
 1

Solving Complex Users' Assertions
by Ben Cohen

i

Abstract:
The verificationacademy.com/forums/ is an interesting interactive SystemVerilog forum where users seek

solutions to real application issues/problems. Many of those questions are about assertions, and SVA has

very specific set of rules that do not necessarily address complex users' requirements. This paper brings a

collection of a few most interesting and challenging users' questions and provide solutions along with

explanations about getting around (or working with) SVA, or using other alternatives (see my paper SVA

Alternative for Complex Assertions
ii
). It turns out that many of these solutions require a different point of

view in approaching the assertions, and often require supporting logic. All code along with simple

testbenches is provided.

1.1 Dynamic delays and repeats

ISSUE: Using dynamic values for delays or repeats is illegal in SVA; how can this be easily resolved?
int dly1=2, dly2=7; // module variables
ap_abc_delay: assert property($rose(a) ##dly1 b |-> ##dly2 c); // ILLEGAL SVA

ap_abc_repeat: assert property($rose(a) |-> b[*dly1] ##1 c); // ILLEGAL SVA

SOLUTION: Reference ii (at end of this paper) provides a solution for handling dynamic delays an repeats

using tasks. However, in the verificationacademy.com/forums/systemverilog forum, a user brought up a very

interesting alternative that uses a package; it is presented here. The concept is very simple, the repeat or

delay sequence is saved in a package with two defined sequence declarations that include arguments.

http://SystemVerilog.us/vf/sva_delay_repeat_pkg.sv
 package sva_delay_repeat_pkg;
 sequence dynamic_repeat(q_s, count);
 int v=count;
 (1, v=count) ##0 first_match((q_s, v=v-1'b1) [*1:$] ##0 v<=0);
 endsequence

 sequence dynamic_delay(count);
 int v;
 (1, v=count) ##0 first_match((1, v=v-1'b1) [*0:$] ##1 v<=0);
 endsequence
endpackage

The package can be applied as follows:

http://SystemVerilog.us/vf/sva_delay_repeat.sv
import sva_delay_repeat_pkg::*;
module top;
 timeunit 1ns; timeprecision 100ps;
 bit clk, a, b, c=1;
 int r=2;
 default clocking @(posedge clk); endclocking
 sequence q1; a ##1 b; endsequence

 ap_abr: assert property(a |-> dynamic_repeat(q1, r) ##1 c);
 ap_delay:assert property(a |-> dynamic_delay(r) ##0 b);

http://systemverilog.us/vf/sva_delay_repeat_pkg.sv
http://systemverilog.us/vf/sva_delay_repeat.sv

 2

1.2 No 2nd successful attempt before completion of first attempt; 2nd attempt is a fail

ISSUE: This was a difficult set of requirement to express. If 2 consecutive req and then one ack, the ack is

for the first req attempt and that assertion passes. However, the 2nd req attempt causes that 2nd assertion to

fail, regardless of the received ack, The following solution (assuming a default clocking) fails to work

because all successful attempts of req can be satisfied by one ack, provided then meet the delay constraints.
 $rose(req|-> ##[1:10] ack; // DOES NOT MEET THE REQUIREMENTS.

SOLUTION: To solve this conflict, there is a need to distinguish a real first req attempt from other

secondary attempts. This can be accomplished with 1) the use of a function and a module tag bit. The tag

bit is a flag that when flag==1 identifies that a first req was already initiated. The function checks the tag

and returns zero if set. Otherwise, when flag==0, the function sets it to ONE and returns ONE, meaning

that this is a first occurrence of req. The property uses a local variable called go; that local variable enables

the property to continue checking for an ack, or immediately fail if it is zero. The tag bit is reset upon an

assertion pass. In this case, if the first assertion fails, the tag bit never gets reset and all further assertions

will fail (unless some external support logic resets the flag bit).

http://SystemVerilog.us/fv/reqack_special.sv

http://SystemVerilog.us/fv/reqack_special.png

 bit clk,req, ack, tag;
 default clocking @(posedge clk); endclocking
 function bit check_tag();
 if(tag) return 1'b0;
 else begin
 tag=1'b1;
 return 1'b1;
 end
 endfunction

 function void reset_tag();
 tag =1'b0;
 endfunction
 property reqack;
 bit go;
 @(posedge clk) ($rose(req), go=check_tag()) |->
 go ##[1:10] (ack, reset_tag()); // locks all future req if assertion fails
 endproperty
 ap_reqack: assert property(reqack);

1.3 Each successful attempt has its own exclusive completion consequent

ISSUE: This is a variation to the previous requirements; in this case, each req attempt is terminated with its

own individual ack.

