
144 SystemVerilog Assertions Handbook, 4th Edition

IEEE 1800-2009 provided global assert controls that affected all assertions in the design. It did
not provide a way to control assertions based on their type. There was no way for the users to only
disable cover directives but keep the assert and assume directives as enabled. Similarly, there was
no way to only enable concurrent assertions and switch off immediate assertions. IEEE 1800-
2012 made enhancements to allow those tight control features. The syntax for the assertion
control syntax is as follows:
assert_control_task ::=
 assert_task [(levels [, list_of_scopes_or_assertions])] ;
 | assert_action_task [(levels [, list_of_scopes_or_assertions])] ;
 | $assertcontrol (control_type [, [assertion_type] [, [directive_type]
 [, [levels] [, list_of_scopes_or_assertions]]]]) ;
assert_task ::= $asserton | $assertoff | $assertkill
assert_action_task ::= $assertpasson | $assertpassoff | $assertfailon | $assertfailoff |
 $assertnonvacuouson | $assertvacuousoff
list_of_scopes_or_assertions ::= scope_or_assertion { , scope_or_assertion }
scope_or_assertion ::= hierarchical_identifier

4.2.4.1 Assert control
 Rule: The $assertcontrol provides finer granularity in how and which types of assertions are

controlled. The syntax is repeated below:
 $assertcontrol (control_type [, [assertion_type] [, [directive_type]
 [, [levels] [, list_of_scopes_or_assertions]]]]) ;

[1] The arguments for the $assertcontrol system task are described below:
 control_type: This argument controls the effect of the $assertcontrol system task. This

argument shall be an integer expression. Section 4.2.4.1.1 describes the valid values of this
argument.

 assertion_type: This argument selects the assertion types that are affected by the
$assertcontrol system task. This argument shall be an integer expression. Section 4.2.4.1.2
describes the valid values for this argument. If assertion_type is not specified, then it defaults to
all types of assertions and expect statements (i.e., Concurrent, Simple Immediate, Observed-
Deferred Immediate, Final Deferred Immediate, and expect).

 directive_type: This argument selects the directive types (i.e., assert, cover, assume) that are
affected by the $assertcontrol system task. This argument shall be an integer expression. Section
4.1.4.1.3 describes the valid values for this argument. If directive_type is not specified, then it
defaults to all types of directives.

 levels: This argument specifies the levels of hierarchy, consistent with the corresponding
argument to the $dumpvars system task (see 1800-2012 section 21.7.1.2). If this argument is not
specified, it defaults to 0 (i.e., the specified module and in all module instances below the specified
module). Example: $dumpvars (1, top); // Because the first argument is a 1,
 // this invocation dumps all variables within the module top;
 // it does not dump variables in any of the modules instantiated by module top.

 list_of_scopes_or_assertions: This argument specifies which scopes of the model to control.
These arguments can specify any scopes or individual assertions. For example,

module akill; // /ch4/4.2/akill.sv
 bit clk, a,b;
 default clocking @(posedge clk); endclocking
 ap_kill: assert property (a |=> b) $assertkill(0, akill.ap_test_kill);
 ap_kill0: assert property(a |=> b) $assertcontrol(5, 15, 7, 0, akill.ap_kill0);

Compatibility with
1800-2009

Advanced Topics for Properties and Sequences 145

4.2.4.1.1 Control_type
The control type argument controls the effect of the $assertcontrol system task. The type of this
argument is integer. The valid values for this argument are defined in Table 4.1.4.2.1. The
following assertion and code is used in the explanation of the control types. See Section 12.3 for
1800'2018 package related to supporting the assertion control constants.

 logic clk, a, b, c, d; // /ch4/4.2/asncontrol.sv , see /ch11/11.3/asncntrl.sv
 function automatic void pass(); $display("ap1 pass"); endfunction : pass
 function automatic void fail(); $display("ap1 fail"); endfunction : fail
 // assertion ap1 is used in Table 4.2.4.1.1
 ap1: assert property(@ (posedge clk) a |-> b) pass(); else fail();

 // Assertion controls
 let LOCK = 1; // assertion control type
 let UNLOCK = 2; // assertion control type
 let ON = 3; // assertion control type
 let OFF = 4; // assertion control type
 let KILL = 5; // assertion control type
 let PASSON = 6; // assertion control type
 let PASSOFF = 7; // assertion control type
 let FAILON = 8; // assertion control type
 let FAILOFF = 9; // assertion control type
 let NONVACUOUSON = 10; // assertion control type
 let VACUOUSOFF = 11; // assertion control type

 // Assertion types
 let CONCURRENT = 1; // assertion_type, concurrent
 let S_IMMEDIATE = 2; // assertion_type, simple immediate

 let D_IMMEDIATE = 12; // assertion_type, Final and Observed deferred immediate

 let EXPECT = 16; // assertion_type, expect
let UNIQUE = 32; // unique if and case violation
let UNIQUE0 = 64; // unique0 if and case violation
let PRIORITY = 128; // priority if and case violation

 let ALL_ASSERTS = (CONCURRENT|S_IMMEDIATE|D_IMMEDIATE|EXPECT); // (i.e., 31)

