
Preface i

SystemVerilog Assertions

Handbook, 2
nd

 edition

… for Dynamic and Formal Verification

Ben Cohen

Srinivasan Venkataramanan

Ajeetha Kumari

...and Lisa Piper

VhdlCohen Publishing

Los Angeles, California

http://www.SystemVerilog.us/

ii SystemVerilog Assertions Handbook, 2
nd

 Edition

SystemVerilog Assertions

Handbook, 2
nd

 Edition
… for Dynamic and Formal Verification

Published by:

VhdlCohen Publishing

P.O. 2362

Palos Verdes Peninsula CA 90274-2362

ben@SystemVerilog.us

http://www. SystemVerilog.us/

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalog record for this book is available from the Library of Congress

 SystemVerilog Assertions Handbook, 2
nd

 Edition

 … for Dynamic and Formal Verification
ISBN 878-0-9705394-8-7

[1] Reprinted with permission from IEEE Std. IEEE P1800/D9-prelim Standard for

SystemVerilog Unified Hardware Design,Specification, and Verification Language,

Copyright 2009, by IEEE. The IEEE disclaims any responsibility or liability resulting from

the placement and use in the described manner.

Items reprinted from the above referenced IEEE document are identified with a prefix [1]

and are shown in italic font.

Copyright © 2010 by VhdlCohen Publishing

All rights reserved. No part of this publication may be reproduced or transmitted in

any form or by any means, electronic or mechanical, including photocopying,

recording, or by any information storage and retrieval system, without the prior

written permission from the author, except for the inclusion of brief quotations in a

review.

Printed on acid-free paper

Printed in the United States of America

Preface iii

Contents

1 Assertions In a Verification Methodology ... 1

1.1 DESIGN VERIFICATION METHODOLOGIES .. 2
1.1.1 SystemVerilog Assertions in Verification Strategy ... 5
1.1.2 Are Assertions Independent from Systemverilog Structures? ... 5
1.1.3 Are Assertions Useful for the Definition and Verification of Designs? 6

1.1.3.1 Captures Design Intent .. 7
1.1.3.2 Allows Protocols to be Defined and Verified... 7
1.1.3.3 Reduces the Time to Market ... 8
1.1.3.4 Greatly Simplifies the Usage of Reusable IP .. 8
1.1.3.5 Facilitates Functional Coverage Metrics ... 9
1.1.3.6 Generates Counterexamples to Demonstrate Violation of Properties ... 9

1.1.4 Can/Should Entire Functional Verification Task be Performed Using SVA? 9
1.1.5 Is SystemVerilog Assertions Solely Restricted to Applications that Use SystemVerilog? 10

1.2 SYSTEMVERILOG ASSERTIONS GOALS ... 10
1.3 SYSTEMVERILOG ASSERTIONS LANGUAGE ... 11
1.4 OVERVIEW OF PROPERTIES , ASSERTIONS, ATTEMPTS ... 12
1.5 ASSERTION-BASED VERIFICATION .. 18

1.5.1 Specification and Verification ... 18
1.5.2 assert / assume / cover / expect Directives .. 19
1.5.3 Constraint -- assume/ restrict Directives .. 19
1.5.4 Assertions ... 20

1.5.4.1 Immediate assertions – assert / assume / cover ... 20
1.5.4.1.1 Simple Immediate Assertions ... 20
1.5.4.1.2 Deferred Assertions .. 21

1.5.4.2 Concurrent Assertions: assume property, assert property, cover property,

 cover sequence, restrict property 21

2 Understanding Properties .. 23

2.1 ASSERTIONS AND PROPERTIES .. 24
2.2 PROPERTY HEADER ... 28
2.3 PROPERTY IDENTIFIER ... 28
2.4 BODY OF THE PROPERTY STATEMENT .. 28

2.4.1 Property Expression .. 29
2.4.1.1 “Safety” And “Liveness”, “Weak” And “Strong” .. 29

2.4.1.1.1 Strong and Weak ... 30
2.4.1.1.2 Liveness and Safety Properties ... 32

2.4.2 Clocking Event ... 32
2.4.3 Disabling Condition ... 34

2.4.3.1 Disable Rules ... 34
2.4.3.2 Default Disable .. 35

2.4.4 Formal Arguments and Usage .. 36
2.4.4.1 Inferred functions for Clock and Disable ... 37

2.4.5 Property Operators ... 39
2.4.5.1 Implication Operators |->, |=> .. 39

2.4.5.1.1 Overlapped Implication Operator |-> .. 40
2.4.5.1.2 Non-Overlapped Implication Operator |=> ... 41

2.4.5.2 not Operator .. 42
2.4.5.3 nexttime, s_nexttime .. 43
2.4.5.4 and Operator + Vacuity Example ... 44

iv SystemVerilog Assertions Handbook, 2
nd

 Edition

2.4.5.5 or Operator ... 45
2.4.5.6 implies ... 45
2.4.5.7 iff ... 45
2.4.5.8 until ... 46
2.4.5.9 Followed-by #-#, #=# ... 47
2.4.5.10 always, always[cycle_delay_const_range], s_always[bounded range] ... 49
2.4.5.11 eventually, s_eventually.. 50
2.4.5.12 if else ... 51
2.4.5.13 case ... 52
2.4.5.14 accept_on, reject_on, sync_accept_on, sync_reject_on .. 53

2.5 LOCAL VARIABLES IN PROPERTIES .. 55
2.5.1 Local Variable Formal Arguments ... 57
2.5.2 First Application Example Using Variables ... 58
2.5.3 Second Application Example Using Variables .. 61
2.5.4 Third Application Example Using Variables .. 62

3 UNDERSTANDING SEQUENCES .. 63

3.1 SEQUENCE SYNTAX ... 64
3.2 SEQUENCE OPERATORS AND BUILT-IN FUNCTIONS ... 66
3.3 REPETITION OPERATORS .. 68

3.3.1 Attempt / Thread Difference ... 69
3.3.2 Impact of Multithreaded Sequences ... 72

3.3.2.1 Multithreaded Sequence in Antecedent ... 72
3.3.2.2 Multithreaded Sequence in Consequent .. 74
3.3.2.3 Multithread Sequences in both Antecedent and Consequent .. 75
3.3.2.4 Consequent with Multiple Antecedent / Consequent Pairs .. 76

3.3.3 Consecutive Repetition ... 77
3.3.3.1 [*n] Repetition Fixed ... 77
3.3.3.2 [*n:m] [*] [+] Repetition Range .. 77
3.3.3.3 [*0 : m] Repetition Range with Zero ... 80
3.3.3.4 [*n : $], [*] [+] Repetition Range with Infinity .. 81

