests 11 to 15

(file rcv11to15.txt)

220 Component Design by Example

6.5.7 Compilation Scripts

The compilation scripts for the complete design and verification models is shown

in Table 6.5.7-1, as defined in file scripts/compile.do.

Table 6.5.7 compilation scripts, scripts/compile.do

SCRPIT FUNCTION

rm -r work_lib

vlib work_lib

Remove old library

Create library

RTL Design

vcom -explicit -work work_lib -93 vhdl/tb/Size_Pkg.vhd

vcom -explicit -work work_lib -93 vhdL/rtl/fifo.vhd

vcom -explicit -work work_lib -93 vhdL/rtl/transmitter.vhd

vcom -explicit -work work_lib -93 vhdL/rtl/xmitsublk.vhd

vcom -explicit -work work_lib -93 vhdL/rtl/receiver.vhd

vcom -explicit -work work_lib -93 vhdL/rtl/rcvsublk.vhd

vcom -explicit -work work_lib -93 vhdL/rtl/cpuif.vhd

vcom -explicit -work work_lib -93 vhdL/rtl/clkcntrl.vhd

vcom -explicit -work work_lib -93 vhdL/rtl/uart.vhd

Size package

FIFO

Transmitter

Transmit subblock

Receiver

Receiver suibblock

CPU interface

Clock controller

UART top level

TESTBENCH

vcom -explicit -work work_lib -93 vhdl/tb/image_pb.vhd

vcom -explicit -work work_lib -93 vhdl/tb/vsp.vhd

vcom -explicit -work work_lib -93 vhdl/tb/lfsrstd.vhd

vcom -explicit -work work_lib -93 vhdl/tb/parser_pb.vhd

vcom -explicit -work work_lib -93

vhdl/tb/uart_clientrndm.vhd

vcom -explicit -work work_lib -93

vhdl/tb/uart_client_bad.vhd

vcom -explicit -work work_lib -93 vhdl/tb/uart_server.vhd

vcom -explicit -work work_lib -93 vhdl/tb/rcv_client.vhd

vcom -explicit -work work_lib -93 vhdl/tb/rcv_server.vhd

vcom -explicit -work work_lib -93 vhdl/tb/fifo_server.vhd

vcom -explicit -work work_lib -93 vhdl/tb/fifo_tb.vhd

vcom -explicit -work work_lib -93 vhdl/tb/verifierpeek.vhd

vcom -explicit -work work_lib -93 vhdl/tb/verifierblkbox.vhd

vcom -explicit -work work_lib -93 vhdl/tb/uart8_tb.vhd

vcom -explicit -work work_lib -93 vhdl/gates/uart.vho

vcom -explicit -work work_lib -93 vhdl/tb/uart_c.vhd

vcom -explicit -work work_lib -93 vhdl/rtl/uart_level2.vhd

Image package

VSP package

LFSR package

Parser package

UART client, works OK

UART Client, overrun

errors

UART server

Receive client (for RxD)

Receive server

Fifo Server for FIFO only

tests

Fifo testbench for FIFO only

Verifier with peek (gray box)

Verifier black box

UART testbench, set for 8

bits

Gate level model by Altera

Configuration file

UART into a subsystem

Design Verification 221

Four configurations are defined in the uart_c.vhd configuration file as shown in

Table 6.5.7-2.
Table 6.5.7-2 Configurations

Configuration Name Purpose

UART_RTL_Rndm_Grey_cfg UART @RTL Gray Box verification model. Random

tests limited to CPU WRITE of transmit data from

ONE to THREE data words, randomly selected. CPU

waits until completion of serial transmission before

repeating sequence.

UART_RTL_BlackBox_cfg UART @RTL Black Box verification model. Random

tests limited to ONE CPU WRITE of transmit data.

CPU waits until completion of serial transmission

before repeating sequence.

UART_Gates_cfg UART @ Gate level, VHDL produced by Altera.

Black Box verification model. Random tests limited

to ONE CPU WRITE of transmit data. CPU waits

until completion of serial transmission before

repeating sequence.

UART_RTL_Grey_Bad_cfg UART @RTL. Gray Box verification model. Random

tests with transmission-overrun errors.

6.5.8 Simulation Results

The UART model was simulated with ModelSim 5.4b with the statement coverage

option. The results of this simulation effort are presented and discussed. Users of

other simulation tools would use the relevant commands for those tools. However,

this presentation will provide a basis for the discussion of results.

6.5.8.1 Running the Simulator

The ModelSim simulator can be initiated with the vsim command. Since

configuration declarations were defined, the firing of uart_rtl_grey_cfg

configuration and start of simulation is shown in Figure 6.5.8.1. Only a portion of

the transcript window is included here. The complete set of simulation result files

are included in subdirectory SimRuns. The simulator was run for a simulation

period of forty milliseconds.

cd c:/design_path

reading modelsim.ini

do run.do

vsim -coverage work_lib.uart_rtl_grey_rndm_cfg

Loading C:/MODELTECH_5.4B/WIN32/../std.standard

Loading C:/MODELTECH_5.4B/WIN32/../ieee.std_logic_1164(body)

Loading C:/MODELTECH_5.4B/WIN32/../ieee.std_logic_arith(body)

Loading C:/MODELTECH_5.4B/WIN32/../ieee.std_logic_unsigned(body)
Loading C:/MODELTECH_5.4B/WIN32/../std.textio(body)

Running a simulation command

script

222 Component Design by Example

Loading C:/MODELTECH_5.4B/WIN32/../ieee.std_logic_textio(body)

Loading C:/MODELTECH_5.4B/WIN32/../synopsys.attributes

Loading C:/MODELTECH_5.4B/WIN32/../ieee.std_logic_misc(body)

Loading work_lib.vsp(body)

Loading work_lib.image_pkg(body)

Loading work_lib.lfsrstd_pkg(body)

Loading work_lib.size_pkg

Loading work_lib.parser_pkg(body)

Loading work_lib.uart_rtl_grey_cfg

Loading work_lib.uart8_tb(beh)

Loading work_lib.uart_client(uart_clientrndm)

Loading work_lib.uart_server(beh)

Loading work_lib.clkcntrl(rtl)

Loading work_lib.uart(rtl)

Loading work_lib.xmitsublk(rtl)

Loading work_lib.transmitter(rtl)

Loading work_lib.fifo(rtl)

Loading work_lib.rcvrsublk(rtl)

Loading work_lib.receiver(rtl)

Loading work_lib.cpuif(rtl)

Loading work_lib.rcv_client(rcv_client_a)

Loading work_lib.rcv_server(beh)

Loading work_lib.verifier(verifierpeek)

view signals

.signals

add wave -r /*

run 40 ms

** Warning: There is an 'U'|'X'|'W'|'Z'|'-' in an arithmetic operand, the result will be 'X'(es).
Time: 0 ns Iteration: 0 Instance: /uart8_tb/uart_1/xmitsublk_1/transmitter_1

** Note: New control file: c:/uart/rcvinstr.txt

Time: 40 ns Iteration: 0 Instance: /uart8_tb/rcv_client_1

** Note: DISP: -- RCV -- RCV for test 5 thru 15

Time: 40 ns Iteration: 0 Instance: /uart8_tb/rcv_client_1

** Note: New control file: c:/uart/instr1.txt

Time: 40 ns Iteration: 0 Instance: /uart8_tb/uart_client_1

** Note: DISP: -- CPU -- file c:/uart/instr1.txt

Time: 40 ns Iteration: 0 Instance: /uart8_tb/uart_client_1

** Note: DISP: -- RCV -- -- <<<<<<<<<<< RCV 11 to 15

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

Time: 200 ns Iteration: 1 Instance: /uart8_tb/rcv_client_1

** Note: Subroutine to: c:/uart/rcv11to15.txt

Time: 280 ns Iteration: 1 Instance: /uart8_tb/rcv_client_1

** Note: DISP:

==

=

Time: 360 ns Iteration: 0 Instance: /uart8_tb/rcv_client_1

** Note: DISP:

Simulator loading the design units

Simulator

running and

displaying results

Design Verification 223

==

=

Time: 440 ns Iteration: 1 Instance: /uart8_tb/rcv_client_1

** Note: DISP: TEST 11 Receive protocol interrupt on not empty

Time: 520 ns Iteration: 1 Instance: /uart8_tb/rcv_client_1

** Note: DISP:

==

=

Time: 560 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP: -- CPU -- Test #2 Reset

Time: 640 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP:

==

=

Time: 2280 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP: -- CPU -- Test #3 Modem Status

Time: 2360 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP:

==

=

Time: 3840 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP: -- CPU -- Test #4 Modem ControlCPU to Toggle DTRn Set no parity

mode

Time: 3920 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP: -- CPU -- **** *********** CPU 5 to 15 ***************************
Time: 5200 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: Subroutine to: c:/uart/cpu5to15.txt

Time: 5280 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP:

==

=

Time: 5360 ns Iteration: 0 Instance: /uart8_tb/uart_client_1

** Note: DISP:

==

=

Time: 5440 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP: -- file c:/uart/cpu5to15.txt

Time: 5520 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP: Test # 5 Transmit protocol

Time: 5600 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP: --> Test 5, XMT PIR EMpty reached

Time: 34600 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP:

==

=

Time: 354720 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP: Test # 6 Transmit protocol CPU writes "n" words into buffer, interrupt on empty (MT)

224 Component Design by Example

Time: 354800 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP: --> Test 6, XMT PIR Emptied reached

Time: 555560 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP:

==

=

Time: 915680 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP: Test #7 Transmit protocol CPU writes "n" words into buffer,interrupt on Almost empty
Time: 915760 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP: --> Test 7, XMT PIR Almost Emptied reached

Time: 1115920 ns Iteration: 1 Instance: /uart8_tb/uart_client_1

** Note: DISP:

==

=

Figure 6.5.8.1 Running the Simulation (only the first 1.1 ms is shown)

6.5.8.2 Evaluating Results

The waveform viewer is usually the best tool to debug a design, but the process is

various tedious because transactions must be extracted from the multitude of

signals (e.g., Rdn, CS0, CS1, CS2n, Addr) . In addition, the users are subjected to

fatigue and error. In this design, the verifier extracts the transactions and asserts

the tasked transactions and user defined messages to files and to the transcript

display to ease the debugging process. Note that the generation of this report log is

somewhat loading the simulator because of the use of TextIO. However, this

reporting feature could be turned off with a generic.

