
296 SystemVerilog Assertions Handbook, 4th edition

9.3 Testbench approaches

9.3.1 Top-down or bottom-up?
In a forum discussion, the following questions were asked:
Before implementation of testbench ,
1) how to start the testbench architecture?
2) Should it be Top-down or Bottom-up approach? I mean start the top testbench and begin then
building the class libraries for test, or test class library first then the testbench top-level?

Though the questions are more generic about testbenches in general, these questions are also
applicable to the testing of assertions. A bottom-up approach is preferred, particularly since there
are templates or other automation tools to build the higher level structures.70 We're also in favor
of building something fast, and then refining it. Thus, the steps involved include:

1) Define the interfaces: This step defines the signals that need to be driven for an RTL,
desidn; this step can be automated,
2) Define the transactions (aka sequence item, in the world of UVM) and the
constraint: That defines what will be driven and with which constraints. The constraints
can be refined later on, but easy known ones could be defined at the early stages.
3) Define the transaction sequences: This steps addresses the sequences of transactions
(e.g., READ, then WRITE, then IDLE, then WRITE, then ..); they could be defined
separately from the drivers, a la UVM style, or they can be integrated as a step just prior
to the drivers. Initially, one may chose a simple constraint random set of transaction
sequences.
4) Define the drivers: This step addresses the application of those tests.
5) Define top: This is the top-level module to run the simulation.
6) Do a sanity check. This is a quick verification tests to ensure that all the pieces are
working correctly, and there are no major error in the test environment.
7) Refine the testbench units: This includes constraints, scenarios (or sequences),
monitors and checkers if needed.

9.3.2 Elements of a testbench
A popular testbench design is UVM. UVM is a transaction-based, class-based, and constrained-
randomization of stimulus style of testbench using a library of classes to facilitate some
automation (with the cycling through the various phases of setup and configurations) and reuse.

Should this UVM verification environment be used to test assertions?
To answer this question, let's examine a typical UVM architecture and the elements really needed
to drive the assertions. The Figures below demonstrate a typical UVM architecture; it includes
the following elements:

1. An interface to connect to the DUT of the module or interface that holds the assertions.
2. A driver for converting the data inside a series of high-level transactions (called

sequence_items, e.g., READ, WRITE, RESET, IDLE, etc) into pin level wiggles.
3. A sequencer to route sequence_items from a sequence (e.g., a READ, followed by 2 IDLEs,

followed by a WRITE, and then a WRITE, etc...). The sequence may contain constrained-
random transactions.

69 https://verificationacademy.com/forums/uvm/tb-architecture
70 https://verificationacademy.com/forums/uvm/tb-architecture
http://verifworks.com/products/dvcreate-uvm/
http://verifworks.com/products/dvcreate-svi

Verifying Assertions 297

To just stimulate a set of assertions for manual analysis, all the remaining elements of UVM are not
needed, including: the monitor, scoreboard, agent, and configurations. In fact, in many situations, all three
elements above can be collapsed into a simple loop with a statement, as shown in section 9.4.

The following sections address various techniques to verify assertions embedded into modules, checkers,
and interfaces.

9.4 Simple unconstrained randomization of test vectors in a test module

The simplest approach to verify assertions is to insert the assertions directly into a verification
module or to bind an assertion module or checker into that verification module. This is then
followed by an unconstrained randomization of the variables used in the assertions. This is
equivalent to combining the sequence, sequencer and driver into one loop statement. UVM
verbosity levels (see 4.2.3.2) are used to display messages. For example:

298 SystemVerilog Assertions Handbook, 4th edition

9.4.1 Simple constrained randomization of test vectors in a test module
In this methodology, constraints are added inline with the randomize function. Those constraints
adjust the distribution of the values of the variables to emulate more realistic test cases.

9.4.2 Class-based randomization of test vectors
Using classes to define the variables to be constrained not only allows for the collocation of the
definition of the constraints, but they also provides a greater flexibilities in making changes
through the extension of classes. Thus,

The sequence of transactions is defined by the
randomize. The driver is implicit because the variables
are directly modified by the randomize.

sequence item

item declaration

The sequence of transactions is defined by the
randomize. The driver is implicit because the variables
are directly modified by the randomize.