3.3.4 Sequence Non-consecutive Repetition ([=n], [=range]) .. 83
3.3.5 Sequence goto Repetition ([->n]) ... 84
3.3.6 Use Warnings: Non-Consecutive Repetition and goto Operators ... 84

3.4 SEQUENCE COMPOSITION OPERATORS ... 86
3.4.1 Sequence Fusion (##0) and Empty Sequences ... 87
3.4.2 Sequence Disjunction (or) ... 88
3.4.3 Sequence Non-Length-Matching (and) ... 89
3.4.4 Sequence Length-Matching (intersect, AND with length restriction)) 89
3.4.5 Sequence Containment (within) ... 90
3.4.6 Expression over Sequences (throughout operator) ... 91

3.5 METHODS SUPPORTING SEQUENCES .. 91
3.5.1 first_match Operator .. 91
3.5.2 End Point of Sequences, .triggered .. 94
3.5.3 End Point of Sequences, .matched .. 96
3.5.4 End Point Application Examples ... 98

3.5.4.1 End Points as a Starting Point to Build Sequences .. 98
3.5.4.2 .triggered as Level-Sensitive Control ... 100
3.5.4.3 Sequence Events ... 101

3.6 VARIABLES .. 101
3.6.1 Variable Types, Initializations, Assignments, Updates (Rule 1, 3, 4) 106
3.6.2 Update of Local Variables (Rule 15) .. 107
3.6.3 Local Variables in Repetitions (Rule 8, 9) .. 107
3.6.4 Formal Arguments and Local Variables in sequences (Rule 11, 12, 17) 108
3.6.5 No Empty Match in Local Variables Assignments (rule 5) .. 111

Preface v

3.6.6 Local Variable Must be Written Once Before Being Read (rule 6) .. 112
3.6.7 Local Variable is Unassigned if Not Flowed Out (rule 7, 10) ... 112
3.6.8 Local Variables in Concurrent and, or, and intersect Threads (rule 14) 112

3.6.8.1 Variables Assigned on Parallel “or” Threads .. 113
3.6.8.2 first_match(seq1 or seq2) ... 115
3.6.8.3 Variables Assigned on Parallel “and” “intersect” Threads ... 115

3.6.9 .triggered Method in Sequences with Input or Inout Local Variable Formal Arguments 117

4 Advanced Topics For Properties and Sequences ... 121

4.1 ASSERTION-BASED SYSTEM FUNCTIONS.. 121
4.1.1 Sampled Valued Functions .. 121

4.1.1.1 Value Access Functions ... 122
4.1.1.1.1 $sampled(expression) .. 122
4.1.1.1.2 $past ... 123

4.1.1.2 Value Change Functions .. 124
4.1.1.2.1 $rose and $fell .. 124
4.1.1.2.2 $stable, $changed .. 126

4.1.2 Vector-Analysis System Functions... 126
4.1.3 Severity-Level System Functions ... 127
4.1.4 Assertion-Control System Tasks .. 128

4.1.4.1 Assertion Evaluation -Control System Tasks ... 128
4.1.4.2 Assertion Action Blocks -Control System Tasks ... 130

4.2 CLOCKED SEQUENCES, PROPERTIES, AND MULTICLOCKING .. 130
4.2.1 Clock Inferrence .. 131
4.2.2 Multiclocked Sequences and Properties ... 133
4.2.3 Clocking Rules in Assertions .. 135
4.2.4 Clock Flow ... 136
4.2.5 Procedural Concurrent Assertion .. 137
4.2.6 Arguments to Procedural Concurrent Assertions .. 139

4.3 SYSTEMVERILOG SCHEDULING SEMANTICS FOR ASSERTIONS ... 142
4.4 PROPERTIES IN INTERFACES .. 144
4.5 ASSERTION STATEMENTS ... 145

4.5.1 Purpose of Verification Statements .. 146
4.5.1.1 assert Statement ... 146
4.5.1.2 assume Statement .. 146
4.5.1.3 restrict statement ... 148
4.5.1.4 cover Statement .. 149
4.5.1.5 Expect Construct ... 150
4.5.1.6 Action-Block .. 152

4.6 IMMEDIATE ASSERTIONS.. 153
4.6.1 Simple Immediate Assertions .. 154
4.6.2 Deferred Assertions... 155

4.7 BINDING PROPERTIES TO SCOPES OR INSTANCES .. 157

5 CHECKER .. 161

5.1 MOTIVATION AND ADVANTAGES OF CHECKER CONSTRUCT... 162
5.1.1 Inlining of checkers ... 163
5.1.2 Allows for Passing Additional Types of Arguments ... 163
5.1.3 Prevents Accidental Synthesis of Assertion Related Code ... 163
5.1.4 Assists in Code Reviews and Verification Plans ... 163
5.1.5 Avoids False Negatives with Linting Process ... 164

5.2 SYNTAX OF CHECKER CONSTRUCT .. 164
5.3 CHECKER CONTENTS ... 166
5.4 CHECKER USE MODEL ... 167

vi SystemVerilog Assertions Handbook, 2
nd

 Edition

5.4.1 Classification of checker’s Assertion Statements .. 167
5.4.2 Classification of checker Instances.. 168
5.4.3 checker Declaration and Instances ... 169

5.4.3.1 checker as Separate Verification Unit ... 169
5.4.3.2 checker Defined within DUT ... 172

5.4.4 Behavior of Instantiated checkers .. 173
5.4.4.1 Static checker Instantiation ... 173
5.4.4.2 Procedural checker Instantiation .. 174

5.5 CHECKER RULES ... 177
5.5.1 Allowed Procedures inside checker ... 177
5.5.2 Disallowed Procedures inside checker .. 179
5.5.3 Argument Passing ... 180

5.5.3.1 Formal Argument Types and Directions ... 181
5.5.3.2 $ in Actual Argument... 181
5.5.3.3 If Actual Argument is const Cast Or automatic then Formal Arguments

 Used Only in Static Assertions 182
5.5.3.4 Actuals can be Events, Sequences, or Properties .. 182
5.5.3.5 Inside checker Actuals Get Arguments from Formal of Parent ... 183

5.5.4 Allowed Assignment Style ... 183
5.5.5 Context Inference .. 184
5.5.6 Variables / Loops / rand Qualifier ... 186

5.5.6.1 & Module automatic variable cannot be referenced from within checker 186
5.5.6.2 Loops and automatic variable in checkers .. 186
5.5.6.3 checker’s variables exist for whole simulation .. 187
5.5.6.4 variable with rand qualifier may behave non- deterministically ... 189
5.5.6.5 checker variable assignment rules .. 189

