296 SystemV erilog Assertions Handbook, 4™ edition

9.3 Testbench approaches

931 Top-down or bottom-up?

In aforum discussion, the following questions were asked: 62

Before implementation of testbench ,

1) how to start the testbench architecture?

2) Should it be Top-down or Bottom-up approach? | mean start the top testbench and begin then
building the classlibrariesfor test, or test classlibrary first then the testbench top-level?

Though the questions are more generic about testbenches in general, these questions are also
applicable to the testing of assertions. A bottom-up approach is preferred, particularly since there
are templates or other automation tools to build the higher level structures.”0 We're also in favor
of building something fast, and then refining it. Thus, the stepsinvolved include:
1) Definetheinterfaces: This step defines the signals that need to be driven for an RTL,
desidn; this step can be automated,
2) Definethe transactions (aka sequence item, in the world of UVM) and the
constraint: That defines what will be driven and with which constraints. The constraints
can berefined later on, but easy known ones could be defined at the early stages.
3) Definethetransaction sequences. This steps addresses the sequences of transactions
(e.g., READ, then WRITE, then IDLE, then WRITE, then ..); they could be defined
separately from the drivers, alaUVM style, or they can be integrated as a step just prior
tothe drivers. Initialy, one may chose a simple constraint random set of transaction
sequences.
4) Definethedrivers: This step addresses the application of those tests.
5) Definetop: Thisisthe top-level module to run the simulation.
6) Do a sanity check. Thisisaquick verification teststo ensure that all the pieces are
working correctly, and there are no major error in the test environment.
7) Refinethetestbench units: Thisincludes constraints, scenarios (or sequences),
monitors and checkersif needed.

932 Elementsof atestbench

A popular testbench design is UVM. UVM is a transaction-based, class-based, and constrai ned-
randomization of stimulus style of testbench using a library of classes to facilitate some
automation (with the cycling through the various phases of setup and configurations) and reuse.

Should thisUVM verification environment be used to test assertions?
To answer this question, let's examine atypical UVM architecture and the elements really needed
to drive the assertions. The Figures below demonstrate a typical UVM architecture; it includes
the following elements:
1. Aninterfaceto connect to the DUT of the module or interface that holds the assertions.
2. A driver for converting the data insde a series of high-level transactions (called
sequence_items, e.g., READ, WRITE, RESET, IDLE, etc) into pinlevel wiggles.
3. A sequencer to route sequence_items from a sequence (e.g., a READ, followed by 2 IDLEs,
followed by a WRITE, and then a WRITE, etc...). The sequence may contain constrained-
random transactions.

69 https://verificationacademy.com/forums/uvm/tb-architecture
70 https://verificationacademy.com/forums/uvm/tb-architecture
http://verifworks.com/products/dvcreate-uvm/
http://verifworks.com/products/dvcreate-svi/

Verifying Assertions 297

To just stimulate a set of assertions for manua analysis, al the remaining elements of UVM are not
needed, including: the monitor, scoreboard, agent, and configurations. In fact, in many situations, all three
elements above can be collapsed into asimple loop with a randomize statement, as shown in section 9.4.

|
|
test Whatis needfad
to test assertions
coverage
env monitor
Interface

L]

: DUT
a or

S §
20| monitor assertions
N T =
configuration B to be tested
apb config
spi config
Sequence UVM Sequence Based Stimulus Generation Architecture
Soq_ltems -I .ﬂll]‘ ,"-'i
Seq_tems "'.I
: Uwvm sequence architecture.gif

The following sections address various techniques to verify assertions embedded into modules, checkers,
and interfaces.

9.4 Simpleunconstrained randomization of test vectorsin atest module

The simplest approach to verify assertionsisto insert the assertions directly into a verification
module or to bind an assertion module or checker into that verification module. Thisisthen
followed by an unconstrained randomization of the variables used in the assertions. Thisis
equivalent to combining the sequence, sequencer and driver into one loop statement. UVM
verbosity levels (see 4.2.3.2) are used to display messages. For example:
import uvm_pkg::*; ~include "uvm_macros.svh"
module simple; // /ch9/9.4/testbench_ex.sv

bit clk, req, ack;

string log_id="SVA";

ap_req_ack: assert property(@(posedge clk)

req |=> ##[1:5] ack) else
“uvm_error(log_id, $sformatf(": Error in req ack %b %b", req, ack));

298 SystemV erilog Assertions Handbook, 4™ edition

initial forever #5 clk=!clk; The sequence of transactions is defined by the
initial begin randomize. The driver isimplicit because the variables
repeat(200) begin are directly modified by the randomize.