Verifying Assertions 299

9.4.3 Transaction-based defintion of test sequences
This methodology raises the level of abstraction by considering transactions that are then decoded
into values for individual signals (e.g., the rd, wr, data signals) This methodology encompasses
several steps as demonstrated in the figure below :
1) Definition of transactions to be randomized (AKA sequence item, or item).
A transaction is as an operation that represents the job to be performed, such as Read / Write /
Idle. Transactions are best implemented in a class, along with other variables that need to be
constrained. For example, a transaction may consist of the following:

1. Instruction. This represents the high-level tasks to be executed, such as a READ,
WRITE, NO-OP, LOAD, etc.
2. Data. This represents information such as address, data, number of cycles, etc.
3. Parameters. This can represent a mode, a size, path, etc.

The basic idea of a transaction-level methodology, such as UVM, is to separate the transaction
from the sequence, sequencer and drivers. This approach enables the class to easily be extended
and adjusted without modifying the other elements of the testbench.

2) Definition of assertions grouped into module(s) or checkers
Co-locating the assertions into separate modules or checkers provides several benefits71

- Isolates assertions from DUT
- Provides timestamp isolation.
- Enables easy modifications to the assertions
- Enables easier review
- Enables tools to perform static checks on assertions (a la lint)

3) Definition of test module
The test module includes the following:
- The design variable declarations, which defines the values to be applied to the assertions.
- A declaration and an instance of the transaction class (referred to as the sequence item).
- An instance of the assertion module.
- A loop that provides the following functions, typically on a clocked basis:

* Randomizes items within the transaction class
* Decoding of the transaction to be exercised.
* Assignment of the randomized variables in the class instance into the design variables.

- Initiation of a finish task to end the simulation.

71 (See Stuart Sutherland SNUG 2015 paper)

instance of item
The sequence of transactions is
defined by the randomize.

New values to the driver here

300 SystemVerilog Assertions Handbook, 4th edition

9.4.3.1 The sequence item
The stimulus generation process is based on sequences controlling the behavior of drivers by
generating sequence_items and sending them to the driver via a sequencer. The framework of
the stimulus generation flow is built around the sequence structure for control, but the generation
data flow uses sequence_items as the data objects.

The content of the sequence_item is closely related to the needs of the driver. The driver relies on
the content of the sequence_items it receives to determine which type of pin level transaction to
execute. The sequence items property members will consist of data fields that represent the
following types of information:

Control - i.e. What type of transfer, what size
Payload - i.e. The main data content of the transfer
Configuration - i.e. Setting up a new mode of operation, error behavior etc
Analysis - i.e. Convenience fields which aid analysis - time stamps, rolling checksums etc

When the assertions address more complex scenarios, a transaction-based definition of test
sequences is preferred. This approach borrows from the UVM stimulus generation process, but is
simpler in that it does not encompass all of UVM, and can be built relatively quickly. With this
approach, a transaction defines, at a higher level, the types of operations to be applied to the
assertions. These high level operations are supplemented with constraint variables to help in the
definition of the values applied to the assertions. Examples of transactions include RESET,
READ. WRITE, ADD, MULTIPLY, SEND, etc. The transactions are typically specified as
enumeration of a variable. The transaction is typically randomized with constraints, and it is used
by tasks to decode the type of activity to be acted upon in that randomization step (e.g., a
WRITE); The driver tasks then executes the steps necessary to implement that transaction. An
example of a class that includes transaction type definitions and items to be randomized is shown
below.

sequence/sequencer
definition

The driver

Verifying Assertions 301

9.4.3.2 Transitioning from testbenching assertions to quick testbenching DUT.
The methodologies between verifying assertions and performing sanity testing on the DUT are not that far
apart. Below is a quick summary of the methodology. This is followed by an example for a counter with
some strange requirements, defined as such to demonstrate the capabilities of the assertions and the
testbench environment.

The design problem:

Design and write assertions for
a loadable synchronous up-counter
Loadable counter, reset to MIN_COUNT if rst_n==0

Min load value == MIN_COUNT
(default ==2)
Max count value == MAX_COUNT (default
==9)

holds the count when it reaches the maximum value
Must change value at least every 9 clocks

transaction to be randomized, and then applied
per defintion in the driver protocols.

variables to be used once a value of kind item
is determined

constraints to control
sequences