5.5.7 checker Instantiation .. 190
5.5.8 What’s not in Checkers ... 191
5.5.9 Capturing Functional Coverage Model Inside Checker ... 192

6 SystemVerilog Assertions In the Design Process ... 193

6.1 TRADITIONAL DESIGN PROCESS ... 194
6.2 DESIGN PROCESS WITH ABV USING SVA AS VEHICLE .. 194

6.2.1 System-level Assertions... 195
6.2.1.1 Cause and Effect Class of Requirements ... 197
6.2.1.2 Latencies ... 198
6.2.1.3 Definition of Processing Algorithms .. 198
6.2.1.4 Analyzing Properties Prior to RTL Design .. 199

6.2.2 Interface Assertions .. 199
6.2.3 Architectural Plan ... 200
6.2.4 Verification Plan.. 200
6.2.5 RTL Design .. 201
6.2.6 Write Testbench and Simulate .. 201
6.2.7 Analyze the Simulation Results and Coverage .. 202

6.2.7.1 Functional Coverage in Verification .. 202
6.2.7.2 SystemVerilog Assertions API .. 203

6.2.8 Formal Verification (FV) .. 206
6.3 CASE STUDY - SYNCHRONOUS FIFO... 206

6.3.1 Synchronous FIFO Requirements .. 206
6.3.2 Verification Plan.. 217
6.3.3 RTL Design .. 224
6.3.4 Simulation ... 224

Preface vii

7 FORMAL VERIFICATION USING Assertions .. 225

7.1 FORMAL VERIFICATION METHODOLOGY .. 226
7.2 GLOBAL CLOCKING PAST AND FUTURE SAMPLED VALUE FUNCTIONS .. 231

7.2.1 Global Clocking ... 232
7.2.2 Additional Sampled Value Functions .. 232
7.2.3 Application of Global Clocking .. 236

7.3 ROLE OF SYSTEMVERILOG ASSERTIONS IN FV ... 237
7.3.1 SystemVerilog Assertions in Formal Specifications ... 237
7.3.2 SystemVerilog Assertions Usage in FV vs. Dynamic ABV .. 238
7.3.3 Same Inputs in Antecedent and Consequent .. 239

7.4 CASE STUDY - FV OF A TRAFFIC LIGHT CONTROLLER .. 239
7.4.1 Model .. 239
7.4.2 SystemVerilog Assertions for Traffic Light Controller ... 242
7.4.3 Verification ... 245
7.4.4 Good Traffic Light Controller .. 247

7.5 CASE STUDY: FORMAL VERIFICATION OF FIFO RTL .. 251
7.5.1 Setting up Design and Properties .. 251
7.5.2 Debugging an Assertion .. 253
7.5.3 Adding Constraints ... 253
7.5.4 A Real Bug ... 256
7.5.5 Coverage and Final Result .. 257
7.5.6 assert and assume for Same Property: Then What? .. 258

7.6 FV COVERAGE METRICS .. 259
7.6.1 Proof Radius .. 259
7.6.2 Explored State-Based Coverage .. 259
7.6.3 Flip-flop to Property Distance ... 260
7.6.4 Automated Gap Detection .. 260

7.7 EMERGING APPLICATIONS OF SYSTEMVERILOG ASSERTIONS WITH FORMAL METHODS 260
7.7.1 SystemVerilog Assertions-Based Performance Evaluation of Digital Systems 261
7.7.2 Hybrid (dynamic and formal) Verification .. 261
7.7.3 Directed Random Test Generation from SystemVerilog Assertions 262
7.7.4 Achieving Hard-to-hit Functional Coverage Goals using Formal Methods 262
7.7.5 Functional Coverage Points Generation from SVA + FV ... 264

7.8 SIMULATION OR FORMAL VERIFICATION? ... 265
7.8.1 Arguments for Simulation with ABV ... 265
7.8.2 Arguments for Formal Verification ... 266
7.8.3 Balance ... 266
7.8.4 Recommendations .. 266
7.8.5 Validity of Formal Verification results... 267

8 SystemVerilog Assertions Guidelines ... 269

8.1 NAMING CONVENTION GUIDELINES .. 270
8.1.1 File naming ... 270
8.1.2 Naming of Assertion Constructs ... 270
8.1.3 Ending Statements with Labels ... 271
8.1.4 Constants for Modules and Interfaces .. 271
8.1.5 Local Variables within Properties and Sequences ... 272

8.2 STYLE... 273
8.2.1 Explicit or Implicit Declaration of Properties .. 274
8.2.2 Use Formal Arguments only when Reuse is Intended ... 275
8.2.3 Use generate Construct for Assertions Conditional on Parameters 275
8.2.4 Standardize Action Block Error Display ... 276

viii SystemVerilog Assertions Handbook, 2
nd

 Edition

8.2.5 Using Named Lets/Sequences/Properties ... 276
8.2.6 Adopting New IEEE 1800-2009 Features .. 277
8.2.7 Use Strong Property Operators for Assertions that Must Complete 277
8.2.8 Defining Clocking Events ... 277
8.2.9 Modeling Abort Conditions in Properties .. 278
8.2.10 Module Ports or Registered Signals in Properties .. 279
8.2.11 Assertions with Verilog RTL .. 280
8.2.12 Dynamic Data Types inside Properties ... 280
8.2.13 Cyclic Dependencies between Sequences ... 281
8.2.14 Use the “let” Construct ... 281

8.3 USE MODEL GUIDELINES ... 282
8.3.1 Be Aware of Overlapping Assertions... 282
8.3.2 Use first_match in Antecedents to Avoid Unexpected Results ... 282
8.3.3 Avoid not Properties When Possible ... 286
8.3.4 Beware of Metalogical Values .. 287
8.3.5 Avoid Vacuous Properties ... 287
8.3.6 Avoid Contradictory Properties ... 287
8.3.7 Beware of unsized additions in +1 versus +1’b1, Use Size Casting if Necessary 288
8.3.8 Use $sampled Function in Action Block to Display Values Used in Assertion Evaluation...... 289
8.3.9 Use $sampled Function when Conditionally Instantiating Concurrent Assertions

 in Procedural Code 289
8.3.10 Update of Module Variables .. 289

8.3.10.1 Variables Updated in Action Block .. 290
8.3.10.2 Variables Update in Sequence Match Item ... 290

8.3.11 Ensure Assertions Can Hold .. 292
8.3.12 Do Not Use [=n] in Antecedent Without a first_match .. 292
8.3.13 Use $rose in Antecedents, but with Caution! There are Exceptions! 292
8.3.14 Do Not Use an Assertion When You Mean Coverage ... 292