Figure 6.5.8.2-1 is a report log of a CPU tasking the UART to send DATA (value

= Hex 56) over the TxD port. All Interrupts are enabled. The generics were set as

follows:

1. Bus width = 8

2. Transmit FIFO depth = 4

3. Full = 4, Almost full = 3, Half-full = 2, Almost empty = 1, Empty = 0

Figure 6.5.8.2-2 is a waveform view for the same timing period as the report view

generated by the verifier. Note that the transmitted data to be sent is Hex 56, or

binary "0101_0110" with parity disabled. Thus, the transmitted stream on the TxD

signal will be:

Design Verification 225

--LSB MSB
S B B B B B B B B S CPU Data to send = "0101_0110"

T I I I I I I I I T Data is sent LSB to MSB

A T T T T T T T T O

R 0 1 2 3 4 5 6 7 P

T

0 0 1 1 0 1 0 1 0 1 -- TxD expected serial stream

-------------------------- Time

 0 1 0 1_ 0 1 1 0 -- CPU data Hex 56

This output, and the generation of the Interrupt signal is demonstrated in these two

figures. The pending interrupt register (PIR) has a value of 00011000, meaning

that the transmit model got to the empty state (from a FIFO having a count value

of ONE and then to ZERO). In addition, the transmit model got OFF the almost-

empty state (i.e., had reached the almost-empty, and is now OFF that level).

5520 ns ===

4720 ns ** CPU WRITE @ 00 MODEM & PARITY: DTR, Parity Enb, Parity Bit =

00000000
4720 ns Tasked: DTRn & Parity Ctrl = 1 00

5280 ns -- CPU -- **** *********** CPU 5 to 15 ***************

5360 ns CPU Subroutine to: c:/uart/cpu5to15.txt

5440 ns ===

5520 ns ===

5600 ns -- file c:/uart/cpu5to15.txt

5680 ns Test # 5 Transmit protocol

5720 ns Tasked: ENVSETUP RIn CTSn DSRn DCDn = 0111

5800 ns ** CPU WRITE @ 10 XMT INTRPT: Reset, Xmt Intrpt enb(4..0) = 00011111

5800 ns Tasked: Xmt reset & Xmt intrpt env = 111

5920 ns ** CPU WRITE @ 11 XMT DATA = X_56

5920 ns Tasked: Write Xmt data = X_56

8080 ns Tasked: ENVSETUP RIn CTSn DSRn DCDn = 0011

10200 ns Tasked: ENVSETUP RIn CTSn DSRn DCDn = 0001

12320 ns Tasked: ENVSETUP RIn CTSn DSRn DCDn = 0000

14480 ns ** CPU READ @ 10 XMIT PIR: (ERR, MT, AMT, HF, AF, FL) = 00000000

20520 ns Interrupt line = 10

34560 ns ** CPU READ @ 10 XMIT PIR: (ERR, MT, AMT, HF, AF, FL) = 00011000

34560 ns Interrupt line = 00

34680 ns --> Test 5, XMT PIR EMpty reached

Figure 6.5.8.2-1 Report Log of a CPU tasking the UART to send DATA

(Generated by the Verifier Model)

Parity is Disabled

CPU Write DATA for Xmit

Enable Interrupts

Interrupt Occurred.

Read PIR

226 Component Design by Example

Figure 6.5.7.2-1 Waveform View of a CPU tasking the UART to send DATA

(Generated by ModelSim)

Interrupt

Occurred.

Read PIR

START

LSB

MSB

STOP

Design Verification 227

ModelSim provides a built-in statement code coverage feature that provides graphical and

report file feedback on how the source code is being executed. It allows line number

execution statistics to be kept by the simulator. Note that statement code coverage is only

one of the many coverage features that can be measured. For example, TransEDA

Verification Navigator4 provides the following additional coverage metrics, including

branch, condition and expression, path, toggle, triggering, and signal-tracing coverages5.

Figure 6.5.8.2-2 is a copy of the graphical view of the statement coverage. Figure 6.5.8.2-

3 demonstrates areas of the FIFO code where statements were never visited during the

simulation. That was the case of a simultaneous push and pop operation.

 Figure 6.5.8.2-2 Graphical View of the Statement Coverage for the UART

Model Simulation

4 http://www.transeda.com

5 See Verification Methodology Manual for Code Coverage in HDL Designs,

Michael Stuart & David Dempster, isbn 0-9538-4820-5, Teamwork International

2000

228 Component Design by Example

Design Verification 229

Figure 6.5.7.2-3 Statements of FIFO never visited during the simulation

6.5.8.2.1 Regression Tests, Gray Box RTL versus Black Box RTL

The gray box verification model, with visibility into internal synchronization

signals of the RTL model (e.g., the transmit FIFO push and pop), produced results

with no reported errors. However, the black box verification model, with a timing

estimate of the critical events of the RTL model, produced errors that after analysis

were false. This is because the calculated state of the UUT as computed by the

verifier is not synchronized (i.e., in error) to the UUT's state. Figure 6.5.8.2.1

represents an example of this false error condition:

ZONES OF NO

STATEMENT

COVERAGE

230 Component Design by Example

Gray Box Log, RTL UART – Good Cycle Synchronization (UUT and

Verifier)
354880 ns Test # 6 Transmit protocol CPU writes "n" words into bu
354960 ns ** CPU WRITE @ 10 XMT INTRPT: Reset, Xmt Intrpt enb(4..0) = 00010000

354960 ns Tasked: Xmt reset & Xmt intrpt env = 000

355080 ns ** CPU WRITE @ 11 XMT DATA = X_AB

355080 ns Tasked: Write Xmt data = X_AB

355440 ns ** CPU WRITE @ 11 XMT DATA = X_D5

355440 ns Tasked: Write Xmt data = X_D5

355560 ns ** CPU WRITE @ 11 XMT DATA = X_EA

355560 ns Tasked: Write Xmt data = X_EA

355760 ns ** CPU WRITE @ 11 XMT DATA = X_75

355760 ns Tasked: Write Xmt data = X_75

357920 ns Wait for Interrupt 10

555440 ns Interrupt line = 10
555520 ns ** CPU READ @ 10 XMIT PIR: (ERR, MT, AMT, HF, AF, FL) = 00011111

555520 ns Interrupt line = 00

555640 ns --> Test 6, XMT PIR Emptied reached

Black Box Log, RTL – Poor Cycle Synchronization (UUT and Verifier)
354880 ns Test # 6 Transmit protocol CPU writes "n" words into bu
354960 ns ** CPU WRITE @ 10 XMT INTRPT: Reset, Xmt Intrpt enb(4..0) = 00010000

354960 ns Tasked: Xmt reset & Xmt intrpt env = 000

355080 ns ** CPU WRITE @ 11 XMT DATA = X_AB

355080 ns Tasked: Write Xmt data = X_AB

355440 ns ** CPU WRITE @ 11 XMT DATA = X_D5

355440 ns Tasked: Write Xmt data = X_D5

355560 ns ** CPU WRITE @ 11 XMT DATA = X_EA

355560 ns Tasked: Write Xmt data = X_EA

355760 ns ** CPU WRITE @ 11 XMT DATA = X_75

355760 ns Tasked: Write Xmt data = X_75

357920 ns Wait for Interrupt 10

555440 ns Interrupt line = 10
555520 ns ** CPU READ @ 10 XMIT PIR: (ERR, MT, AMT, HF, AF, FL) = 00011111

555520 ns `` XMT PIR Empty Error Observed PIR = 00011111 Expected PIR =

00000111

555520 ns `` XMT PIR almost Empty Error Observed PIR = 00011111 Expected PIR = 00000111
555520 ns Interrupt line = 00

555640 ns --> Test 6, XMT PIR Emptied reached

Figure 6.5.8.2.1 False Error Reporting because of Lack of Cycle

Synchronization between UUT and Verifier

False error

reporting by

verifier

Design Verification 231

6.5.8.2.2 Regression Tests, Black Box RTL versus Black Box Gate

The gate level model was generated by Altera from the Synplify generated EDIF

file. The gate level model matched the performance of the RTL model, with the

exception of gate delays. Below is an example of the log reports.

Back Box Gate
14480 ns ** CPU READ @ 10 XMIT PIR: (ERR, MT, AMT, HF, AF, FL) = 00000000

20541 ns Interrupt line = 10

34560 ns ** CPU READ @ 10 XMIT PIR: (ERR, MT, AMT, HF, AF, FL) = 00011000

34582 ns Interrupt line = 00

Black Box RTL
14480 ns ** CPU READ @ 10 XMIT PIR: (ERR, MT, AMT, HF, AF, FL) = 00000000

20520 ns Interrupt line = 10

34560 ns ** CPU READ @ 10 XMIT PIR: (ERR, MT, AMT, HF, AF, FL) = 00011000

34560 ns Interrupt line = 00

The Gray box gate level could not be easily simulated without code changes to

access the internal push and pop signals of the transmit logic within the UART.

6.5.8.2.3 Client with Generation Framing Error

The UART_CLIENT (file uart_client_bad.vhd) generates framing error because it

can generate more CPU transmission requests than the buffer within the UART

can handle. It is included here to show the potentials of transactions that can be

created. An example of reported errors is shown below:

24943680 ns Uart_client detected error in XMT Err bitObserved PIR = 100011Resetting XMT

side

24943920 ns Uart_client detected error in MT Err bit. Observed PIR = 100011Sending new data

26375840 ns Uart_client detected error in XMT Err bitObserved PIR = 111111Resetting XMT

side

26757920 ns Uart_client detected error in XMT Err bitObserved PIR = 100011Resetting XMT

side

26758160 ns Uart_client detected error in MT Err bit. Observed PIR = 100011Sending new data

26807480 ns `` XMT Data error Parity ON Observed TXD data = 11101100

Expected TXD data = 11110111

26896640 ns `` XMT Data error Parity ON Observed TXD data = 11101101

Expected TXD data = 11111011

6.5.9 Reading Text File into a Linked List

The parser package (tb/parser_tb.vhd) includes a procedure called GetData that collects a

file of data in Hex notation into a linked list. This can be used in a client (or in a special

parser instruction) to collect the data from a file, and then use that data from the linked list.