SOLUTION: To accomplish this, one could use concepts of a familiar model seen in hardware stores,

typically in the paint department. There, the store provides a spool of tickets, each with a number. As a

customer comes in, each customer takes a ticket. The clerk serving the customers has a sign that reads

"NOW SERVING, TICKET #X". The customer that has the ticket gets served, the others have to wait. When

done, the number X in incremented, and the next in-line customer gets served.

 3

To solve this in SVA, one could use two variables: ticket, now_serving. A function is used to increment

the ticket number, and a pass or a fail of the assertion increments the now_serving. The assertion code

could then be written as follows:

 http://SystemVerilog.us/fv/reqack_unique.sv
 http://SystemVerilog.us/fv/reqack_unique.png
 bit clk,req, ack;
 int ticket, now_serving;
 function void inc_ticket();
 ticket = ticket + 1'b1;
 endfunction

 property reqack_unique;
 int v_serving_ticket;
 @(posedge clk) ($rose(req), v_serving_ticket=ticket, inc_ticket()) |->
 ##[1:10] now_serving==v_serving_ticket ##0 ack;
 endproperty
 ap_reqack_unique: assert property(reqack_unique)
 now_serving =now_serving+1; else now_serving =now_serving+1;

1.4 Every wr has a enb; no enb if no pending wr

ISSUE: There can be consecutive wr commands; every wr has an enb. If there is an enb with no pending

wr, then it is an error. Thus,
 wr ... wr .. enb wr enb enb // LEGAL

 +--------------+

 +------------------------+

 +-----------------+

 wr ... wr .. enb enb enb** // ** ERROR, no prior wr for enb
 +------------+

 +--------------+

 + ??

SOLUTION: The easiest solution for this type of requirement is to just use supporting logic; a counter is

incremented for each wr occurrence, and decremented for each enb occurrence. An immediate assertion

tests that the value of the counter is always greater than zero, or is zero.

 int counter=0;
 always @(posedge clk) begin
 if(wr && enb) ; // no change
 else if(wr) counter <= counter +1'b1;
 else if(enb) counter <= counter -1'b1;
 ap_wrrd: assert(counter >= 0);
 end

 4

1.5 Activate array of assertions based of dynamically-defined size

ISSUE: The design incorporates a dynamic req/ack signal pairs (logic[0:3] req, ack). Assertions are based

on a sized set of pairs, and that size is dynamically set during runtime (bit[1:0] size=3) in the

configuration phase. Thus, what is desired is something like the following:

 logic[0:3] req, ack;
 bit[1:0] size=3;
 property req_with_ack(logic req, logic ack); //
 @(posedge clk) disable iff (!reset)
 $rose(req) |=> $rose(ack);
 endproperty

 always @(posedge clk) begin

 for (int i=0; i<size; i++) begin
 ap_i: assert property(req_with_ack(req[i], ack[i]));
 end
 end

Since assertions are statically allocated during elaboration, the above assertions will not compile.

SOLUTION: As a result of this restriction, one solution is to use the task approach described in SVA

Alternative for Complex Assertions (see ref ii). Below is that solution:

http://SystemVerilog.us/fv/reqack_dyn.sv
 bit clk, reset=1'b1;
 logic[0:3] req, ack, req_past, ack_past;
 bit[1:0] size=3;
 event e0, e; // for debug
 task automatic t_req_with_ack(logic req, logic ack);
 if (!reset) return;
 if(req && !req_past) begin : rose // $rose(req) is illegal here
 -> e0; // automatic variables cannot be used in '$past'
 @(posedge clk);
 a_reqack: assert (ack && !ack_past);
 -> e;
 return;
 end : rose
 else return; // optional here
 endtask

 always @(posedge clk) begin
 for (int i=0; i<size; i++) begin
 fork
 t_req_with_ack(req[i], ack[i]);
 join_none
 end
 end

Bad handle or

reference

 5

1.6 Sig "a" shall change values "n" times between sig "b" and sig "c"

ISSUE: Signal a changes n times between signal b and c. The value of n is static, but it could be dynamic.

SOLUTION: If n is static, the solution is rather simple.