8.4 METHODOLOGY GUIDELINES .. 293
8.4.1 Classification of Properties ... 293

8.4.1.1 Design Centric ... 293
8.4.1.2 Assumption Centric ... 293
8.4.1.3 Requirement / Verification Centric ... 293
8.4.1.4 Environmental Properties ... 294
8.4.1.5 Coverage Properties .. 295

8.4.2 Process of Writing Properties and Assertions ... 297
8.4.3 Review Properties and Assertions Against Requirements ... 299
8.4.4 Simulate and Formally Analyze the Design ... 299
8.4.5 Guidelines for Debugging Assertions .. 300

9 SystemVerilog Assertions Dictionary .. 301

9.1 IF COND1, THEN COND2 .. 302
9.2 IF COND1, THEN AT NEXT COND2, COND3 ... 302
9.3 IF COND1, THEN AFTER NTH COND2, COND3 ... 303
9.4 IF COND1 AND FIRST COND2, THEN COND3 UNTIL COND4 .. 303
9.5 IF COND1 AND FIRST COND2, THEN SEQUENCE ... 304
9.6 BETWEEN COND1 AND COND2, SIGNAL 1 ASSERTED .. 305
9.7 IF COND1 AND THEN 1 OCCURRENCE OF COND2 THEN SEQUENCE .. 306
9.8 IF COND1 THEN N OCCURRENCES OF COND2 BEFORE COND3; N IS VALUE OF A VARIABLE 307
9.9 IF COND1 AND, WITHIN N CYCLES, Y OCCURRENCES OF COND2 THEN COND3 .. 308
9.10 IF COND1, THEN COND2 UNTIL COND3 ... 309
9.11 IF COND1 THEN COND2 BEFORE COND3 .. 309

Preface ix

9.12 IF COND1 IS FOLLOWED BY COND2, AND COND3 IS NOT RECEIVED WITHIN 64 CYCLES WHILE COND2

 THEN ERROR (COND5). IF COND3 IS RECEIVED WITHIN 64 CYCLES THEN COND4 . 310
9.13 IF COND1 THEN COND2 IN N CYCLES UNLESS COND3 .. 311
9.14 DATA INTEGRITY IN MEMORY. DATA READ FROM MEMORY SHOULD BE SAME AS WHAT WAS LAST WRITTEN 313
9.15 DATA INTEGRITY IN QUEUES. INTERFACE DATA WRITTEN MUST BE PROPERLY TRANSFERRED

 TO THE RECEIVING HARDWARE . 314
9.16 NEVER 2 CONSECUTIVE WRITES WITH SAME ADDRESS .. 316
9.17 WHEN A CACHED ADDRESS (COND1) IS RETIRED (COND2), THE CACHE COPY SHALL BE INVALIDATED

 (COND3) WITHIN 2 TO 7 CLOCKS .. 316
9.18 ASSUME RESET LOW FOR INITIAL N CYCLES .. 317
9.19 IF A SEQUENCE STARTS BUT DOES NOT COMPLETE, THEN STATE REGISTER MUST BE IN ERROR STATE 318
9.20 COND1 AND COND2 ARE MUTUALLY EXCLUSIVE ... 319
9.21 NO REWRITES TO SAME ADDRESS BEFORE READ .. 321

Appendix A Answers to Exercises ... 323

Appendix B: Definitions .. 331

Index ... 343

x SystemVerilog Assertions Handbook, 2
nd

 Edition

Preface xi

FOREWORD, Dennis Brophy

Debug of electronic systems is an ever increasing challenge given the relentless increase in design

complexity. Many design issues are buried deep in a system and can difficult to reach or detect in

a timely fashion even with today’s automated stimulus generation solutions.

Assertion-based verification technology has been found to address these challenges. Design and

verification engineers can place assertions in designs or bind assertions to designs to monitor,

report and take action when incorrect design behavior is detected. Assertions are the basic

elements that enable formal verification where design properties are examined to determine

design correctness and facilitate the creation of counter examples to demonstrate design failures.

Recent research has shown more than two-thirds of IC and ASIC designers are using

SystemVerilog assertions today with three-fourths to be using them during 2010. FPGA design

verification is also facilitated by the use of assertions given the advent of FPGAs with embedded

processor cores along with advanced protocol support that would generally require designers to

wait until the FPGA was placed in a system to fully debug the system.

The second edition to the SystemVerilog Assertions Handbook comes at a time when the IEEE

updates its popular SystemVerilog standard (IEEE Std. 1800™-2009) and an FPGA community

that is increasing its adoption of SystemVerilog assertions. Design and verification engineers will

find the handbook as an excellent resource to begin to adopt assertions, and to apply the latest

additions and updates found in the IEEE standard to ever pressing design and verification

challenges.

Dennis Brophy

Director of Strategic Business Development

Design Verification Technology Division

Mentor Graphics Corporation

http://www.mentor.com/

xii SystemVerilog Assertions Handbook, 2
nd

 Edition

FOREWORD, Shankar Hemmady

When I was asked to review the book, my first thought was, “Don’t we have enough books on

SVA already?” However, having worked with Ben and Srini in the past, I was curious to learn

more. As I browsed through the book, it became evident that this was a masterpiece in the

works. This is the first book to take a design verification engineer’s and manager’s perspective in

the assertions arena. It puts the debate on static formal analysis versus dynamic simulation-based

assertion checks to rest by providing guidelines on how and where to use these technologies

appropriately. The book also includes a lexicon of commonly used temporal

requirements/properties in plain English. This is valuable reference material for engineers

working in the trenches.

Shankar Hemmady

Principal Engineer,

Synopsys Inc,

Mountain View, California

The new IEEE SystemVerilog Standard has significantly expanded the support for assertions in

the language. Some of these extensions add capabilities for sophisticated users, while others

make the language easier to use even for beginners. The System Verilog Assertions Handbook,
2nd Edition, tackles the critical task of documenting the new (and original) language features with

clear explanations and numerous usage examples. I’m certain that the author’s efforts will

accelerate the adoption of these valuable new capabilities. I can certainly recommend this book

to anyone who wants to get up to speed on the latest System Verilog assertion capabilities for

simulation and formal verification.