The data types and procedures are shown below. Figure 6.5.9 is a sample code that

demonstrates a trivial application of this procedure.

232 Component Design by Example

 -- Pointers for use in loading data from a file of undeterminate length

-- type DataRec_Typ; -- incomplete type

-- type DATAPNTR_TYP is access DataRec_Typ;

-- type DataRec_Typ is record

-- Data : std_logic_vector(WordWidth_c - 1 downto 0); -- 7 .. 0

-- NextP : DATAPNTR_TYP;

-- procedure GetData -- in Parser_Pkg --- DATA is in HEX in the file

-- (constant FileName_c : in string;

-- variable DataPntr_v : inout DATAPNTR_TYP);

-- Compile: vcom -explicit -work work_lib -93 vhdl/tb/filedata.vhd

architecture RTL of filedata is -- file tb/filedata.vhd

 signal Data : std_logic_vector(7 downto 0);

begin -- architecture RTL

 GetDataFromFile_Proc : process is

 variable Head_v : DATAPNTR_TYP;

 variable TempPtr_v : DATAPNTR_TYP;

 variable L : Line;

 begin -- process GetDataFromFile_Proc

 wait for 100 ns;

 GetData (FileName_c => "c:/uart/data8.txt",

 DataPntr_v => Head_v);

 report "Send File data from: c:/uart/data8.txt";

 while Head_v /= null loop

 Data <= Head_v.Data; -- copy data

 HWrite(L, Head_v.Data);

 Writeline(Output, L);

 TempPtr_v := Head_v;

 Head_v := Head_v.NextP; -- advance pointer

 Deallocate(TempPtr_v); -- remove original item since it was consumed

 wait for 100 ns;

 end loop;

 report "Done data, end of sim";

 wait;

 end process GetDataFromFile_Proc;

end architecture RTL;

Figure 6.5.9 Sample Code Demonstrating the Application of the GetData

Procedure (tb/filedata.vhd)

Simulation Transcript

run 1 ms

restart

run 1000 ns

** Note: Send File data from:

c:/uart/data8.txt

Time: 100 ns Iteration: 0 Instance:
/filedata
B8

A0

76

01

FE

FF

** Note: Done data, end of sim

7 DOCUMENTATION AND

DELIVERY

The documentation format for the UART component follows the Motorola

Semiconductor Reuse Standard SRS06 Doc, Version 2.0, 10 DEC 19991. This

document is included on the CD. It is copyright of Motorola, and is used by

permission.

The purpose of this chapter is to demonstrate the various entries of a component

document. Many of the entries in this documentation chapter are discussed in

other chapters. Thus, to avoid repetition, only references to the chapters are

provided whenever applicable.

This chapter also includes the spreadsheet calculations as defined by OpenMORE

Assessment Program2, the Industry Reference for IP Measure of Reuse

Excellence. The CD includes a copy of the downloaded Excel spreadsheet. The

numbering system for the documention starts at 2.0 because it is intended to

represent a stand-alone document based on the Motorola’s Semiconductor Reuse

Standard. Therefore, it does not follow the chapter numbering system.

1 http://www.mot-sps.com/technology/srs/index.html

 IP/VC Block Deliverables Semiconductor Reuse Standard

2 http://www.openmore.com

http://www.mot-sps.com/technology/srs/index.html

234 Component Design by Example

Section 2 IP/VC Block Deliverables
2.1 Introduction
This section describes the deliverable requirements for IP/VC blocks. Virtual Component

(VC) is defined by the Virtual Socket Interface Alliance (VSIA). The IP/VC Deliverables

are the set of views in specified formats that must be submitted by the IP/VC Creator to

allow for easy reuse and integration by SoC developers. These deliverables are stored in

the IP Repository and are available to the Motorola design community through the Web.

The SRS IP/VC Deliverable Standards are based on close collaboration with the

Motorola SPS design community and are following industry standards such as the VSIA

standards

.

This document describes the deliverable items for the UART model.

2.2 Reference Information

2.2.1 Documented References

See chapter 2, 3, 4 5, 6 of this book.

2.2.2 Terminology

See chapter 2 of this book.

2.3 Deliverable Overview

The IP/VC Block deliverable requirements for the SRS are listed in Table 2-1.

Each deliverable has its own unique identification listed in the SRS ID column.

The release phases are explained in 2.3.2 Phased Release of Deliverables and

listed in the Release Phase column. The standard data formats selected for each

deliverable are included in the Format Standard column. Entries in the Soft, Hard

and Analog columns indicate whether the deliverable is a mandatory (M) or

recommended (R) deliverable for soft, hard or analog IP/VC blocks. Finally, the

VGS column indicates whether the deliverable is created by the View Generation

System, a design environment for the creation of IP/VC deliverables.

RULE 2.3.1 All mandatory IP/VC deliverables must be created and provided by

the IP/VC creator.

GUIDELINE 2.3.2 It is recommended that all recommended IP/VC deliverables

are created and provided by the IP/VC creator.

Pages 13 through 19 of the Semiconductor Reuse Standard are included herein.

Documentation and Delivery 235

Pg 13

236 Component Design by Example

Pg 14

Documentation and Delivery 237

Pg 15

2.4 Data Organization for the Packaging of Deliverables

238 Component Design by Example

Pg 16

Documentation and Delivery 239

Pg 17

240 Component Design by Example

Pg 18

Documentation and Delivery 241

Pg 19

242 Component Design by Example

2.5 Deliverables Descriptions

2.5.1 General Deliverables

2.5.1.1 Metadata

The Metadata information is an important part of the IP Repository

infrastructure. It enables the search and query of the IP/VC database by the

IP/VC users. Metadata is information about the IP/VC block that is searchable

and contained in the IP Repository database. The Metadata can be divided into

two categories: 1) information conveying IP/VC characteristics such as die size,

name, target library and speed; and 2) usage information, including reuse count

and history, products used and lists of users. This Metadata is necessary to

facilitate the search and management of the IP/VC block data in the IP

Repository.

Table 2.5.1.1 represents a summary of the UART Metadata

Table 2.5.1.1 UART Metadata

Metadata Name Description

UART Module name

Description EIA standard serial data communication RS-232 UART.

Version Rev 1.0

Status Submitted, verified, but could use more verification tests

Keywords UART, FIFO, RS232

DateLoaded August 28, 2000

OwingOrganization VhdlCohen Training and Consulting,

http://www.vhdlcohen.com

ContactPerson Ben Cohen, vhdlcohen@aol.com

PatentInformation This software can freely be used in conjunction with the book

Component Design by Example, authored by Ben Cohen.

IP/VCTypesList UART, FIFO, CPU Interface

IP/VCLibrary Digital IP

ChangeRequestList none

NotificationList None

IntegrationList None

SRSVersion
(Compliance)

Does not apply

Certification Target Uncertified

CertificationGrade Uncertified

CertifiedBy Uncertified

ClassificationGrade Does not apply

PhaseStatus Phase 1 completed

DesignSystem For Component Design by Example book

Metadata Name Description

DesignStyle VHDL code retargetable to any library

http://www.vhdlcohen.com/

Documentation and Delivery 243

Parameters Width_g -- Bits/word

 Depth_ -- fifo depth

 ae_level_g -- Almost empty level

 af_level_g -- Almost full threshold

 Asynch_g -- asynchronous, synchronous

BlockType Soft

DocFormat Hard bound book

BusType RS232, generic CPU bus

EndianType Little

RTLBlockCov 98

Comment 98% statement coverage

SimLang VHDL

SimEnv VHDL testbench with text command files

SimEnvVersion 1.0

ACTestCov 0

ACTestCoMethod None

ScanMethod None

TestStrategy None

TesterType None

DCAtpgTestCov 0

DCFaultCon
FuncPatt

0

RegMemCov
Method

None

DRCRunset None

DRCRunsetVersion None

LVSRunset None

LVSRunsetVersion None

SimEngine ModelSim EE

SimEngineVersion 5.4B

RTLCovTool ModelSim EE

RTLCov
ToolVerison

5.4B

DFTtool None

DFTtoolVersion None

AtpgTool None

AtpgToolVersion None

STA Tool Synplify and Altera Max+Plus II

STA ToolVersion Synplify 5.3.1 and Altera Max+Plus II 9.4

FormalVerification
Tool

None

Metadata Name Description

FormalVerification
Tool version

None

PowerEstimation
tool

None

244 Component Design by Example

PowerEstimation
tool version

None

PlaceRouteTool Altera Max+Plus II

PlaceRouteTool
Version

9.4

PhysicalVerTool None

PhysicalVerTool
version

None

AnalogSim Tool None

AnalogSim
ToolVersion

None

MixedSignalSim
Tool

None

MixedSignalSim
ToolVersion

None

Comment Synthesis and timing optimization performed with Synplify
5.3.1,
Layout and timing performed with Altera Max+Plus II 9.4

Technology
Specific Metadata

TECHNOLOGY FPGA, ASIC

TargetLib Altera EPF10K10LC84-3

ProcessVariations NA

WaferFab NA

PinsNumber 37 for 8-bit configuration

MAX_SPEED 43 MHz

MAX_Power TBD

AV_Power TBD

GATE_COUNT 1400

AREA TBD

Width TBD

Height TBD

NumMetalLayers NA

XdirPorosity NA

YdirPorosity NA

YdirPorosity Code written in RTL, can be targeted into any technology.
Checkout out with Altera EPF10K10LC84-3

Documentation and Delivery 245

2.5.1.2 Errata Information

Errata Information details identified bugs, possible workarounds or impact to a

design utilizing the block. This is not a separate document but will be available

from the IP Repository web. Notification will be provided to users of an IP as

soon as Errata Information is available.

None. However, for proper operation, software must read the transmit pending

interrupt register (PIR) before writing more data for transmission. In addition,

software must read the receive pending interrupt register before reading received

data. The READ of a PIR is an atomic read/clear operation.

2.5.1.3 Certification Documents

Certification Documents are intended to provide information regarding the

results of the self-certification process by the IP Creator. Certification reports

and checklists need to be provided along with the IP/VC. Details regarding these

documents can be found in Section 3 Certification.

