
UART Bit-Clock Generation Using Assertion Statements
Ben Cohen http://SystemVerilog.us

The DUT: UART transmitter
A UART is a Universal Asynchronous Receiver Transmitter device utilizing an RS232 serial protocol. A

typical UART consists of a transmitter partition and a receiver partition. A CPU typically loads an eight-

bit word into a UART. The UART frames the data word and parity (if any) with a START bit (a logical 0)

at the beginning, and a STOP bit (a logical 1) at the end of the word. It sends the framing information

along with the data and parity in a serial manner from the Least Significant data Bit (LSB) to the Most

Significant Bit (MSB), followed by the parity bit. Figure 1 represents the timing waveform of a UART

message issued by a UART transmitter.

The serial data is received by a UART receiver. Synchronization is based on the negative transition of the

START bit that resets a divide-by-16 counter clocked by a clock 16 times the bit-clock. This counter is

then used to create mid-clock when it reaches a value of 7; it is then used to clock the data stream. The

receive UART stores the serial data into a receive shift register. When all the data is framed, it alerts the

receive CPU that data is ready (rdy signal). The rxdata signal represents the received 8-bit word.

Figure 2 Interface format of a UART serial data

Synchronized bit-clock generation
The falling edge of the START bit is used to synchronize the clock division setup to the start of a bit. It

also indicated the start of a new message. Thus, any previous clock division process needs to be reset.

The cover property cp_bit_clk and the cp_reset, and supporting functions provide the generation of

the bit-clock, as shown below. In this model, rxd (serial data input) is connected to the serial_out of

the transmitter. The ($fell(rxd, @(posedge clk16x)) || !rst_n) cancels any on-going cover statement in

progress. Since there is a need to trigger the bit-clock generation right after a ($fell(rxd, @(posedge

clk16x)) the rxd signal is delayed by one-bit and is clocked at the 16x clock; the delayed signal is called

rxd_r, which is very close in time to the synchronization signal. In this cover property, the

$fell(rxd_r) is used as an antecedent to start the generation of the bit-clock. However, since every bit of

the serial data does not necessarily generate a falling edge at bit-time, it is necessary to generate a

bit-synchronous signal to restart this process at every bit time. For this, the restart signal is used as that

flag. The restart signal is reset or set using the set_restart function called from a sequence match

item. In addition the bit-clock is set or reset with the set_bit_clk function. The initialization of the

http://systemverilog.us/

restart and the awaiting for a new message is performed in the cp_reset cover property statement.

The reset of a new message is performed in the p_data property when a new message is detected.

// generate the bit clock
 cp_bit_clk: cover property(
 @ (posedge clk16x)
 disable iff ($fell(rxd, @(posedge clk16x)) || !rst_n)
 (($fell(rxd_r) || restart), set_bit_clk(1), set_restart(0)) |->
 ##7 (1, set_bit_clk(0)) ##8
 (1, set_bit_clk(1), set_restart(1)));

 cp_reset: cover property(// actions at reset time
 @ (posedge clk16x)
 disable iff (0)
 (!rst_n, set_restart(1), set_new_msg(1)));

 always @ (posedge clk16x) begin rxd_r <= rxd; end
 function void set_bit_clk(bit k); bit_clk=k; endfunction : set_bit_clk
 function void set_restart(bit k); restart=k; endfunction : set_restart
 function void set_new_msg(bit x); new_msg =x; endfunction : set_new_msg

The above bit-clock generation can be performed in classes, using an RTL-like style, as follows:

 class mon_uartrx;
 virtual interface uart_if vif;
 // bit clk16x,
 bit rst_f;
 bit rxd;
 bit rdy;
 bit clk1x;

 bit[10:0] rxdata_r; // the receive register
 bit[3:0] count16_r; // for divide by 16
 bit rxmt_r; // Receive register empty
 bit rxd_r; // registered serial input
 bit parity_enb =1'b1, odd_parity, parity_err;

 task xmt_tsk;
 forever begin
 @ (posedge vif.clk16x) begin : Rx_Lbl
 rxd_r <= vif.serial_out;
 //-- reset
 if (vif.rst_n == 1'b0) begin
 count16_r <= 4'b0000; // reset divide by 16 counter
 rxmt_r <= 1'b1; // new message starting
 end

 // new bit start
 else if (rxmt_r && rxd_r == 1'b0) begin
 count16_r <= 4'b0000; // reset divide by 16 counter
 rxmt_r <= 1'b0; // transmit reg not empty
 end

 // if @ 16X clock rollover
 else if(count16_r == 4'b1111)
 count16_r <= 0;

 // Normal count16 counter increment
 else
 count16_r <= count16_r + 1'b1;

 end :Rx_Lbl
 end
 endtask :xmt_tsk

All test code can be downloaded from http://SystemVerilog.us/uart_vh.tar

Caveat: The point of this paper is to show the capabilities of SVA, and as such, SVA was used for almost

every aspect of the data gathering and supporting constructs, such as the generation of the bit-clok from

the 16x clock. A user may want to have a combination of constructs, e.g., RTL-like and SVA.