This solution makes use of SVA operators.

 http:// SystemVerilog.us/fv/a_n_bc.sv
 bit clk, a, b, c;
 let n=4;
 default clocking @(posedge clk); endclocking
 initial forever #10 clk=!clk;
 // Sig "a" shall change values "n" times between sig "b" and sig "c".
 ap_abc: assert property($rose(b) |-> $changed(a)[=n] intersect c [->1]);

If n is dynamic, then the use of tasks is recommended. It's a bit complicated though!

Below is code for Sig "a" shall change values "k" times between sig "b" and sig "c".

Note: The use of local variables as counter in a property would fail to work because the local variable written

within the $changed(a) thread could not be read in the c [->1] thread because of the intersect

operator. From 1800, the values assigned to the local variable before and during the evaluation of the

composite sequence are not always allowed to be visible after the evaluation of the composite sequence.

 import uvm_pkg::*; `include "uvm_macros.svh" http:// SystemVerilog.us/fv/a_n_bc.sv
module top;
 timeunit 1ns; timeprecision 100ps;
 bit clk, a, b, c;
 int k=4;
 event e0, e1; // for debug

 // Sig "a" shall change values "k" times between sig "b" and sig "c".
 task t_abc_dyn(int vk);
 automatic int count;
 automatic bit v_a;
 v_a=a; // save current value
 -> e0;
 forever begin
 @(posedge clk);
 if(a != v_a) begin: changed
 if (count==vk && !c) begin
 `uvm_error("MYERR", $sformatf("%m : at %t Reached k+1, before c, expected %d, got %d",
 $realtime, vk, count));
 ->e1;
 return;
 end
 end : changed
 else begin : keep_count
 count = count+1'b1;
 v_a=a; // save current value
 end : keep_count
 if(c) begin : toend
 a_k: assert(count==vk) else
 `uvm_error("MYERR", $sformatf("%m : at %t error in changed, expected %d, got %d",
 $realtime, vk, count));
 -> e1;
 return;
 end : toend
 end // forever
 endtask

 ap_abck: assert property ($rose(b)|-> (1, t_abc_dyn(k)));

 6

1.7 Assertion Controls

ISSUE: Is there a way to link an assumption to specific assertions (or to disable an assumption for specific

assertions)?

SOLUTION: SV1800'2017: 20.12 Assertion control system tasks describes the Assertion control syntax
assert_control_task ::=
 assert_task [(levels [, list_of_scopes_or_assertions])] ;
 | assert_action_task [(levels [, list_of_scopes_or_assertions])] ;
 | $assertcontrol (control_type [, [assertion_type]
 [, [directive_type] [, [levels]
 [, list_of_scopes_or_assertions]]]]) ;
assert_task ::=
 $asserton
 | $assertoff
 | $assertkill
assert_action_task ::=
 $assertpasson
 | $assertpassoff
 | $assertfailon
 | $assertfailoff
 | $assertnonvacuouson
 | $assertvacuousoff
list_of_scopes_or_assertions ::=
 scope_or_assertion { , scope_or_assertion }
scope_or_assertion ::=
 hierarchical_identifier

The $assertcontrol provides finer granularity in how and which types of assertions are controlled. The

most readable way to express the values of the control_type, assertion_type , and directive_type

fields is to use a package where those values are clearly defined as constants with the let directive.
 import uvm_pkg::*; `include "uvm_macros.svh"

 package asncntrl_pkg; // http://SystemVerilog.us/fv/asncntrl_pkg.sv
 // Control type
 let LOCK = 1; // assertion control type
 let UNLOCK = 2; // assertion control type
 let ON = 3; // assertion control type
 let OFF = 4; // assertion control type
 let KILL = 5; // assertion control type
 let PASSON = 6; // assertion control type
 let PASSOFF = 7; // assertion control type
 let FAILON = 8; // assertion control type
 let FAILOFF = 9; // assertion control type
 let NONVACUOUSON = 10; // assertion control type
 let VACUOUSOFF = 11; // assertion control type
 // Assertion types
 let CONCURRENT = 1; // assertion_type, concurrent
 let S_IMMEDIATE = 2; // assertion_type, simple immediate
 let D_IMMEDIATE = 12; // assertion_type, Final and Observed deferred immediate
 let ALL_ASSERTS = 15; // CONCURRENT|S_IMMEDIATE|D_IMMEDIATE
 let EXPECT = 16; // assertion_type, expect
 let UNIQUE = 32; // unique if and case violation
 let UNIQUE0 = 64; // unique0 if and case violation
 let PRIORITY = 128; // priority if and case violation

 // Assertion directives
 let ASSERT = 1; // directive_type for assertion control tasks
 let COVER = 2; // directive_type for assertion control tasks

