
Formal Verification Using Assertions 249

 `define true 1
`ifndef MULTIPLE_FILE_COMPILE
 typedef enum {OFF, RED, YELLOW, GREEN, PRE_GREEN} lights_t; `endif
module tlight_props (// ch7/7.3/tlight_props2.sv
 input lights_t ns_light, // North/South light status, Main road
 input lights_t ew_light, // East/West light status
 input ew_sensor, // East/West sensor for new car
 input emgcy_sensor, // emergency sensor
 input reset_n, // synchronous reset
 input clk, // master clock
 input [1:0] ns_green_timer
);
 parameter FAIL = 1'b0;

 // **

 // Safety property
 property Never_NS_EW_ALL_GREEN;
 disable iff (!reset_n)
 not (ns_light==GREEN && ew_light==GREEN);
 endproperty : Never_NS_EW_ALL_GREEN
 Never_NS_EW_ALL_GREEN_1 : assert property(@ (posedge clk) Never_NS_EW_ALL_GREEN);
 // **
 // State of lights at reset
 property nsLightAtReset;
 // disable iff (!reset_n) // <-- this causes the assertion to always be vacuous
 reset_n==1'b0 |=> ns_light==OFF;
 endproperty : nsLightAtReset
 nsLightAtReset_1 : assert property(@ (posedge clk) nsLightAtReset);
 //
 property ewLightAtReset;
 // disable iff (!reset_n) // <-- this causes the assertion to always be vacuousM
 reset_n==1'b0 |=> ew_light==OFF; // RED???
 endproperty : ewLightAtReset
 ewLightAtReset_1 : assert property(@ (posedge clk) ewLightAtReset);
 // **
 // State of lights during emergency
 // Lights switch from GREEN to YELLOW to RED
 property NsLightsWhenEmergency;
 disable iff (!reset_n)
 emgcy_sensor |=> `true[*2] ##1 ns_light==RED;
 endproperty : NsLightsWhenEmergency
 NsLightsWhenEmergency_1 : assert property(@ (posedge clk) NsLightsWhenEmergency);

 property EwLightsWhenEmergency;
 disable iff (!reset_n)
 emgcy_sensor |=> `true[*2] ##1 ew_light==RED;
 endproperty : EwLightsWhenEmergency
 EwLightsWhenEmergency_1 : assert property(@ (posedge clk) EwLightsWhenEmergency);

The following is preferred (see 8.3.3)
(ns_light==GREEN |-> !ew_light==GREEN)

250 SystemVerilog Assertions Handbook, 4
th
 edition

// Safety, GREEN to RED is illegal. Need YELLOW
 property NsNeverFromGreenToRed;
 disable iff (!reset_n)
 not(ns_light==GREEN ##1 ns_light==RED);
 endproperty : NsNeverFromGreenToRed
 NsNeverFromGreenToRed_1 : assert property(@ (posedge clk) NsNeverFromGreenToRed);

 property EwNeverFromGreenToRed;
 disable iff (!reset_n)
 not(ew_light==GREEN ##1 ew_light==RED);
 endproperty : EwNeverFromGreenToRed
 EwNeverFromGreenToRed_1 : assert property(@ (posedge clk) EwNeverFromGreenToRed);

 // **

 // The NorthSouth light is the main street light.

 // If ns is green and no emergency or ew sensor, then next cycle is also GREEN
 property NsGreenNext;
 (ns_light==GREEN) && ($past(emgcy_sensor)==1'b0 && reset_n==1'b1)
 |=> ns_light==GREEN;
 endproperty : NsGreenNext
 NsGreenNext_1: assert property (@ (posedge clk) NsGreenNext);

 // GREEN-YELLOW at the same time
 property NeverGreenYellow;
 not ((ew_light==GREEN && ns_light==YELLOW) ||
 (ns_light==GREEN && ew_light==YELLOW));
 endproperty : NeverGreenYellow
 NeverGreenYellow_1: assert property (@ (posedge clk) NeverGreenYellow);

 // **

 // The NorthSouth light is the main street light.

 // It must remain GREEN for ns_green_timer == 3 before it can switch.

 // Timer ns_green_timer will count to 3, and remain at 3 until light changes.
 property NsGreenForMin3Ccyles;
 @ (posedge clk) disable iff (!reset_n || emgcy_sensor)
 $rose(ns_light==GREEN) && !$past(emgcy_sensor) |=>
 ns_light==GREEN[*2]; // abort emgcy_sensor);
 endproperty : NsGreenForMin3Ccyles
 NsGreenForMin3Ccyles_1 : assert property (NsGreenForMin3Ccyles);

 // **

GREEN RED

RED GREEN GREEN GREEN

See 8.3.3 for guidelines. Rewrite as

ew_light==GREEN |=> ! ew_light==RED

See 8.3.3 for guidelines. Rewrite as
(ew_light==GREEN |-> !ns_light==YELLOW)
and

 (ns_light==GREEN |-> !ew_light==YELLOW)

Formal Verification Using Assertions 251

 // East-West North-South Lights with East-West sensor

 // If ew_sensor is activated (new car), then light will switch for the ew_light

 // when minimum time for ns_light is satisfied. ew_green_timer will count to 3,

 // at which time, the ns_green_timer will regain control of GREEN.
 property EwNewSensorActivation;
 @ (posedge clk) disable iff (!reset_n || emgcy_sensor)
 ((ew_sensor==1'b1) && $rose(ns_green_timer==2'b11)) &&
 !$past(emgcy_sensor) && ns_light!= RED
 |=> ns_light==YELLOW ##1 ew_light==GREEN;
 endproperty : EwNewSensorActivation
 EwNewSensorActivation_1 : assert property (EwNewSensorActivation);
// End of new properties 09/10/09
 endmodule : tlight_props

bind trafficlight tlight_props tlight_props1 (.*);

7.3.3 Verification
The above model was verified with OneSpin 360 MV, and it revealed several failures in the

design, as shown in Figure 7.4.3-1.61 In that figure, “fail (9)” means that the tool detected a

violation of the property starting 9 cycles after reset.

As an example of debugging a failing property, Figure 7.4.3-2 shows the debugging view for the

first property “Never_NS_EW_ALL_GREEN”:

The left part of the debugging window shows an interactive view of the property, with the

failing parts highlighted in red (see ch6/tlight/1_some_fail.png file for a color view of a

larger image). The waveform shows that indeed in cycle 0, both the EW and the NS

lights are green62. Further, it indicates that some steps earlier, the emergency sensor, and

the EW sensor were activated. To explore this situation, the time-point “-2” has been

selected (indicated by the yellow vertical bar). The active source code annotation in the

upper right corner shows the critical part of the DUV, with the active source lines marked

in red: the root cause is the conditional transition from RED to the PRE_GREEN state,

the condition
if (ns_green_timer==3'b11 && ew_sensor==1'b1)

being satisfied although in fact the NS light is not green, but being switched to green in

the same step.

The sequence of events leading to this situation is fairly complex, and would have required

extensive simulation with pseudo-random patterns to arrive at the failed situation. The bug,

together with the other bugs detected by the formal tool, led to a thorough redesign of the

controller, as discussed in the next section.

61 OneSpin’s 360 MV is a family of formal verification tools ranging from fully automatic RTL

checks for large designs all the way to OneSpin's patented gap-free verification.

http://www.onespin-solutions.com/

62 The cycles are numbered such that the property always starts at cycle 0, while the reset cycle is

at some negative number, not shown in the figure.