Dan Benua

Principal CAE

Synopsys Verification Group

Mountain View, California

Preface xiii

FOREWORD, Michael Siegel

Assertion-based verification (ABV) and SystemVerilog assertions (SVA) have enjoyed

significant adoption in verification projects, both large and small. Assertions, in general, and

SystemVerilog assertions in particular, are an effective means to analyze and verify design

behavior. They are employed to share design intent, to check expected designs behavior, to

enhance error observability, to speed integration verification and to define coverage models, to

name but a few applications. Moreover, assertions can be used in simulation and formal

verification, enabling engineers to leverage the complementary strengths of these technologies for

block, subsystem, and chip-level verification, in order to reduce overall verification effort and to

achieve earlier verification closure.

This book, SystemVerilog Assertions Handbook, 2nd Edition by Ben Cohen, Srinivasan

Venkataramanan , Ajeetha Kumari and Lisa Piper, is a timely, practical and comprehensive

reference manual on the use of SystemVerilog assertions, addressing both the existing community

of SVA users and people who want to get started with SVA-based ABV, in both (System)Verilog

and VHDL designs.

The book – one of the first to cover the new SystemVerilog standard, IEEE 1800-2009 –

establishes a conceptual foundation for how to use SVA for assertion-based verification and

serves as a practical users guide. It details a broad range of assertion use from the capture of low-

level design intent to specification-level requirements, comprehensively covering language

features, style guidelines and methodology, taking a step-by-step approach illustrated by many

real-world design and assertion examples. Its examples also illustrate the power of using the

complementary strengths of dynamic and formal ABV. Experienced SVA users will appreciate

the clear presentation and good overview of the new SVA features in the IEEE 1800-2009

standard.

Michael Siegel

Product Marketing Director

OneSpin Solutions

http://onespin-solutions.com/

xiv SystemVerilog Assertions Handbook, 2
nd

 Edition

FOREWORD, Scott Sandler

Like many transformative changes in electronic design, Assertion-Based Verification has taken a

long time to mature and become established in the mainstream methodology. And it has followed

the typical adoption pattern: early use by very large companies with their own in-house tools and

proprietary languages; subsequent emergence of commercial tools, still using proprietary

languages; standardization of a language; maturation of tools and techniques; and finally broad

acceptance. There is no longer any question that Assertion-Based Verification is a necessary part

of the design flow for complex integrated circuits.

Nor is there any uncertainty about the language that will be most widely used to express

assertions; it will be SystemVerilog Assertions. This update to the SystemVerilog Assertions
Handbook is of course very timely. With the recent release of IEEE 1800-2009, SystemVerilog

assertions have been greatly enhanced for both power and usability. The new “checker” entity in

particular, which gets authoritative treatment in the book, makes thorough verification easier to

accomplish and makes testbenches easier to understand.

The approach that Ben Cohen’s team uses to prepare and present highly technical information

renders it easily approachable, accessible, and useful. Readers will appreciate the clarity and

completeness of the text and examples, and will find they can rely on the SystemVerilog

Assertions Handbook as a constant companion as they adopt and refine assertion-based

verification using SVA.

Scott Sandler

Vice President, Corporate Marketing, SpringSoft, Inc.

President, SpringSoft USA

http://www.springsoft.com/

Preface xv

FOREWORD, Tapan Kapoor

SVA is part of SystemVerilog standard (IEEE 1800). With the latest version of SystemVerilog

LRM (IEEE 1800-2009), several new constructs and enhancements have been added to SVA,

such as the checker construct, new sampled value functions, enhanced local variable support,

global clocking, contextual clock inferring, new property operators (iff/ implies/ followed-by/

nexttime/ always/ until/ eventually) and so on.

This book is an excellent enabler for beginners and a detailed guide for advance SVA users. The

book explains the syntax and semantics of all the existing and new constructs in SVA, identified

with a sidebar, and supplemented with examples, appropriate diagrams, and waveform charts.

The book also explains the guidelines for writing assertions that facilitate efficient and effective

usage of ABV. This book also addresses, by example, various components of verification—

Coverage, Verification Methodology, Verification Planning, and Formal verification in the

context of SVA assertions.

At Cadence, we are committed to support SVA in all our tools including simulation, formal

verification, and hardware-assisted acceleration. Cadence supports SVA through the generation

of native code that is tightly integrated into our Incisive™ assertion-based verification

environment for simulation and formal verification, which is based on simulation and model

checking, respectively. We proactively created all the tools and flows required to support the

advanced verification components to work well in different verification environments.

Tapan Kapoor

Incisive ABV - R&D

Cadence Design Systems, Inc.

http://www.cadence.com/

xvi SystemVerilog Assertions Handbook, 2
nd

 Edition

FOREWORD, Daniel Mlynek

In my opinion, the book SystemVerilog Assertions Handbook, 2nd Edition by Ben Cohen,

Srinivasan Venkataramanan, Ajeetha Kumari and Lisa Piper is a perfect source of ABV

knowledge. The book will guide the reader step by step through the ABV methodology.

Starting from basic knowledge for beginners, it will unveil the power of the SVA. The

book describes all language constructs - one by one - with examples and real design

applications for learned constructs. It points out the language pitfalls, and explains the

grey areas in the language so that you do not spend hours trying to understand why your

assertion code doesn't work as expected.

Along with providing a great level of detailed information on the assertion language

itself, this book also provides a wider look on the whole verification process and the role

of ABV in this process, including from the managers point of view. The book also shows

what features can be expected from the tools, and how tools can help us analyze the

results. At the end we are given a set of guidelines for the methodology and the language

that help avoid confusion. The 2nd edition of the book has another advantage, which is

significant; it is written on the basis of the new SystemVerilog standard - IEEE1800-2009

by people who were involved in the standard development. SystemVerilog is a living

language and the new standard introduces new, complex, and powerful features, which

can be found in the book.

In conclusion, I'm certain that the readers will not put this book on the shelf after reading,

but will be referring to it frequently as a reference manual.

Daniel Mlynek

Leader Application Engineer

http://www.aldec.com/

Preface xvii

FOREWORD, Don Mills

SystemVerilog Assertions Handbook, 1st Edition was a primary source for Sutherland HDL's

training courses on SystemVerilog Assertions. Students referred to the book often during training

classes, for details and reference. It is anticipated that this 2nd Edition will provide yet further

enlightenment on the topic of Assertions, for individuals and training courses, for many years to

come.

SystemVerilog Assertions Handbook, 2nd Edition is an excellent reference for learning the basics

of the assertion language. Syntax summaries alongside examples help in learning the syntax.