Does not apply for this book

2.5.2 Documentation Deliverables

2.5.2.1 One Pager

The One Pager is primarily a technical document that provides prospective users

with details about this IP/VC block. Users will search the IP Repository for blocks

that match their requirements based on the technology specific Metadata (see

Table 2-4). When one is found, the One Pager can be downloaded and provides a

brief description of the features and capabilities of that particular IP/VC. It

should include the data that is necessary for an engineer to perform a quick

evaluation of the IP/VC. It will also include information such as an overview,

features, modes, functional description with its scope and characteristics,

parameter options and logical and physical implementation attributes.

Please refer to chapter 2 of this book under Requirement specification, section 4.0

Architectural overview.

246 Component Design by Example

2.5.2.2 Core/Block User Guide

The Core/Block User Guide is intended to provide information to the end

consumer of the SoC design in which the IP/VC block is incorporated. This guide

should include the data that is necessary for an engineer to design a product

using the SoC chip. This will include information such as the electrical

specification, register definitions, software access requirements and details of the

functionality of the IP/VC block.

Please refer to chapter 5 of this book

2.5.2.3 Analog Design Guide

Does not apply

2.5.2.4 Integration Guide

The Integration Guide is intended to provide information to the SoC designer who

will incorporate this IP/VC block. This guide should include the data that is

necessary for an engineer to design a SoC using this IP/VC block. This will

include information such as gate count, power requirements, physical layout

interface, test interface, functional verification strategy and any other data

required to smoothly integrate this IP/VC block into a SoC design.

Please refer to chapter 8 of this book under Application of VC into higher level

designs

2.5.2.5 Test Guide

The Test Guide describes the test strategy for the IP/VC block. This document will

specify the structures and methodologies required to make the IP/VC block

testable in a SoC. All design approaches required to accommodate high quality

and manufacturable testing will be described.

This is beyond the scope of this book.

2.5.2.6 Verification Guide

The Verification Guide is a document that details the verification strategy and

environment used for functional verification of an IP/VC block. This includes

descriptions of bus monitors and models as well as the concepts of the

testbenches.

Please refer to chapter 4, Verification Plan and chapter 6 Design Verification of

this book.

2.5.2.7 Schematics

Documentation and Delivery 247

The Schematics are intended to provide information to both the analog and SoC

designers to visually communicate the circuit design and topology of an analog

block. These can describe the design either hierarchically with multiple pages or

as a flat design with a single or multiple pages. Identification of critical

components and/or parameters, functional block areas and special notes can be

used to more clearly communicate design attributes.

Please refer to chapter 5 of this book, Design and Synthesis.

2.5.2.8 DFMEA

The Design Failure Mode Effects Analysis (DFMEA) document is required as

part of QS9000 compliance. The DFMEA consists of a standard form, which is

provided as a separate template.

This is beyond the scope of this book.

2.5.3 Creation Guide

The Creation Guide provides detailed information about internal attributes of a

design and the environment in which it was created, so that designers can

recreate the original environment and change the design. Information in the

Creation Guide is critical for blocks that can be changed as a part of chip

integration. The information is not as critical for blocks delivered as hard

macros, or for core designs that cannot be modified, but is useful for reviewing

design decisions and trade-offs.

The design models were written in VHDL code that is compliant to the style

described in IEEE P1076.6 Standard For VHDL Register Transfer Level

Synthesis, with the exception of the use of VHDL'93 syntax instead the VHDL'87

syntax. Problems are not envisioned with this design approach because most

synthesis tool vendors conform to this standard, and with the '93 syntax. In

addition, the testbench design in vendor independent because it uses VHDL with

no reliance on vendor specific PLI.

The tools used for this design are described in section 7.5.1.1, and were proven

reliable in industry. Therefore, there is little risk in recreating the design

environment for this UART.

248 Component Design by Example

2.5.4 Logic Design Deliverables

2.5.4.1 Synthesizable RTL Source Code

The Synthesizable RTL Source Code is a soft representation of the IP/VC block

that completely and accurately models the functionality of the IP/VC block in

supported RTL simulators and can be fully implemented in gates by using a

supported synthesis tool.

See chapter 5 of this book, design and synthesis.

2.5.4.2 Synthesis Scripts

The Synthesis Scripts will be provided as a file to be read by the supported

synthesis tools. This file will contain all the instructions necessary to transform

the RTL code for the IP/VC blocks into a gate-level implementation.

See chapter 5 of this book, design and synthesis

2.5.4.3 Synthesis Constraints

The Synthesis Constraints will be provided as a file to be read by the supported

synthesis tools. This file will contain all the instructions necessary to transform

the RTL code for the IP/VC blocks into a gate-level implementation. The

constraints will include area and timing considerations. With these constraints,

SoC designers should be able to retarget an IP/VC block to a new technology

quickly and easily.

See chapter 5 of this book, design and synthesis. For this book, no constraints

were imposed on this design.

2.5.4.4 Synthesis Model

The Synthesis Model is a tool-dependent representation of the IP/VC Block for a

given IC design process. While soft IP/VC is independent of a particular library,

a Synthesis Model deliverable is required for a hard IP/VC block. This Synthesis

Model is used in conjunction with other synthesis libraries, such as standard cell

libraries or other hard IP/VC, when synthesizing a SoC.

See chapter 5 of this book, design and synthesis

2.5.5 Physical Design Deliverables

This is beyond the scope of this book.

2.5.6 Design-for-Test and Manufacturing-Related Test Deliverables

This is beyond the scope of this book.

2.5.7 Functional Verification Deliverables

2.5.7.1 Testbench

Documentation and Delivery 249

The Testbench deliverable consists of the components required to exercise the

IP/VC block via traditional simulation methods that identify differences between

expected and actual behavior. The components are part of a structured

verification approach that exercises the IP/VC block with transaction-based

stimulus. A block behavior checker may also be provided with the Testbench.

Block behavior checkers ensure the IP/VC block is performing the correct

function. It works in conjunction with monitors that check for protocol violations.

The block behavior check makes sure an operation should be happening. The

Testbench consists of the following components:

Interface Drivers: Modules that drive the IP/VC block interface(s). The driver

converts a transaction command into the proper protocol that the IP/VC block

understands.

Interface Monitors: Modules used to detect protocol errors and provide

abstractions of activity on the interfaces of the IP/VC block.

Stimulus: Block and system-level test case for functional verification. The

stimulus is a sequence of transactions executed by the IP/VC block and Testbench

components. Expected results may be part of the stimulus. If expected results are

not part of the stimulus, a model of this must be provided to prove correct

operation (see Models below).

Top Level Netlist: Structure that instantiates the IP/VC block and necessary

verification components to exercise the IP/VC block.

Models: All models necessary to simulate the device for functionality. This may

include: internal and external memory models, clock models, pad models and

IP/VC block behavior models that run as part of the simulation.

Scripts: Necessary programs to build, run and debug the Testbench.

Configuration Files: Files required for the stimulus, drivers, monitors and

models. For example, there may be text files to regulate the mode of operation for

the IP/VC block or interface drivers.

See chapter 6 of this book, design verification.

2.5.7.2 Interface Model

An Interface Model is a component model that describes the operation of a

component with respect to its surrounding environment.

This is beyond the scope of this book.

250 Component Design by Example

2.5.7.3 Instruction Set Accurate (ISA) Model

An Instruction Set Accurate (ISA) Model describes the function of the complete

instruction set recognized by a given programmable processor, along with (and

as operating on) the processor’s externally known register set and memory/input-

output (I/O) space.

This is beyond the scope of this book.

2.5.7.4 Behavioral Model, Full Functional Model

This model is also called detailed-behavioral model by the VSIA. The Behavioral

Model, Full Functional Model (FFM) is used for simulation purposes. It is

developed in C (PLI interface) or Verilog RTL. It is fully accurate for data and

timing. It provides the detailed, cycle-by-cycle behavior of the module. The Full

Functional Model represents the full functionality of the block / core.

This is beyond the scope of this book..

2.5.7.5 Gate-Level Model, Full Functional Model for ATPG resimulation

The gate level model for the EPF10K10LC84-3 device produced by Altera's

MAX+plus II Compiler is included in file gates/uart.vho

2.5.7.6 Clock Cycle Accurate Model

The Clock Cycle Accurate Model provides accurate cycle counts for each

instruction that is processed, in terms of a regular system clock. Events occurring

during the processing of an instruction are indicated with exact precision as to

which clock cycle they occur in.

This is beyond the scope of this book.

2.5.7.7 Stub Model

The Stub Model is a very simple model that includes only the module definition as

well as a list of all inputs, outputs or bidirectional signals the IP/VC block may

have. Specific output values can be assigned.

This is beyond the scope of this book.

2.5.7.8 Formal Runtime Constraints

In the case that formal verification was being used in the soft IP development

process, the Formal Runtime Constraints can be reused for the formal verification

of another synthesized representation of this soft IP.

This is beyond the scope of this book.

Documentation and Delivery 251

2.5.7.9 Formal Equivalency Scripts and Data

In the case that formal verification was being used in the soft IP development

process, the Formal Equivalency Scripts and Data can be reused for the formal

verification of another synthesized representation of this soft IP.

This is beyond the scope of this book.

2.5.8 Design Analysis Deliverables

2.5.8.1 Timing Model

The Timing Model provides the characterized timing of the IP/VC block. It is

generated from an actual characterization of the IP/VC block using the target

library characterization conditions.

This is beyond the scope of this book.

2.5.8.2 Power Model

The Power Model provides the characterized power of the IP/VC block. It is

generated from an actual characterization of the IP/VC block using the target

library characterization conditions. The Power Model can be used for power

analysis of an SoC design.

This is beyond the scope of this book.

2.5.8.3 Autobond Class File

This file is required for Autobond to run. It is automatically generated by the VGS

and contains basic information about the module name as well as input and

output pins.

This is beyond the scope of this book.

2.6 Design Status and Recommendations

This section is not in the Motorola guidelines. However, it is important to

document the status and maturity of the design, particularly if there are certain

known problems, and/or certain tests were not performed due to schedule or cost

issues.