 7

 let ASSUME = 4; // directive_type for assertion control tasks
 let ALL_DIRECTIVES = 7; //(ASSERT|COVER|ASSUME);
endpackage
module top;
 import asncntrl_pkg::*;
 bit clk, a, b;
 event start_sim;
 int count1=0, count2=0;
 initial forever #5 clk=!clk;
 property Px1;
 a |=> b;
 endproperty

 ap_test_kill: assert property(@(posedge clk) a |=> 1) $assertkill(0, top.ap_test_kill);
 ap_test_kill0: assert property(@(posedge clk) a |=> 1)
 $assertcontrol(KILL, ALL_ASSERTS, ALL_DIRECTIVES, 0, top.ap_test_kill0);

 ap_test_off: assert property(@(posedge clk) a |=> 1) $assertoff(0, top.ap_test_off);
 // $assertoff[(levels[, list])] is equivalent to
 // $assertcontrol(OFF, ALL_ASSERTS, ALL_DIRECTIVES, levels [,list])

 ap_x1: assert property(@(posedge clk) Px1) count1 <= count1 + 1'b1;
 ap_x2: assert property(@(posedge clk) Px1) count2 <= count2 + 1'b1;
 initial begin
 $assertcontrol(KILL); // Stop checking all assertions
 wait (start_sim); // wait for subsystem to be ready to start checking for assertions
 $assertcontrol(ON); // enable all assertions
 // disable all pass action blocks except those needed
 $assertcontrol(asncntrl_pkg.LOCK, ALL_ASSERTS, ALL_DIRECTIVES, 0, ap_x1);
 // lock any changes to ap_x1
 $assertcontrol(PASSOFF); // pass off for ap_x2
 $assertcontrol(asncntrl_pkg.UNLOCK, ALL_ASSERTS, ALL_DIRECTIVES, 0, ap_x1, ap_x2);
 end
 // ...
endmodule : top

1.8 $past in SV Assertions

ISSUE: When signal a rises, check that busy was asserted sometime before (any number of clock cycles

earlier). The following assertion fails because an infinite range in $past is not supported by SVA.
ap_INCORRECT: assert property(@(negedge clk)($rose(a)|->$past(busy,[1:$]));

SOLUTION: Instead of a looking-back approach with the $past, a forward looking approach solves this

issue. Specifically, set a latch (ambusy) when busy is set. Reset the latch (ambusy) when the assertion

either passes or fails. For example: http://SystemVerilog.us/fv/wasbusy.sv

 bit clk,busy, ambusy, a;
 always @(posedge clk) if(busy) ambusy <= 1'b1; // latch to 1
 ap_a_was_bysy: assert property(@(negedge clk)$rose(a)|-> ambusy)
 ambusy=1'b0; else ambusy=1'b0; // resets to 0

 8

1.9 Check clock period within tolerances

ISSUE: Check clock period within tolerances based on the en signal.

SOLUTION: Use local variable of type realtime in the property.

http://SystemVerilog/us/vf/ check_clk.sv

timeunit 1ns; timeprecision 100ps;
bit clk, en,rst=0, a, b;
default clocking @(posedge clk); endclocking
realtime clk_period=20ns, clk_period_1=22ns, error_clk=2ns;

property p_period_enf;
 realtime current_time;
 disable iff (rst)
 (!en, current_time = $realtime) |=>
 (($realtime - current_time) <= (clk_period + error_clk))
 && (($realtime - current_time) >= (clk_period - error_clk));
endproperty : p_period_enf
ap_period_enf: assert property(p_period_enf);

property p_period_en;
 realtime current_time;
 disable iff (rst)
 (en, current_time = $realtime) |=>
 (($realtime - current_time) <= (clk_period_1 + error_clk))
 && (($realtime - current_time) >= (clk_period_1 - error_clk)) ;
endproperty : p_period_en
ap_period_en: assert property(p_period_en);

1.10 Conclusions

Assertions have specific rules. Some requirements require the need for supporting logic along with module

variables modified in the sequence_match_item with functions calls that may have side effects. Other

occasions are best handled by tasks, as described in ref ii.

i
 SVA Handbook 4th Edition, 2016 ISBN 978-1518681448

 ben@SystemVerilog.us
ii
 SVA Alternative for Complex Assertions

 https://verificationacademy.com/news/verification-horizons-march-2018-issue

https://verificationacademy.com/news/verification-horizons-march-2018-issue