There are many examples with graphical representations that demonstrate the concepts. Basic

rules are listed, often with quotes from the standard, and then explained. The book goes beyond

the standard to demonstrate many subtleties that produce unexpected results and poor

performance, and flags the pitfalls to avoid. It is a great refresher for experienced users and for

those looking to understand what is new in the SVA language for the IEEE 1800-2009 release.

Additional chapters present methodology and application perspectives.

Don Mills

LCDM ENGINEERING.

Consultant, trainer for SystemVerilog and SVA courses.

http://www.lcdm-eng.com

http://www.sutherland-hdl.com

Quote, Erik Seligman

Ben’s probing questions have significantly helped those of us on the committee to better

understand some implications of the many new language features we added to the IEEE 1800-

2009 standard. As a result, I am eagerly looking forward to the arrival of this new book, which I

will be using as a key reference on SystemVerilog assertion issues.

Erik Seligman,

Chair of the IEEE p1800 Special Subcommittee on Checkers

xviii SystemVerilog Assertions Handbook, 2
nd

 Edition

PREFACE

The Book

SystemVerilog Assertions Handbook, 2nd Edition is a follow-up book to the first edition,

published in 2005. This version addresses the new SystemVerilog assertion features,

enhancements, and clarifications presented by the IEEE 1800-2009 Standard for SystemVerilog

Unified Hardware Design, Specification, and Verification Language (herein referred as IEEE

1800-2009, or LRM – language reference manual).1 These new changes in the area of assertions

include several new operators for properties and sequences; newer assertion statements; defaults

disables; usage and restrictions of property and sequence local variables; changes in the

interpretation of some operators; and the definition of a new type of entity called checker. The

checker supports the grouping of several assertion directives and related supporting code, and the

inlined instantiation of this grouping in the design. Another significant enhancement to IEEE

1800-2009 was the redefinition of assertions in procedural code. The previous release of the

standard was also enhanced to protect against races causing false firings of immediate assertions

in procedural code.

Our goal is to make SystemVerilog Assertions Handbook, 2nd Edition an excellent reference

manual on the use of SystemVerilog assertions. We explain the concepts via text/tables/diagrams,

images, annotations, and simulation results. We present, by examples, the coding rules with

many simulatable models. We also provide guidelines and recommendations in the use of SVA

in the design and verification process. We address formal verification and use two complete

examples to demonstrate the value of formal verification. We provide a dictionary of modeling

requirements that are translated into assertions, and a dictionary of common terms used in

assertions. All new IEEE 1800-2009 features are identified with a bold bar on the left margin.

Many examples include complete test verification code, along with simple testbenches to

demonstrate the concepts and show the simulation results. These models, along with the captured

waveforms and thread viewer and assertion statistics are available in the distribution files. The

simulation results are courtesy of Mentor Graphics who provided us with access to QuestaSim

and ModelSim DE for the simulation of SVA code. We also used the ouputs of Verdi Automated
Debug System to further demonstrate the key points on assertions. In addition, the models used in

formal verification were verified with OneSpin 360™ MV Product Family of formal verification

tools, and the graphical results are also provided on the distribution files, courtesy of OneSpin
Solutions.

This book represents the collaboration of four authors who are experts in SystemVerilog

linguistics, system engineering, architecture, and design and verification with hardware

description languages (HDLs) and hardware verification languages (HVLs), along with

1 This book is based on P1800/D9, August 6, 2009 DRAFT STANDARD FOR SYSTEMVERILOG,

which reflects the latest version frozen to further technical changes.

Preface xix

experience in teaching and in authoring several books on assertion and verification, thus bringing

more synergism to this SystemVerilog Assertions Handbook, 2nd Edition.

How to read this book
When a child learns a language, he first learns, by dense exposure to the words and through

multiple passes, concepts, basic vocabulary, and overview before learning the alphabet and the

grammar of the language. SystemVerilog is a language, and the assertions aspect is another

outbreak of that language. In presenting the material for SVA, we took a similar approach to the

learning process of a language. We started with an overview and exposure of the basic concepts,

with many examples, without getting into the details of the grammar and rules. We then focused

on the details of the properties and sequences, and then moved on to advanced topics with more

examples. When addressing each of those topics, we decided to present applications and

information that dealt with the topic at hand (e.g., local variables) but with certain advanced

topics presented in later sections (e.g., first_match operators). Throughout the book we indicated

the forward / backward referencing of critical topics. Thus, we envision the reading of this book

as a multi-pass process, with appropriate jumps to forwarded material if the reader is more

interested in that topic. We believe that this process will help the reader grasp the various

concepts, applications, and grammar of the language.

Throughout the book we used a coding style notation explained in Chapter 8 on guidelines.

Those guidelines emerged from years of doing design and verification, and of using / teaching

HDLs and assertion languages. We strongly recommend that the guidelines presented in this

chapter be considered. We also strongly recommend writing the exercises at the end of Chapter 3

and reading the answers to those exercises in Appendix A; those answers provide additional

information and recommendations about the critical concepts.

The Intent

One of the reasons that we decided to write this handbook on SystemVerilog Assertions is the

positive impact that Assertion-based Verification (ABV) is providing, and we believe that

SystemVerilog is setting up a viable and effective standard in the design and verification

processes. We also felt that the “assertions” aspect of SystemVerilog needed special emphasis.

Thus, we maintain the focus of this book on SystemVerilog Assertions, with usage of many of the

new features that SystemVerilog provides. We are assuming that the users are familiar with

SystemVerilog, and have access to books that address SystemVerilog language.2 Assertion-

Based Verification is changing the traditional design process because that methodology helps to

formally characterize the design intent and expected operations.3 ABV also quickens the

verification task because it provides feedback at the white-box level.4 As a formal property

specification language, SystemVerilog Assertions facilitate automation of common verification

tasks that can be exploited across various verification methodologies.

2 * SystemVerilog Language Reference Manual http://www.systemverilog.org/

 * SystemVerilog For Verification, Tom Fitzpatrick, Dave Rich, Aturo Salz and Stuart Sutherland,

 2005, Springer Springeronline.com

 * SystemVerilog For Design A Guide to Using SystemVerilog for Hardware Design and Modeling

 Stuart Sutherland, Simon Davidmann, Peter Flake, KAP, June 2003, ISBN 1-4020-7530-8
3 Assertion-Based Design, Second Edition, Harry D. Foster, Adam C. Krolnik, David J. Lacey

June 2004, ISBN 1-4020-8027-1,

 The SystemVerilog Verification Methodology Manual (VMM), 2005 Springeronline.com
4 Writing Testbenches: Functional Verification of HDL Models, Janick Bergeron, Kluwer Academic

Publishers

xx SystemVerilog Assertions Handbook, 2
nd

 Edition

As designers and consultants/trainers, we experienced many designs that were weakly specified

and documented. The RTL modeling lacked information about properties and design

characteristics, and that led to difficulties and/or ambiguities in the maintenance and verification

processes. A design specification is helpful in defining requirements. However, specifications

are generally defined in an informal language, like English. They lack a standard machine

executable representation and cannot be dynamically simulated and/or statically processed by a

formal verification tool to ensure compliance to requirements.