2.6.1 Status

The UART design was tested with the following values for the generics:

 Width_g 8 Bits/word

 Depth_g 4 fifo depth

 ae_level_g 1 Almost empty level

 af_level_g 3 Almost full threshold

 Asynch_g 1 asynchronous

252 Component Design by Example

The statement code coverage revealed that not all cases of the RTL were

traversed. For example, the condition where the transmit logic was storing data

into the transmit FIFO (i.e., Push) with a simultaneous extraction from the FIFO

(i.e., POP) was not verified. Only statement coverage was used in the design

verification.

2.6.2 Suggested Work

Should this UART be used for inclusion in a subsystem, the following work is

suggested:

1. Simulate the design with different values of generics.

2. Create testcases that would enhance the code coverage.

3. Use all coverage categories (toggle, triggering, trace) to further evaluate

the accuracy of the design and the thoroughness of the test vectors.

4. In the verifier model, add the correlation between the error and the

requirement item number.

5. Add required design constraints in the synthesis script or constraint file to

achieve the desired performance (area/speed).

2.7 OpenMore

Below is the spreadsheet calculation as defined by OpenMORE Assessment

Program3, the Industry Reference for IP Measure of Reuse Excellence. This

UART design scored 418 out of 618, or 63%. This is relatively a low score.

However, the design was intended for education of the front-end processes, rather

the fabrication of a full-pledged UART.

3 http://www.openmore.com

Documentation and Delivery 253

Openmore 1/10

254 Component Design by Example

Openmore 2/10

Documentation and Delivery 255

Openmore 3/10

256 Component Design by Example

Openmore 4/10

Documentation and Delivery 257

Openmore 5/10

258 Component Design by Example

Openmore 6/10

Documentation and Delivery 259

Openmore 7/10

260 Component Design by Example

Openmore 8/10

Documentation and Delivery 261

Openmore 9/10

262 Component Design by Example

Openmore 10/10

8 INTEGRATION OF

COMPONENTS INTO

DESIGNS

This chapter addresses the integration of the UART component into higher-level

designs. It also addresses the generic issue of integrating components into

designs.

264 Component Design by Example

8.1 APPLICATION OF UART INTO HIGHER LEVEL DESIGN

Components, Intellectual Properties, or subblocks are typically inserted into

higher levels of hierarchy through component instantiations. Figure 8.1 represent

the UART model instantiated into a higher level of hierarchy with slightly

different top-level interfaces. Specifically, the output is tri-stated and the

read/write control signals are merged at the top level into a single signal. In

addition, there is only one chip select control signal. The attached code

demonstrates this model.

Figure 8.1 UART Instantiated into A Higher Level of Hierarchy

(generated by Synplify)

Integration of Components into Designs 265

Uart_level2 1 of 3

266 Component Design by Example

uartlevel2 2 /3

Integration of Components into Designs 267

uart level 2 3 of 3

268 Component Design by Example

8.2 HIGHER LEVEL COMPONENT INCLUSION AND INTEGRATION
1

8.2.1 Motivation for Change

Today’s semiconductor technology allows designers to build chips with millions

of transistors. Future manufacturing advancements promise to increase this size,

thus allowing complex systems to be built on a single piece of silicon. At the

same time, market competition is shortening product life cycles to less than the

traditional product design time in some cases. Time to market is a critical issue,

and is impacted by the definition and verification of the requirements and the

resultant synthesized hardware. Furthermore, system companies must also cope

with an increasing number of product derivatives and a decreasing number of

available designers. Thus, the semiconductor industries as well as their customers

at system companies are both faced with the problem of increasing complexity

and diminishing design capability.

Increased IC density and shortening time to market are nothing new. Every

decade or so, a methodological shift occurs in IC design. We relegate well-

understood tasks to software applications and algorithms that increase

productivity by freeing designers from low-level design details. Biasing

transistors and interconnecting discrete three-terminal devices occupied the

attention of thousands of electrical engineers doing system and IC design 30 years

ago. The shift to gate libraries eliminated the need for that level of detail as IC

transistor density increased and time to market shortened. The uses of schematic

capture tools and place-and-route algorithms eliminated the need for designers to

hand instantiate every small gate instance, again representing a paradigm shift in

IC design methods and productivity. Roughly 10 years ago, logic synthesis

became the widespread method for allowing designers to ignore gate level detail

and focus on RTL based IC design. Now the same forces of IC transistor density

and time-to-market pressure have set the stage for the adoption of another

increase in design abstraction and an accompanying design methodology and

optimized tools.

1 Extracted by permission from the Y Explorations, Inc. website

http://www.yxi.com

http://www.yxi.com/

Integration of Components into Designs 269

The solution lies, as in the past, in increasing the level of design abstraction and

thus reducing the number of objects a designer has to deal with during the design

and verification of a System on a Chip (SoC). To achieve these objectives, raising

the level of abstraction must be done in all aspects of the design process including

(a) design specification and algorithms, (b) design descriptions and architectures,

(c) design components and libraries, and (d) design testing and verification. In

order to move to higher levels of abstraction the design community must also

introduce standardization in languages, models, architectures, interfaces,

protocols and other high-level concepts.

8.2.2 Related Industry Trends

Market pressure towards a shortened design cycle combined with worldwide IC

designer shortages are globally impacting IC design process and business

strategy. Systems companies have excellent expertise in their particular

application domains and are interested in designing and manufacturing ICs

quickly, but not necessarily in house. On the other hand, semiconductor

companies are interested in attracting more customers, thus increasing the volume

of their production. Therefore, both system companies and semiconductor

vendors are now interested in using large megacells or cores, also commonly

called semiconductor Intellectual Property (IP), in the design of their systems on

silicon.

There are several hundred companies developing and marketing soft and hard IP

cores. Soft cores are synthesizable high-level descriptions and are not process

technology dependent. In contrast, hard cores are process technology dependent,

and as a result can guarantee IP performance characteristics. Soft cores may not

satisfy, the performance requirements in every possible process technology, but

provide flexibility in moving from one technology or methodology to another.

In order to most effectively and efficiently compete in a global SoC market, to

both shorten design cycles, and to improve designer productivity, companies must

consider the following:

1. Maximize reuse of their own existing (or legacy) cores, and

2. Use of cores from other sources or IP providers, as depicted in Figure

8.2.2.

270 Component Design by Example

Figure 8.2.2 System Integration Using a Core-Based Design Methodology

The success of a core-based design methodology primarily depends on two key

interdependent players: (1) core providers and (2) core integrators, as depicted in

Figure 8.2.2. Core providers must develop, maintain, support and administer the

distribution of cores. Core integrators require IP specification, exploration and

assembly of complex IP in a fraction of the time currently spent in these areas.

On the IP provider side, the generation of cores requires the following issues be

resolved:

1. Definition of suitable cores with high usability, such as standard

processors, protocols, encoding/decoding standards, frequently used

multimedia algorithms, and others.

2. Design of these cores with a proper set of parameters to cover a broad

segment of the market.

3. Packaging these cores with proper interfaces and documentation so they

can be easily used.

4. Developing methodologies for reuse of these components during standard

design flow (IP plug-and-play).

5. Developing proper business and customer models for distribution and use

of cores.

Support of cores requires capturing their functionality, electrical, mechanical, and

timing parameters, as well as, the characterization, verification and packaging of

cores for reuse by other EDA tools, designers and libraries. In other words, core

providers must develop proper core models for easy insertion into system design

for verification, simulation and testing. They also have to provide techniques for

generating interfaces between cores and the rest of the system and tools for

programming cores for specific use. Core maintenance deals with upgrades for

functionality and features and porting cores to different technologies.

Integration of Components into Designs 271

Administration requires marketing, accounting, and customer training in reuse

techniques for different cores and different application domains. When a third

party supplies cores or IPs, then administration must also include patenting,

licensing and royalty collections from IP users.

On the system integrator side, the integration of cores requires the development of

an infrastructure and a system-integration environment supporting design

specification, exploration, reuse, and verification. The essential tasks include

developing methodologies for (1) capturing design specification, (2) design space

exploration, (3) evaluating cores provided by various IP vendors and in-house

divisions, (4) design synthesis, and (5) design verification and testing. To create

complex designs, the specification requires the use of higher-level models for

design description. Exploration requires searching alternative algorithms,

architectures, and components that satisfy the system functionality and

constraints. This search is very difficult because of the variety of algorithms,

architectures and components and the myriads of ways to use them. Core

evaluation requires estimation of design quality metrics and measuring the

suitability of previously designed cores or imported cores. System integrators

must develop a design reuse strategy that can fully utilize existing cores for

productivity improvement. They also have to develop a design synthesis and

verification methodology that can easily and rapidly map the design specification

into a set of interconnected cores for verification and testing.

8.2.3 Types of IP Cores

Components can be divided into five categories: combinatorial, sequential,

storage, pipelined and cores. Combinatorial components such as adders,

multipliers, and shifters do not have any storage elements. Most frequently, they

perform arithmetic, logic and bit manipulation operations. They are characterized

by input to output delay. Sequential components such as counters, registers and

register files can be modeled by FSMs. In contrast to combinatorial components,

they have states defined by the values in their storage elements such as flip-flops.

Flip-Flops are controlled by clock signals. Storage elements such as RAMs,

ROMs, FIFOs, and Stacks behave as combinatorial components with complex

input/output protocols. Protocols define timing ranges between inputs and/or

outputs. Control and data inputs must satisfy these timing constraints for storage

elements to work properly. Storage elements may take several clock cycles to

read or store data, and may have several states. They differ from combinatorial

and sequential components by having asynchronous input and/or output protocols.

Pipelined components generally are components from the previous four

categories that are implemented such that the computation can be initiated with a

new data set before terminating the previous instance of computation. Such an

implementation increases the computation rate of the component over its non-

pipelined implementation. Megacells are complex, concurrent super-state FSM

272 Component Design by Example

with Dataflow (SFSMD) that may contain combinatorial components, sequential

components, storage components and other cores. Megacells interface via

complex input/output protocols and typically have many states and non-

deterministic execution time. The latter is because the execution time depends on

the function being executed and the data being supplied to it.

In general, controllers are implemented with flip-flops and gates, data paths and

processors with combinatorial, sequential, storage and pipelined components,

while IP-centric processors and systems are implemented with all types of

components. An IP can be any of the above types.