 // Assertion directives
 let ASSERT = 1; // directive_type for assertion control tasks
 let COVER = 2; // directive_type for assertion control tasks
 let ASSUME = 4; // directive_type for assertion control tasks
 let ALL_DIRECTIVES = (ASSERT|COVER|ASSUME); // (i.e., 7)

See 1800-2012 Section 12.4.2
unique-if, unique0-if, and priority-if

146 SystemVerilog Assertions Handbook, 4th Edition

Table 4.2.4.1.1 Control type values for $assertcontrol

Control

type
values

Effect Description

1

Lock

This prevents status change of all specified assertions and expect statements
until they are unlocked. Thus, once an assertion is locked its assert control
properties cannot be changed until it is first unlocked. Example,
 $assertcontrol(LOCK, ALL_ASSERTS, ALL_DIRECTIVES, 0, ap1);

2 Unlock This removes the locked status of all specified assertions and expect statements.
 $assertcontrol(UNLOCK, ALL_ASSERTS, ALL_DIRECTIVES, 0, ap1);

3 On This re-enables the execution of all specified assertions. This control_type
value does not affect expect statements. Example, $assertcontrol(ON);
This enables all the assertions except those that are locked. The locked assertions
remain in their current control states.

4 Off This stops the checking of all specified assertions until a subsequent
$assertcontrol with a control_type of 3 (On). No new attempts will be started.
Attempts that are already executing for the assertions, and their pass or fail
statements, are not affected. Any queued or pending assertions are not flushed
and may still mature. No new instances of assertions are queued. The assertions
are re-enabled with a subsequent $assertcontrol with a control_type of 3
(On).
This control_type value does not affect expect statements. For example,
 $assertcontrol(OFF); // using default values of all other arguments

5 Kill This aborts execution of any currently executing attempts for the
specified assertions and then stop the checking of all specified assertions until a
subsequent $assertcontrol with a control_type of 3 (On). This also flushes
any queued pending reports of deferred assertions or pending procedural assertion
instances that have not yet matured. This control_type value does not affect
expect statements. For example,
 $assertcontrol(KILL, CONCURRENT, ASSERT, 0);
Kill currently executing concurrent assertions, but do not kill concurrent covers,
assumes and immediate/deferred asserts/covers/assumes. Using the appropriate
directive type values for thread second arguments.

6 PassOn This enables execution of the pass action for vacuous and nonvacuous success of
all the specified assertions. An assertion that is already executing, including
execution of the pass or fails action, is not affected. For example,
 $assertcontrol(PASSON, CONCURRENT, ALL_DIRECTIVES, 0, ap1);
If assertion ap1 succeeds vacuously or nonvacuously, the pass() function is
called. All other concurrent assertions retain their current assert controls, and are
unaffected by this assert control.

7 PassOff This stops execution of the pass action for vacuous and nonvacuous success of all
the specified assertions. Execution of the pass action for both vacuous and
nonvacuous successes can be re-enabled subsequently by $assertcontrol with a
control_type value of 6 (PassOn), while the execution of the pass action for
only nonvacuous successes can be enabled subsequently by $assertcontrol
with a control_type value of 10 (NonvacuousOn). An assertion that is
already executing, including execution of the pass or fails action, is not affected.
By default, the pass action is executed. For example,
 $assertcontrol(PASSOFF, CONCURRENT, ALL_DIRECTIVES);
If any assertion succeeds vacuously or nonvacuously, the pass action block is not
executed. Thus, the pass() function will not be called if assertion ap1 succeeds.

Advanced Topics for Properties and Sequences 147

Control

type
values

Effect Description

8 FailOn This enables execution of the fail action of all the specified assertions. An
assertion that is already executing, including execution of the pass or fails action,
is not affected. This task also affects the execution of the default fail action block
(i.e., $error, which is called in case no else clause is specified for the
assertion) For example,
$assertcontrol(FAILON, CONCURRENT, ALL_DIRECTIVES);
If any concurrent assertion fails, the fail action block is executed. Thus, the
fail() function will be called if assertion ap1 fails.

9 FailOff This stops execution of the fail action of all the specified assertions until a
subsequent $assertcontrol with a control_type value of 8 (FailOn). An
assertion that is already executing, including execution of the pass or fails action,
is not affected. By default, the fail action is executed. This task also affects the
execution of default fail action block. For example,
$assertcontrol(FAILOFF);
If any assertion fails, the fail action block is not executed. Thus, the fail()
function will not be called if assertion ap1 fails.

10 Non-
vacuous
On

This enables execution of the pass action of all the specified assertions on
nonvacuous success. An assertion that is already executing, including execution
of the pass or fail action, is not affected. For example,
$assertcontrol(NONVACUOUSON); // Thus if assertion ap1 succeeds
nonvacuously (e.g., a==1, b==1), the pass() function is called.