Assertion-Based Verification with SystemVerilog Assertions

SVA gives the design architects a standard means of specifying design properties using a concise

syntax with clearly defined formal semantics. Similarly, it enables the RTL designers to capture

design intent and assumptions in a verifiable form, while enabling the verification engineers to

validate that the implementation satisfies its specification through dynamic (i.e., simulation) and

formal verification options. Furthermore, it provides a means to measure the quality of the

verification process through the creation of functional coverage models built on formally

specified properties. It provides a standard means for hardware designers and verification

engineers to rigorously document the design specifications using a machine-executable format.

SystemVerilog with assertions improves the quality of digital designs and helps eliminate defects

per the Six Sigma methodology5 because assertions play an important role in a unified

verification methodology ranging from requirement definitions through design and verification

(see Chapter 6 for discussion on the design process with SystemVerilog Assertions). Assertions

express functional design intent and can be used to express assumed input behavior, expected

output behavior, or forbidden behavior. Assertions allow the architects or designers to capture

the design intent and assumptions in a manner that can be verified in the implementation.

Assertions are captured during the development process and are continuously verified throughout

the design and verification process. Working in a unified verification methodology, assertions

reduce the verification time by detecting bugs earlier, and by isolating where a bug is located (by

being closer to the source of error). In addition to detection of property violations, assertions

improve the efficiency in a unified methodology by improving reuse, enhancing testbench

checking, and capturing coverage information. Per Lionel Benning’s experience, designers

created fewer initial bugs in the RTL as an ABV methodology forced them to think more clearly

and accurately about what to design.6 Also, properties are more accurate and less prone to

misinterpretation than comments in the RTL.

Our experience with the usage of SystemVerilog Assertions for front-end design definitions

demonstrated that SystemVerilog Assertions are very powerful in the process of delving into

design requirements, design architecture, and definition of restrictions imposed by the

architecture. We found the property and assertion definitions more expressive and precise than

the use of a natural language, e.g., English. The RTL design and verification tasks were greatly

simplified as a result of using this assertion-based methodology because it alleviated the need to

write a thorough testbench reference model prior to debugging the model. During simulation the

assertions immediately alerted us of design and testbench errors. The use of formal verification

tools helped us greatly at quickly detecting errors in the design, along with counterexamples that

5http://www.isixsigma.com/sixsigma/six_sigma.asp

Six Sigma is a disciplined, data-driven approach and methodology for eliminating defects (driving towards

six standard deviations between the mean and the nearest specification limit) in any process -- from

manufacturing to transactional, and from product to service.
6 Verifiable RTL Design: A Functional Coding Style Supporting Verification Processes in Verilog, Lionel

Benning and Harry Foster, Kluwer Academic Publishers

Preface xxi

demonstrated the problems without any testbench. Corrections of these errors were quickly

verified with another run of the formal verification tool.

We strongly recommend the use of ABV with SystemVerilog on design projects. ABV is a very

viable methodology for the definition and verification of designs. We must admit though that at

times assertions are very frustrating because they (correctly) insisted that our designs were in

error while we believed that we had all the necessary fixes!!!

Book Organization

Chapter 1 provides an introduction to Assertion-Based Verification and serves as an introduction

to SystemVerilog Assertions (SVA) concepts with emphasis on properties and assertions. It

prepares the readers for Chapters 2, 3, and 4, which represent the “core” of SystemVerilog

Assertions. Chapter 2 delves into understanding properties, along with the property operators.

Chapter 3 delves into the understanding and application of sequences that represent the real

potential of SystemVerilog Assertions. That chapter addresses the concepts of attempts / threads

of assertions; the definition of the sequence operators; and the rules of local variables. Chapter 4

provides a deeper appreciation of SystemVerilog Assertions by addressing advanced topics for

properties and sequences, including assertion-based functions; clocked sequences and

multiclocking; the SystemVerilog scheduling mechanism used in assertions; the assertion

directives; the immediate assertions; and binding of verification entities to modules. Chapter 5

introduces the new type of entity, the checker. That chapter includes the motivation behind this

new entity, the syntax, its contents, the use model, the rules, and its applications by examples.

Chapter 6 addresses the methodologies in using properties / sequences / assertions during the

requirement and verification planning phases, in addition to the RTL and testbench levels. It first

explains the process, and then demonstrates an application of assertions in the requirements

specification and verification plan using a synchronous First-In First-Out (FIFO) as an

Intellectual Property. SystemVerilog packages, interfaces, modules, and bindings are also

demonstrated. Chapter 7 addresses the formal verification aspects of SystemVerilog Assertions,

and introduces the global clocking functions, typically used in formal verification. Chapter 7

focuses on Formal Verification (FV) methodologies for functional verification of RTL designs. It

provides two case studies verified with OneSpin 360™ MV Product Family of formal verification

tools using as testcases a traffic light controller model (an FSM type design) and the FIFO model

(control model with a memory) described in Chapter 6. Chapter 8 provides a summary set of

guidelines in using SystemVerilog Assertions. These guidelines emerged from experience with

usage of Assertion-Based Verification with Accellera’s PSL, vendor’s recommendations, code

reviews, and LRM documentation. Chapter 9 represents a “dictionary” of classes of application

examples that translate English descriptions of properties to SystemVerilog properties.

Appendix A provides the answers to the exercises asked at the end of Chapter 3. Appendix B is

a summary of terms and definitions used within this book. A list of reserved words is also

provided. The Index provides a page lookup for information available in this book.

All code is available for download

xxii SystemVerilog Assertions Handbook, 2
nd

 Edition

DISCLAIMER

Every attempt was made to ensure accuracy in the specifications and implementation of the

languages (HDLs and SystemVerilog Assertions) and models. However, all code provided in this

book and in the accompanied website is distributed with *ABSOLUTELY NO SUPPORT* and

NO WARRANTY from the authors. Neither the authors nor any supporting vendors shall be

liable for damage in connection with, or arising out of, the furnishing, performance or use of the

models provided in the book and website.