The main characteristic of a hard IP is that the IP itself has been previously

designed, thus, its characteristics such as timing, performance, and area can be

accurately measured or predicted. However, the implementation of a hard IP is

considered proprietary information, fully accessible only to the IP provider.

Methods used to regulate these restrictions include non-disclosure agreements

between IP buyer and seller, or encrypting the information.

On the other hand, a soft IP is always provided with a description of its

functionality that can be synthesized to fit any target technology. Hence,

characteristics of a soft IP are generally difficult to measure and predict because it

is dependent on many factors such as the optimization capability of the logic

synthesis algorithms used, the target technology, etc.

The above defined components and IPs are necessary and sufficient for design of

complex systems on silicon. Combinatorial, storage, pipelined and some

sequential components can be automatically reused by many of the existing

synthesis tools. However, up until now, there is no synthesis tool that allows all

these complex IPs to be automatically reused. This is the primary motivation that

drove the development of Reuse Automation tools from Y Explorations, Inc.

(YXI).

8.2.4 Reuse Automation through High-Level Synthesis

A synthesis methodology is defined as a set of models and a set of

transformations that refine the most abstract model, usually called the

(executable) specification, into a lower-level structural model, usually called the

implementation. A specification of a complete SoC is usually given with

something similar to either a Super-state Finite State Machine with Dataflow

(SFSMD) or a set of concurrent, hierarchical SFSMDs. The implementation is

usually described by the block diagram or a netlist of components in the given

library. Components in the library can be on system level, such as processors,

memories and cores, or on RTL level such as combinatorial and sequential

components, or on gate level such as gates and flip-flops.

Integration of Components into Designs 273

Top-down methodologies start from a specification and refine it into a set of

virtual components, which are further refined in subsequent steps until

components in the library are found. This methodology, therefore, synthesizes a

given specification from virtual components and then synthesizes each virtual

component by repeating the process until each component is mapped to gates.

The advantage of this methodology is that automatic synthesis tools that fit this

approach are readily available. However, its main disadvantage is that the virtual

components are not realistic, design quality metrics cannot be accurately

estimated, and, therefore, many design iterations are needed to satisfy

requirements, if convergence is possible at all. Furthermore, if the entire SoC is

implemented in terms of gates, the resulting estimations, number of design

iterations and the design itself could become unmanageable.

Bottom-up methodologies, in contrast, start by building simple components and

then using them to build more complex structures. This process repeats until the

design is completed. Applying this methodology to SoC designs would mean

building cores first, and then integrating them later to obtain the required

functionality. The advantage of this methodology is that component

characteristics are known before being used (especially in the case of hard cores);

therefore, design quality metrics can be accurately estimated. However, the

component may not fit the required functionality well and may have non-

matching protocols, which makes integration very difficult and costly because

interfaces must be created manually. Currently, this methodology is most

preferred by system designers for SoC designs. However, the approach requires

manual interface and control logic design in which most of the design time and

cost is in the interfacing and integration of IP cores.

The cost of SoC designs can be reduced by combining the best features from both

top-down and bottom-up methodologies. These are: 1) automatic synthesis and 2)

reuse of pre-designed cores or IPs. This combined design methodology is called

an IP-centric methodology. IP-centric methodology assumes that there exist

synthesis tools that can automatically reuse pre-designed cores or IPs. Using this

approach, the system designer first describes the specification of the system using

a high-level description language and design models described in previous

sections. Then, during the design process, the designer will explore the

possibility and cost of reusing components from the library that includes

proprietary cores and third party IPs. When a desired design solution or design

constraint is selected or determined, the synthesis tool is invoked to automatically

produce interfaces that integrate components and IPs together so that they will

perform the functionality given in the specification.

8.2.5 IP-Centric Synthesis Methodology2

274 Component Design by Example

This IP-centric synthesis methodology is intended to efficiently map higher-level

models into architectures by fully utilizing components, including in-house and

externally supplied IP cores. Such a design methodology is encapsulated in an

environment provided by Y Explorations, Inc. (YXI), a company specializing in

methodologies and tools for SoC design through IP Reuse Automation.

In contrast, to existing logic and behavioral synthesis EDA tools, YXI tools allow

users to employ all five different models to describe the design, focusing

particularly on SFSMD and concurrent SFSMD models. These models are given

in a high-level description language, presently VHDL or Verilog. In contrast to

other tools, the YXI tools also target IP-centric processor and system

architectures. The tools generate RTL models that are synthesizable by

commercially available logic synthesis tools. A further unique feature is YXI's IP

database format that stores (in an encrypted format) all types of components

including complex cores and IPs and their uses in a SoC design. In addition to

providing automatic high-level synthesis from VHDL or Verilog, the YXI

environment (as shown in Figure 8.2.5) supports a large degree of designer

interaction by allowing the option to override recommendations made by these

automated tools and fine-tune the resulting RTL design.

8.2.6 Summary and Recommendation

The traditional forces of shortening design cycles, combined with extraordinary

chip complexity are forcing change in approaches to designing and manufacturing

systems on silicon. The new SoC business model favors out-sourcing all but high

value added functions and keeping only necessary application domain knowledge

in-house. This business model favors new design methods in procuring and

reusing IPs. This IP reuse requires new technology, methodology and tools.

Tools like those supported by YXI, support this new paradigm based on

hierarchical concurrent communicating SFSMDs, IP-centric architecture and IP-

centric Reuse Automation methodology. Reducing everything to IC standard

cells is not efficient and not profitable since it requires many iterations and large

design teams that are difficult to manage. Design assembly from predefined cores

is more economical. Furthermore, cores may contain knowledge not broadly

available and allow flexibility of reprogramming and re-synthesis. This

methodology and Reuse Automation tools allow designers to quickly assemble

SoC designs from cores or IPs and automatically synthesize the functions not

performed by previously designed and verified cores. The tools also support a

unique IP database and tools for characterization and automatic integration of IPs

into SoC designs.

Integration of Components into Designs 275

Figure 8.2.5. The YXI eXplorations Environment (XE)

9 REFLECTIONS

This design experience brought up several issues related to requirement

definitions, RTL design, and verification. These issues and lessons learned are

discussed herein.

9.1 REQUIREMENTS

9.1.1 Realities

Ideally, the requirement specifications are 100% firm before starting any

implementation specifications or design effort. However, as one delves into the

design and gets a deeper understanding of the performance and holes in the

specifications, it often becomes necessary to update the requirement specification.

Some of the issues that surfaced during the design effort that caused a change in

the requirements are discussed in this chapter. Other requirement issues also

surfaced during the definition of the verification plan because it forced the revisit

of the requirements and the challenges of verifying correctness of the design.

Poorly stated or ambiguous requirements became obvious in this exercise.

9.1.2 Costs

GUIDELINE: Evaluate cost implications implied by the requirements.

Engineers tend to be perfectionists and often easily add unnecessary or

superfulous requirements for additional security and potential growth. However,

it is important to consider that any additional requirement causes additional costs

in all the phases of the design process, including:

1. Entry and review of the requirement document.

2. Entry and review of the architecture implementation document

Reflections 277

3. Entry and review of the verification plan

4. Design and debugging of the code (RTL, Behavioral)

5. Design of the testbench and the testcases

6. Design of the verifier

7. Synthesis optimization and timing

8. Back-end processes (testability insertion, regression, release simulations)

9. Documentation, software implications, etc.

Figure 9.1.2 demonstrates the ripple effects caused by an additional requirement.

Figure 9.1.2 Ripple Effects Caused by an Additional Requirement

278 Component Design by Example

In this UART model, an example of a potential superfluous, and initially trivial

addition to the specification, is the requirement for a second parity bit. This

change could be justified by the need of a higher error detection level. However,

this simple modification creates additional issues that are reflected into costs:

1. Where are the parity located in the serial format?

2. Are the parity bits organized as ODD and then EVEN, or EVEN and then

ODD?

3. What happens to the serial format if there is no parity? Are spaces inserted

instead of parity bits?

4. Should a one-bit parity be supported for compatability with the standard

RS232 format?

5. How should this one or two-bit parity selection be controlled?

The addition of a second parity modifies the FSM machines for the receive and

transmit logic. Additional tests modes and test cases must be supplied. The

verifier must add more code to verify these options.

The more complex FSMs may impact timing and resources. That would require

additional efforts in defining the constraints to achieve the desired performance.

Documentation must now include the effects of this additional parity bit.

The bottom line is that engineers should not be quick to the draw in adding

requirements without evaluating the cost implications and benefits implied by

those requirements.

9.1.3 System implications

GUIDELINE: Evaluate system implications implied by the requirements.

In the initial requirements, the FIFO status registers for the transmit and receive

functions were to be reported. This requirement appeared logical because it

would provide to a CPU information about the empty, almost-empty, half-full,

almost-full, or full status of each FIFO (transmit and receive). In addition, the

initial specification required that an interrupt would occur when the desired

enabled level was reached. However, after further analysis of the design, and

during the definition of the verification plan, it became apparent from a system's

operation viewpoint, that this requirement was somewhat meaningless. It is

incorrect to have the interrupt occur for the transmit portion of the logic when the

FIFO just reaches a trigger level. On the transmit logic, the trigger level would be

reached when the CPU writes data into the FIFO. For example, if the trigger level

is half-full, (e.g., 2), and two words are written into the FIFO, then it would be

incorrect to have an interrupt at that time. The interrupt is desired when the FIFO

gets off that half-full trigger level, or done sending enough data so that the FIFO

is just below the half-full level. This would allow the CPU to send more data.

Reflections 279

Another system implication is the value of the information obtained by reading

the status register. A more meaningful item would be the knowledge that the

trigger level was reached. This represents the value of the transmit and receive

pending interrupt registers (PIR). The PIRs would be latched when the trigger

level is reached, and then atomically cleared with the READ of the PIRs.

GUIDELINE: Evaluate the significance and accuracy of timing requirements.

The original specification specified that a new serial message shall be started

within fifty system clock cycles. That number was based on an assumed baud

rate. However, the baud rate is defined externally to the UART model, and fifty

system clock cycles will not necessarily satisfy this requirement.

Another weakness in the original specification was the lack of consideration in the

pipelining optimization for the transfer of consecutive queued messages.