@(posedge clk);

if (!randomize(req, ack))
“uvm_error(log_id, $sformatf("%m : error in randomization req ack %b %b", req, ack));
$display ("%t %b %b", $time, req, ack);

end
$finish;

end
endmodule

9.4.1 Simple constrained randomization of test vectorsin atest module
In this methodol ogy, constraints are added inline with the randomize function. Those constraints

adjust the distribution of the values of the variables to emulate more realistic test cases.
import uvm_pkg::*; ~include "uvm_macros.svh"
module simple_ct; // /ch9/9.4/simple_ct.sv /ch9/9.4/testbench_ex.sv

bit clk, req, ack;

string log_id="SVA";

ap_req_ack: assert property(@(posedge clk)

req |=> ##[1:5] ack) else
“uvm_error(log_id, $sformatf(": Error in req ack %b %b", reqg, ack));

The sequence of transactions is defined by the
randomize. Thedriver isimplicit because the variables
are directly modified by the randomize.

initial forever #5 clk=!clk;
initial begin
repeat(200) begin
@(posedge clk);
if (!randomize(req, ack) with
{ req dist {1'bl:=1, 1'b@:=3};
ack dist {1'bl:=1, 1'b@:=5};})
“uvm_error("MYERR", "This is a randomize error")
// “uvm_info("simple", $sformatf("%t %b %b", $time, req, ack), UVM_MEDIUM);
end
$finish;
end
endmodule

9.4.2 Class-based randomization of test vectors
Using classes to define the variables to be constrained not only allows for the collocation of the
definition of the constraints, but they also provides a greater flexibilities in making changes

through the extension of classes. Thus,
import uvm_pkg::*; “include "uvm_macros.svh"
class c; // /ch9/9.4/testbench_ex.sv

rand bit req, ack;

constraint req_ct { req dist {1'bl:=1, 1'b0:=3};} } sequence item
constraint ack_ct { ack dist {1'bl:=1, 1'b@:=5};}

endclass

module class_based; /ch9/9.4/testbench_ex.sv
bit clk, req, ack;
string tID="sime}e"; item declaration
c cl; <«
ap_req_ack: assert property(@(posedge clk)
req |=> ##[1:5] ack) else
“uvm_error(log_id, $sformatf(": Error in req ack %b %b", req, ack));

initial forever #5 clk=!clk;

Verifying Assertions 299

The sequence of transactionsis
defined by the randomize.

initial begin instance of item
cl=new(); «— |

repeat(200) begin

@(posedge clk);
if (!cl.randomize())
“uvm_error("MYERR", "This is a randomize error")

req <= cl.req; I _
ack <= cl.ack; New valuesto the driver here ’
// $display("%t %b %b", $time, req, ack);
end
$finish;
end
endmodule

9.4.3 Transaction-based defintion of test sequences
This methodology raises the level of abstraction by considering transactions that are then decoded
into values for individual signals (e.g., the rd, wr, data signals) This methodology encompasses
several steps as demonstrated in the figure below :
1) Definition of transactionsto be randomized (AKA sequenceitem, or item).
A transaction is as an operation that represents the job to be performed, such as Read / Write /
Idle. Transactions are best implemented in a class, aong with other variables that need to be
constrained. For example, atransaction may consist of the following:

1. Instruction. This represents the high-level tasks to be executed, such asa READ,

WRITE, NO-OP, LOAD, etc.

2. Data. This representsinformation such as address, data, number of cycles, etc.

3. Parameters. This can represent amode, a size, path, etc.
The basic idea of atransaction-level methodology, such as UVM, isto separate the transaction
from the sequence, sequencer and drivers. This approach enables the class to easily be extended
and adjusted without modifying the other elements of the testbench.

2) Definition of assertions grouped into module(s) or checkers

Co-locating the assertionsinto separate modules or checkers provides several benefits’1
- Isolates assertions from DUT

- Provides timestamp isolation.

- Enables easy modifications to the assertions

- Enables easier review

- Enables toolsto perform static checks on assertions (alalint)

3) Definition of test module
The test modul e includes the following:
- The design variable declarations, which defines the values to be applied to the assertions.
- A declaration and an instance of the transaction class (referred to as the sequence item).
- An instance of the assertion module.
- A loop that provides the following functions, typically on a clocked basis:
* Randomizes items within the transaction class
* Decoding of the transaction to be exercised.
* Assignment of the randomized variablesin the class instance into the design variables.
- Initiation of afinish task to end the simulation.

