
Advanced Topics for Properties and Sequences 151

4.3.1 Multiclocked Sequences and Properties

 Rule: [1] Multiclocked sequences are built by concatenating singly clocked subsequences using the
single delay concatenation operator ##1 or the zero-delay concatenation operator ##0. The single delay
indicated by ##1is understood to be from the end point of the first sequence, which occurs at a tick of the
first clock, to the nearest strictly subsequent tick of the second clock, where the second sequence begins. The
zero delay indicated by ##0 is understood to be from the end point of the first sequence, which occurs at a
tick of the first clock, to the nearest possibly overlapping tick of the second clock, where the second
sequence b

 Rule: Properties can use |->, |=> : Multiclocked properties can use the overlapping |-> or non-
overlapping implication |=> operators to create a multiclocked property from an antecedent
sequence and a consequent property. The |=> or the |-> operators synchronize the last expression
of the antecedent clocked with the antecedent clock and the first elements of the consequent
property being evaluated clocked with the consequent clock. The synchronization is the same as
the one used with ##1 (for the |=>) and ##0 (for the |->) operators.
Consider the following two assertions (/ch4/4.3/mclk2.sv)
ap0: assert property(@(posedge clk1) $rose(a) |-> @(posedge clk2) b);
ap1: assert property(@(posedge clk1) $rose(a) |=> @(posedge clk2) b);
Condition $rose(a) @(posedge clk1) $rose(a) |->

@(posedge clk2) b)
@(posedge clk1) $rose(a) |=>
@(posedge clk2) b)

At time t1
posedge clk1 is true event
posedge clk2 is true event

True b is evaluated at t1 b is evaluated at @(posedge
clk2) after t1

At time t2
posedge clk1 is true event
posedge clk2 is false

True b is evaluated at @(posedge
clk2) after t2

b is evaluated at @(posedge
clk2) after t2

Figure 4.3.1-1 Multiclocked property /ch4/4.3/mclk2.png /ch4/4.3/mclk2.sv

 Rule: ##1, ##0 concatenation: Multiclocked subsequences can only be combined with the ##1
or ##0 operators. The use of the and, or, throughout, within, or intersect operator would be
illegal to combine multiclocked subsequences. Thus,
 @(posedge clk1) a ##2 @(posedge clk2) b // ##2 is illegal
 ##1 @(posedge clk3) (c##1 d)
 intersect @(posedge clk4) e ##1 f; // intersect is illegal for multiclocked subsequences