Because of these two inadequacies in the original requirements in section 6.0, the

updated document was rephrased to read as follows:

If all the conditions for transmission are satisfied, and no transmission is in

progress, then a new serial message shall be started within two baud cycles.

If a message is queued no later than two baud cycles from the completion of

an on-going message, and all the conditions for the new message are satisfied,

then the new message shall immediately follow the on-going message with no

additional STOP bits between the two messages.

9.1.4 Consistency

GUIDELINE: Maintain symmetry in the transfer of information within the

design

The UART model consists of two separate, but related functions: the transmit and

the receive of serial data. The CPU provides individual controls to these two

functions. From a design, software programming, and verification viewpoint, the

information is easier to handle if it is symmetrical, or similar in nature. For

example, the identity of the bits within the PIR, and the interrupt enables are

maintained in the same bit positions, whenever possible (e.g. Empty, half-full,

etc.).

280 Component Design by Example

9.2 DESIGN

GUIDELINE: In specifying subblocks, evaluate the significance and

implications of the information provided by the ports. The subblock needs to

provide information that would otherwise be difficult or costly to generate outside

the subblock. Avoid the need to reconstruct information outside a subblock if that

information can easily be performed from within the subblock.

GUIDELINE: Evaluate the cycle timing implications when the subblock is used

in different partitions. Use the "generate" feature of VHDL to allow for various

applications of the subblock

GUIDELINE: Reset registers that would otherwise cause problems in the system,

and 'U's in the simulation. Initialize all registers to ZEROs, even if the desired

value is ONEs (such as the register that generates the DTRn signal). Use inverters

on the output of the registers (i.e., the RTL "not" function) to achieve the desired

inversions.

The goal of using subblocks is reuse. For this design, the FIFO model was the perfect

candidate for reuse since it used in the transmit and the received section of the UART.

The architecture of the FIFO was initially designed in a "generic" sense, where the output

of the FIFO was registered, and the FIFO provided status information (e.g., empty)

though its ports. The FIFO subblock was verified visually with a testbench. However, in

the integration of the FIFO in the final design, several surprises surfaced:

1. CYCLE TIMING: The cycle timing of the receive logic required that the

output occurs unregistered, whereas the transmit logic required a delayed

registered version. The code was modified with a generic as shown below.

 RcvFifo_Gen : if Xmt1_RCV0_g = 0 generate

 begin -- generate RcvFifo_Gen

 DataOut_r <= FIFO_r(RdPntr_r);

 end generate RcvFifo_Gen;

 XmtFiFo_Gen : if Xmt1_RCV0_g = 1 generate

 begin -- generate XmtFiFo_Gen

 FiFoOUT_Proc : process is

 begin -- process FiFoOUT_Proc

 wait until Clk = '1';

 if Resetn = '0' then

 DataOut_r <= (others => '0');

 elsif pop_n = '0' then

 DataOut_r <= FIFO_r(RdPntr_r);

 end if;

 end process FiFoOUT_Proc;

 end generate XmtFiFo_Gen;

2. STATUS DATA FOR PIR: The original FIFO design provided status

information that needed to be manipulated or reconstructed to create the

Reflections 281

PIR. This involved an edge detection of the status information for the

transmit logic to detect when the status got off one state and into another.

The external processing of this information was necessary because the

original design of the FIFO just provided status data, but not the transition

into a status. This created more logic than necessary because the FIFO

already includes a counter that can be used for this transition detection,

rather than the external derivation of this information form the status bits.

In addition, because of the meaning of the almost-empty state, there was a

problem in setting the correct PIR for that state. The FIFO design was

then changed to compute the setting of the PIR for the transmit logic, and

provided this vector onto a port. The setting of the receive side PIR was

not derived from within the FIFO because the design worked correctly.

In retrospect, the FIFO should have also provided through a port the

setting of the receive PIR, instead of deriving it externally.

3. REGISTER RESETS: During the initial design, the FIFO was not

initialized. However, it held status information that caused 'U's to

propagate in the PIR. That demonstrated the need to reset critical

registers. All registers were reset to ZEROs because it allows the use of

scanable resets, where ZEROs are shifted for the scan reset.

9.3 VERIFICATION

GUIDELINE: Consider the cycle synchronization issues between the verifier

and the UUT (i.e., is the verifier in synchronism with the UUT?). Designs that

are control intensive are more sensitive to this cycle synchronization issue than

data path designs, such as filters.

GUIDELINE: Log all transactions onto a file. Enable this logging function with

a generic.

GUIDELINE: Consider the ease of modifying the sequence of transactions. Use

TextIO command files or procedures to identify the sequences. Avoid putting

extensive in-line code since making changes becomes more difficult.

GUIDELINES: Use a verifier model for the automatic detection and reporting of

errors and links to the requirements.

As expected, verification was the most difficult, and important aspect of the

design. The verifier model consisted of two main functions:

1. Logging of transactions: The logging of transactions (asserted by the

clients and observed at the ports) provided invaluable debugging

information because it abstracted the complex waveforms into readable

282 Component Design by Example

information. This task was relatively easy.

2. Error detection and logging: This aspect of verification felt like a

necessary evil because it both correctly detected design errors, and at

times, incorrectly reported errors when none really occurred. The initial

design of the verifier model had the goals of treating the unit under test

(UUT) as a black box. However, as discussed in chapter 6, the lack of

accurate cycle synchronization created false error reports. To correct this

situation, internal UUT signals (transmit PUSH and POP) were used to

achieve accurate cycle synchronization between the design under test and

the verifier. The values of those signals were transferred into global

signals. Another potential alternatives to the application of global signals

is the use of PLI. The subdirectory ModelimSpy includes compiled PLIs,

and examples to read signals internal to a design with ModelSim. Note

that the use of ModelimSpy is a simulator specific solution, and is not

portable. Verification languages typically provide access to internal

signals of a design. The issue of portability with verification languages

arises here also, unless the verification languages are open.

9.3.1 Value of verifier

The verifier was an invaluable tool in detecting and reporting errors, particularly

as the design was tuned for proper operation.

9.3.2 Code coverage

Only statement code coverage was available during the design of the UART for

this book (for economics reasons). However, code coverage for the RTL models

were very beneficial at determining whether sufficient test patterns were

exercised. Code coverage was found useful in the evaluation of the verifier model

to evaluate the traversal of error-detection code.

Reflections 283

9.3.3 Debugger/LINTing

A good debugging and linting tool provides insights into the structure of a model, errors

in synthesis constructs, and unused resources. In addition, it provides a link between the

HDL model, the implied structures, and the simulation waveforms. This tool can also be

used to understand an inherited design with poor documentation.

9.3.4 When is design fully verified

This was discussed in chapter 6. However, this design needs further testing and

error insertions to provide a more thorough level of assurance that the design is

correct. Since the purpose of this book is to demonstrate processes rather than

complete verification of a design, this author is leaving to the user the task of

continuing the verification task to a satisfactory level. However, directed

verification tests of the required functions were exercised, as per test plan.

9.3.5 Text Command Files

The text command file proved beneficial for this design because the command

sequence is readable, and acts like procedure calls. The command files can be

changed with no model recompilation. In addition, different command files can

be selected in the configuration declarations. With the CALL instruction, the

sequence can easily be changed, again with no recompilation. The CALL

instruction also allowed for the reuse of test sequences with different initial setups

(e.g., no parity, even parity, odd parity, error mode). The TextIO parsing of the

command file, and TextIO WRITE of the transaction and error logs were not

very taxing on the simulator. At the RTL level, 40 ms of simulation time on a

500 MHz Pentium III took 70 seconds of real time, including the model loading

time. If TextIO speed is an issue for large designs, then the text command files

can easily be converted to binary files1.

9.3.6 Review of testplan against verifier implementation

The testplan called for the flagging of the requirement number related to the error

when reporting an error. However, this was missed during the implementation of

the verifier. It was not a critical overview because the error message provided

enough information about the error. This points to the importance of closely

reviewing the verification model against the testplan.

1 See chapter 11 of VHDL Coding Styles and Methodology, 2

nd
 Edition, Ben

Cohen,

isbn 0- 7923-8474-1 Kluwer Academic Publishers 1999

284 Component Design by Example

9.4 SUMMARY AND CONCLUSIONS

The front-end processes of specifying the requirements and the planning of both

the implementation and verification of a design are necessary steps to ensure that

the implemented design meets its intended goals and costs. Design reuse must be

considered during the planning stage. Reuse has several meanings. For an

original subblock design, it is taken in the sense of the user being the customer of

that subblock. For a subblock that will be applied in several designs, then reuse

of that subblock is more like an in-house IP. Other times, it is beneficial to

purchase an IP for efficient reuse. See chapter 8.2 for a greater discussion on

reuse and higher level component extraction and integration.

Ideally, different teams will be responsible for the design and verification efforts.

Figure 9.4 reiterates the levels of efforts for a typical design. Many factors will

modify these percentages, including:

1. Level of understanding of the requirements

2. Availability and maturity of IPs

3. Levels of designers' experiences

4. Availability of mature tools including synthesizers, linting, simulators,

debuggers, IP integration, layout, timing analyzer, etc.

5. Availability of languages, and levels of language supported for the design

and verification. The choice of HDL extends beyond VHDL and Verilog,

and now includes versions of C. Even within an HDL, there are levels of

design descriptions and language constructs that are (or will be)

acceptable. This includes RTL and behavioral levels. Within the RTL

arena, in both VHDL and Verilog, the IEEE standardization committee is

working at extending and defining the constructs that represents hardware.

6. Availability of verification languages (see section 4.1.3)

7. Efficiency of reviews for all design phases

Reflections 285

Figure 9.4 Levels of Efforts for a Typical Design

It is very important to seriously consider all reviews of the design. These reviews

are summarized in Table 9.4.

Table 9.4 Design Reviews

ITEM COMMENTS

Requirement

specification

This answers the question of what is to be designed.

Implementation

plan

This answers the question of how the design will be partitioned, which

IP will be used, which device or technology will be implemented, and

what tools will be used.

Verification

plan

This answers the question of how the design verified, which feature

will be tested, and what tools and languages will be used.