11 Vacuous
Off

This stops execution of the pass action of all the specified assertions on vacuous
success until a subsequent $assertcontrol with a control_type value of 6
(PassOn). An assertion that is already executing, including execution of the pass
or fails action, is not affected. By default, the pass action is executed on vacuous
success. . For example,
$assertcontrol(VACUOUSOFF,,,,ap1); // Thus if assertion ap1 succeeds
vacuously (e.g., a==0, b==X), the pass() function is not called.

 Guideline: In most simulation cases it is recommended to disable assertion checking until the
testing environment is stabilized. Once that point is reached, assertion checking can be enabled.
In addition, it is recommended to disable the pass action block because assertions are expected to
succeed. The enabling of the action block is only needed for debugging or when the pass action
block updates a module variable; thus, supplying pass information is burdensome. Below is an
example:

event start_sim; // /ch4/4.2/assertion_control.sv
int count1=0, count2=0;
ap_x1: assert property(Px1) count1 <= count1 + 1'b1;
ap_x2: assert property(Px1) count2 <= count2 + 1'b1;
initial begin
 $assertcontrol(KILL); // Stop checking all assertions
 wait (start_sim); // wait for subsystem to be ready to start checking for assertions
 $assertcontrol(ON); // enable all assertions
 // disable all pass action blocks except those needed
 $assertcontrol(LOCK, ALL_ASSERTS, ALL_DIRECTIVES, 0, ap_x1); // lock any changes to ap_x1

 $assertcontrol(PASSOFF); // pass off for ap_x2
 $assertcontrol(UNLOCK, ALL_ASSERTS, ALL_DIRECTIVES, 0, ap_x1, ap_x2);
 end

With above code, do not use the assert(randomize(object)) because all assertions will be
disabled during initialization, and the randomization of the desired variables will not take effect.
Instead use:

pass action block
increments module

148 SystemVerilog Assertions Handbook, 4th Edition

if(!randomize(var1, var2, var3)) $error("randomization failure"); // list of variables
// If classes with rand variables are used, then use : (See Ch9/consecutive.sv for an example)
if (!class_instance.randomize()) $error("randomization failure"); // without UVM
if (!class_instance.randomize()) `uvm_error("MYERR", "error message"); // with UVM

4.2.4.1.2 assertion_type
 Rule: [1] The assertion_type argument selects the assertion types that are affected by the

$assertcontrol system task. This argument shall be an integer expression. The valid values for
this argument are described in Table 4.1.4.1.2. Multiple assertion_type values can be specified
at a time by Oring different values. For example, a task with assertion_type value of 3 (which is
the same as Concurrent | SimpleImmediate) shall apply to concurrent and simple immediate
assertions. If assertion_type is not specified, then it defaults to 31 (Concurrent |
SimpleImmediate | Observed-DeferredImmediate | FinalDeferredImmediate | Expect) and the
system task applies to all types of assertions and expect statements.

Table 4.1.4.1.2 Values for assertion_type for assertion control tasks
assertion_type values Types of assertions affected

(See 4.5, 4.6)
Assertion example

1 Concurrent ap_c: assert property(a |=> b);
2 Simple Immediate a_c: assert(a && b);

4 Observed Deferred Immediate a_d: assert #0 (a && b);

8 Final Deferred Immediate a_c: assert final(a && b);

16 Expect ex_c: expect(a |=> b);

32 Unique unique if (a==0) c <= b; //ch4/ m_unique.sv
else if (a== 1) c <= d;

64 Unique0 unique0 if (a==0) c <= b;
else if (a== 1) c <= d;

128 Priority priority if (a==0) c <= b;
else if (a== 1) c <= d;

4.2.4.1.3 directive_type

 Rule: [1] The directive_type argument selects the directive types that are affected by the
$assertcontrol system task. This argument shall be an integer expression. The valid values for
this argument are described in Table 4.1.4.1.3. This argument is checked only for assertions.
Multiple directive_type values can be specified at a time by OR-ing different values. For
example, a task with directive_type value of 3 (which is same as Assert|Cover) shall apply to
assert and cover directives. If directive_type is not specified, then it defaults to 7 (Assert
|Cover | Assume) and the system task applies to all types of directives.

Table 4.1.4.1.3 Values for directive_type for assertion control tasks
directive_type values affected Types of directives

1 Assert directives
2 Cover directives
4 Assume directives

4.2.4.1.4 Equivalent assertion control system tasks

 Rule: The assert tasks provide backward compatibility to IEEE 1800-2009 and includes the
following keywords: $assertoff, $assertkill, and $asserton. Specifically,

 $assertoff stops the checking of all specified assertions until a subsequent $asserton.
An assertion that is already executing, including execution of the pass or fail statement, is
not affected. It is equivalent to:

 $assertcontrol(4, 15, 7, levels [,list])