71 (See Stuart Sutherland SNUG 2015 paper)

300 SystemV erilog Assertions Handbook, 4™ edition

Test Module for Assertions
* Design variable declarations

Transaction Class

|
~__+— *transactions |
* Instance of transaction < I i

1 1

* Instance of assertion module _

* Loop Conoinooioiiboi il ewens '
- Randomization of transaction
and variables <« sequence/sequencer
- Decoding of transaction actions definition

- Assignment of randomized variables
to design variables per requirementsg
of the transaction

Thedriver

9.4.3.1 Thesequenceitem

The stimulus generation process is based on sequences controlling the behavior of drivers by
generating sequence_items and sending them to the driver via a sequencer. The framework of
the stimulus generation flow is built around the sequence structure for control, but the generation
data flow uses sequence_items as the data objects.

The content of the sequence_itemis closely related to the needs of the driver. The driver relies on
the content of the sequence _itemsit receives to determine which type of pin level transaction to
execute. The sequence items property members will consist of data fields that represent the
following types of information:

Contral - i.e. What type of transfer, what size

Payload - i.e. The main data content of the transfer

Configuration - i.e. Setting up anew mode of operation, error behavior etc

Analysis - i.e. Convenience fields which aid analysis - time stamps, rolling checksums etc

When the assertions address more complex scenarios, a transaction-based definition of test
sequencesis preferred. This approach borrows from the UVM stimulus generation process, but is
simpler in that it does not encompass all of UVM, and can be built relatively quickly. With this
approach, a transaction defines, a a higher level, the types of operations to be applied to the
assertions. These high level operations are supplemented with constraint variables to help in the
definition of the values applied to the assertions. Examples of transactions include RESET,
READ. WRITE, ADD, MULTIPLY, SEND, etc. The transactions are typically specified as
enumeration of avariable. The transaction is typically randomized with constraints, and it is used
by tasks to decode the type of activity to be acted upon in that randomization step (e.g., a
WRITE); The driver tasks then executes the steps necessary to implement that transaction. An
example of aclass that includes transaction type definitions and items to be randomized is shown

below.
package bus_pkg; // /ch9/9.4/txexample.sv

timeunit 1ns; timeprecision 100ps;

typedef enum {BS_READ, BS_WRITE, BS_READ_WRITE, BS_IDLE} BS_scen_e;
endpackage : bus_pkg

Verifying Assertions 301

import bus_pkg::*;

class bus_seq_item;
rand BS_scen_e kind;
rand logic[31:0] addr;
rand logic[31:0] data;
rand bit x, y;
rand int delay;
constraint kind_ct {kind dist

{BS_READ:=30, BS_WRITE:=30, BS_READ_WRITE:=30, BS_IDLE:=10 };}

constraint at_least_1 { delay inside {[1:20]};}

transaction to be randomized, and then applied
per defintion in the driver protocols.

variables to be used once avalue of kind item
is determined

// 32 bit aligned transfers constraints to control
constraint align 32 {addr[1:0] == 0;} sequences

constraint xy_ct { {x, y} dist
{2'b0@:=15, 2'b@1:=2, 2'b10:=2, 2'bll:=1};}
endclass: bus_seq_item

9.4.3.2 Transitioning from testbenching assertionsto quick testbenching DUT.

The methodologies between verifying assertions and performing sanity testing on the DUT are not that far
apart. Below isaquick summary of the methodology. Thisis followed by an example for a counter with
some strange requirements, defined as such to demonstrate the capabilities of the assertions and the
testbench environment.

Test Module for DUT

I
* Design variable declarations . Transaction Class :
| —— *transactions !
* Instance of transaction < #ysiigblas i
A AT |
* Instance of DUT w

* Binding of assertion moduletoDUT | o ____ |

* Loop
- Randomization of transaction
and variables
- Decoding of transaction actions
- Assignment of randomized variables
to design variables per requirements
of the transaction

Thedesign problem:

€ Design and write assertions for counter max
aloadable synchronous up-counter , =
@ Loadable counter, reset to MIN_COUNT if rst_n== -).l data_in counter
€ Minload value == MIN_COUNT —@ Id
(default ==2) *ql clk
L 2 i/lzagx) count value == MAX_COUNT (default ' .i rst_n
€ holds the count when it reaches the maximum value
€ Must change value at least every 9 clocks
Increments If [d==1"b0 and the counter = MAX CO