RTL design This represents a detailed code review for compliance to requirements

and to coding standards

Synthesis This represents performance (area and timing) review, including

optimization scripts.

Testbench

design

This represents a code review for compliance to requirements and to

style.

Verification This represents the design detailed performance at the functional level

layout and

timing

This represents performance (area and timing) review

Documentation This represents a review to ensure documentation of all necessary

items. Documentation is an item that is often considered with good

intentions in the initial phases of a design, but is then indefinitely

postponed during the release phase.

Requirement
specification

13%

Implementation
Plan
8%

Verification Plan
8%

RTL Design
18%

Synthesis
8%

Testbench
Design

25%

Verification
13%

Documentation
5%

Delivery
2%

INDEX

A
Architectural Implementation 4

Architectural Plan 31

Clock Subblock 35

CPU Subblock 34

Hardware And Software 37

Overview 34

Parameterization 37

Performance 37

Protocol Layer 37

Receiver Subblock 34

Robustness 37

Scope 33

Software Interfaces 37

Testability 37

Transmit Subblock 35

Design Tools 37

Physical Layer 36

B
Behavioral Model

 in desig process 4

 Compilation 5

BFM Synchronization 61

C
Client 64

 Client Model 142

 Client/Server 64

Clock Control Subblock 90

Code

Client Model -- UART 145

Clkcntrl.vhd 92

Cpuif.vhd 83

 Data from file (FileData.vhd) 228

Fifo.vhd 103

 Fifo_tb.vhd (Testbench) 162

Image_Pkg.vhd (Image Package) 152

Lfsr_Pkg.vhd (Linear Shift Reg) 152

Parser_pb.vhd (Parser Package) 133

Rcvsublk.vhd (Receiver subblock) 97

 Rcv_client.vhd (Receiver client) 150

Receiver.vhd (UART Receiver) 100

 Rcv_server.vhd (receiver server) 157

Transmitter.Vhd 112

 Uart8_tb.vhd (UART Testbench) 192

 Uart_server.vhd (UART Server) 153

Uart_c.vhd (Configurations) 198

 Uart_ClientRndm.vhd 145

 Uart_Level2.vhd (Integration) 261

 Uart.vhd (Uart top level) 115

 Verifpeek.vhd (Verifier) 176

Xmitsublk.Vhd 109

Command File

 Cpu5to15.Txt 211

 Instr1.Txt 202

 Rcvinstr.Txt 214

 Rcv11to15.Txt 216

 Sw_Reset.Txt 211

Compilation 120

 Scripts 217

Code Coverage 38, 43, 44, 70, 218,

 224, 276

Coding Style -- standards 5

Compliance Plan 48

Component Design Process

Overview 3

Configurations 218

CPU Interface Subblock 74

288 Component Design by Example

D
Definitions

 Asynchronous Transmission 12

BFM 47

 Baud Rate 12

Client 47

 DCE 12

 DTE 12

 Framing Error 12

 Overrun Error 13

 Parity 13

Server 48

 Start Bit 13

 Stop Bit 13

 Synchronous Transmission 13

Transaction 47

 Underrun Error 13

 Word 13

Design

CPU Interface 74

 Documentation 229

Process

Component 3

Overview 2

 Synthesis 73

 Integration 259

 Verification 129

E

Environmental, requirements 30

Error Detection, requirements 24

Error Handling, requirements 24

Evaluating Results 221

F

FIFO Subblock 94, 106

G
Grammar for specifications 8

I

Image Package 152

Implementation Plan 2, 31

 See architectural plan

Instruction File 67

L

Languages, Verification 43

Layout 124

LFSR 152

Linting

Application Of 5

M

MIL-STD-490A 7, 8

Model see Code

ModelimSpy (PLI) 276

O

Openmore 229

P

Parameterization, requirements 14

Parity, requirements 23

Parity Control, requirements 26

Parser Package 130

Index 289

Pending Interrupt Register 21

Performance, requirements 30

Pending Interrupt Reg, req 21

Physical Layer, requirements 17

Power Dissipation, requirements 30

Protocol Layer, requirements 23

Physical Layer Requirements 17

Plan

 See Verification, Architectural

Process

Overview 2

R

Receiver Subblock 94

Regression Tests 225, 227

RC_Synch, requirements 22

Rdn, requirements 20

Read Received Data, reqrmt 30

Receive Buffer Control, reqrmt 27

Receive Buffer Overrun

 Error 24, 26

Receive FIFO Buffer, reqrmt 26

Receive Framing Error 24, 26

Receive Parity Error 24, 26

Receive PIR, requirements 26

Resetn, requirements 20

Rin, Ring Indicator, reqrmt 19

 Robustness, requirements 24

Rtsn, Request-To-Send, reqrmt 18

Requirements

 Document 2, 4

 Methods 7

 Specification 7

 Reflections 271

 Also see UART Requirements

RTL

Coding Rules 5

 Compilation 120

 Design 73

Running the Simulator 218

Rxd, Receive Data 17

S

Scenarios 202

Semiconductor Reuse Standard SRS06

 229

Server

 FIFO 160

 Transaction Driving methods 64

 Server Model 152

Simulation Results 218

START 23

STOP 23

Subblock Verification 66

Subsystem, UART in 261

290 Component Design by Example

Synthesis 73, 120

System Application 15

T
Technology 30

Test Cases 202

Testability 30

Testbench

When To Write 6

 Architecture Overview 130

 Style 40

Testcases 202

Tool

Editor 38

Layout 38

Simulation 38

Synthesis 38

Transaction 47

Definition Of 63

 Log 69

 Driving Methods 63

Transmit Buffer Control 29

Transmit Buffer Overrun Error 24

Transmit Interrupt Enable 29

Transmit PIR 28

Transmit Subblock 106

Txd, Transmit Data 17

U

UART

Compilation Script 120

 Model 108

Requirements 7

Addr 19

Applicable Documents 14

Architectural Overview 14

 Baud rate, maximum 15

Clk 22

Clk16x 23

Clock Interface 22

CPU Interface 19

Definitions 12

CS0 19

CS1 19

CS2n 20

Ctsn, Clear-To-Send 18

Dcdn, Data-Carrier-Detect 19

Din 20

DO 21

Dsrn, Data-Set-Ready 18

Dtrn, Data-Terminal-Ready 19

Environmental 30

Error Detection 24

Error Handling 24

 Features 15

Fixed Parameterization 24

Frequency 30

Hardware and Software 24

Interface Port Description 17

Interrupt Enable 27

Intrpt 21

Mechanical 30

Modem Control 26

Modem Status 26

Modes Of Operation 30

Outenb 21

 Parameterization 14

Parity 23

Parity Control 26

Pending Interrupt Register 21

Performance 30

PIR 21

 Physical Layer 17

Power Dissipation 30

Index 291

Protocol Layer 23

RC_Synch 22

Rdn 20

Read Received Data 30

Receive Buffer Control 27

Receive Buffer Overrun

 Error 24, 26

Receive FIFO Buffer 26

Receive Framing Error 24, 26

Receive Parity Error 24, 26

Receive PIR 26

Resetn 20

Rin, Ring Indicator 19

 Robustness 24

Rtsn, Request-To-Send 18

Rxd, Receive Data 17

Scope 12

Software Interfaces 25

Specification 11

START 23

 System Application 15

STOP 23

System Application 15

TC_Synch 22

Technology 30

Testability 30

Transmit Buffer Control 29

Transmit Buffer Overrun Error 24

Transmit Interrupt Enable 29

Transmit PIR 28

Txd, Transmit Data 17

Write Transmit Data 30

Wrn 20

V

Verification

Design 129

 Languages 43

 Plan 2, 5, 39, 46

 BFM Synchronization Methods 61

 Compliance Plan 48

 Feature Extraction 50

 Feature Extraction And Test

 Strategy 48

 Instruction File 67

 Scope 47

 Subblock Verification 66

 Testbench Architecture 60, 64

 Verifier 69

 What Is 40

 Why 40

Verifier

Model 69

Design 165

 Verifier, VHDL 176

W

Web sites

http://members.aol.com/vhdlcohen/vhdl/ ii, xvii

http://www.chronology.com/ 42

http://www.cleveldesign.com/ 5

http://www.deepchip.com/items/0347-01.html 6

http://www.foresight.com 7

http://www.model.com xi

http://www.mot-sps.com/technology/srs/index.html xi, 229

http://www.novas.com/ 5, 38, 72

http://www.openmore.com 229

http://www.rad.com/networks/1995/rs232/rs232.htm 14

http://members.aol.com/vhdlcohen/vhdl/
http://www.chronology.com/
http://www.cleveldesign.com/
http://www.deepchip.com/items/0347-01.html
http://www.foresight.com/
http://www.model.com/
http://www.mot-sps.com/technology/srs/index.html
http://www.novas.com/
http://www.openmore.com/
http://www.rad.com/networks/1995/rs232/rs232.htm

292 Component Design by Example

http://www.sunburst-

design.com/papers/CummingsSNUG2000SJ_NBA_rev1a.pdf 6

http://www.synopsys.com/ 42, 44

http://www.synplicity.com xi

http://www.testbuilder.net 42

http://www.tiaonline.org/standards/search_results2.cfm?document_no=TIA/

EIA-232-F 14, 36

http://www.Transeda.com/ 5, 224

http://www.verisity.com/ 43

http://www.verisity.com/html/specmanelite.html 42

http://www.vhdl.org/siwg x, 5

http://www.vhdlcohen.com i, ii, xvii 152, 238

http://www.vsi.org ix

http://www.yxi.com 5, 264

http://www.sunburst-design.com/papers/CummingsSNUG2000SJ_NBA_rev1a.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2000SJ_NBA_rev1a.pdf
http://www.synopsys.com/
http://www.synplicity.com/
http://www.testbuilder.net/
http://www.tiaonline.org/standards/search_results2.cfm?document_no=TIA/EIA-232-F
http://www.tiaonline.org/standards/search_results2.cfm?document_no=TIA/EIA-232-F
http://www.transeda.com/
http://www.verisity.com/
http://www.verisity.com/html/specmanelite.html
http://www.vhdl.org/siwg
http://www.vhdlcohen.com/
http://www.vsi.org/
http://www.yxi.com/

Index 293

294 Component Design by Example