Without permission, use or reproduction of the information provided in this book and on the

linked website for commercial gain is strictly prohibited.

Preface xxiii

Acknowledgements

SystemVerilog Assertions Handbook, 2nd Edition could not have been written without the support

and help from several companies who provided us with access to their design and verification

tools that support SystemVerilog, and without the insights of several engineers who helped us in

the review process.

We particularly thank Mentor Graphics® for providing us licenses of ModelSim DE and

QuestaSim (a part of the Questa® verification platform) both used for the verification of

assertions through simulation. 7 The ease of use of those tools, and the display of results with

concise, but on target, information on the various views helped us in better explaining the

behavior of assertions. Of particular interest was the waveform view that displayed the assertion

signals, assertion successful attempts, vacuity, pass, and fail. The assertion thread viewer was

also of great value as it provided more detailed information about an assertion attempt, its

threads, and the values of its local and related variables. Other valuable outputs provided by the

tool included the assertion / coverage/ cover / covergroup windows. We thank Mentor
Graphics® for granting us permission to publish those results in our book and on the distribution

files.

Our sincere thanks are due to Synopsys for providing us access to their VCS platform supporting

many of the SystemVerilog IEEE 1800-2009 features.8 As Synopsys has been in the front line of

defining the new standard, the VCS simulator started supporting many of the LTL features much

before they became part of the IEEE standard. Early access to VCS meant that we could validate

most of our code, and at times clarify our understanding of some of the corner case behaviors of

these new features. This has resulted in several new Mantises being filed for clarification with

the SystemVerilog committee during our book writing journey. The recent simulator version,

along with support for the new LTL constructs and debug enhancements, is bringing most of the

new IEEE 1800-2009 SVA features to be production ready.

We would like to express our gratitude to OneSpin Solutions for providing us with formal

verification analyses and results of two of our RTL models using 360™ MV9, OneSpin’s formal

assertion-based verification (ABV) solution for ASIC and FPGA designs. OneSpin’s 360™ MV

supports a broad range of formal ABV applications including automatic RTL checks, verification

of implementation intent and high-level functional requirements, systematic operation- and

transaction-level design verification, as well as automatic detection of verification gaps in

assertion sets. Surprisingly, the application of 360 MV uncovered several subtle design and

assertion issues in our RTL models that have been missed by previous verifications. The

graphical root cause analysis features of 360 MV™ were very helpful in understanding and

correcting these issues. We also thank OneSpin Solutions for granting us permission to publish

7 Mentor Graphics® provides software and hardware design solutions that enable companies to develop

better electronic products faster and more cost-effectively. They offer numerous products in the area of

chip design and verification. In the area of simulation and assertions, Mentor Graghics provides ModelSim

DE and QuestaSim simulators. http://www.mentor.com
8 The VCS solution powerful debug and visualization environment minimizes the turnaround time to find

and fix design bugs. http://www.synopsys.com/tools/verification/functionalverification/pages/vcs.aspx
9 OneSpin‘s 360 MV product family is a comprehensive formal assertion-based verification solution for

starters, experienced users and experts. 360 MV is based on more than a decade of industrial application

experience and technology development in formal verification. http://www.onespin-solutions.com/

xxiv SystemVerilog Assertions Handbook, 2
nd

 Edition

the results in both the book and the distribution files. We also thank Klaus Winkelmann for

helping us in the formal verification of our models, and in uncovering the issues with our designs.

We thank SpringSoft for supporting us in this endeavor by providing us a license of the Verdi™

Automated Debug System, an advanced solution for debugging digital designs and assertions.10

Verdi’s automated behavior tracing and Behavior Analysis technology, along with its intuitive

visualization of multiple threads, temporal annotation on source code, and the timing annotation

on temporal ranges helped us in demonstrating the inner works of complex assertions.

We thank Aldec for providing us engineering resource for technical review and access to their

Riviera-PRO™ a high-performance verification platform for ASIC and FPGA designs with ABV

support.11

We thank the IEEE for granting us permission to reproduce some material from the IEEE 1800

LRM, the document that defines the rules of SystemVerilog and SystemVerilog Assertions.

Several SystemVerilog experts participated in the review process of this book. The review is a

necessary step to iron out areas of disagreements, and to provide a piece of work that meets user’s

requirements in the use of SystemVerilog Assertions. In that endeavor, we sincerely thank the

following people and organizations: Dennis Brophy, from Mentor Graphics for his full support

of our endeavor; Michael Siegel and Klaus Winkelmann, from OneSpin Solutions for their help

and support in verifying two models through OneSpin 360™ MV Product Family, and for

valuable feedback on formal verification. We also thank the following engineers for reviewing

our book and providing valuable feedback: Dan Benua, Synopsys; Daniel Mlynek, Aldec; Tapan

Kapoor, Cadence Design Systems; Roy Subir, Texas Instruments.

During the creation of this book there were several language issues and clarifications that needed

to be addresses in the IEEE 1800 SVA committee. Several participants of this committee

contributed to the clarification of issues; thus we particularly thank Dmitry Korchemny, Erik

Seligman, and Ed Cerny.

We also thank Forte Design Systems12 for granting us a license of TimingViewer as a tool to draw

timing diagrams for use in this book.

I (Ben) especially thank my wife, Gloria Jean, for supporting me in this endeavor.

We (Ajeetha & Srini) would like to acknowledge the valuable time our little son Anirudh has

allowed us to spare on this book. I (Srini) would like to personally dedicate this book to my

beloved father Sri. K. Venkataramanan who passed away recently; his memories and blessings

are my sole inspiration to cross any hurdle in my life.

10 The Verdi Automated Debug System is an advanced solution for debugging digital designs that provides

powerful technology to comprehend complex and unfamiliar design behavior; automate difficult and

tedious debug processes; and unify diverse and complicated design environments.

http://www.springsoft.com/products/debug-automation/verdi
11 Riviera-PRO is a high-performance verification platform for ASIC and FPGA design teams, equipped

with mixed-language simulation engine and advanced debugging tools. Riviera-PRO supports Electronic

System Level (ESL) Verification with SystemC and SystemVerilog, Assertions Based Verification (ABV),

Transaction Level Modeling (TLM) and VHDL/Verilog Design Rule Checking.

http://www.aldec.com/Products/default.aspx
12 TimingDesigner is a flexible, interactive timing analysis and diagram tool.

 http://www.timingdesigner.com/ http://www.forteds.com/

Preface xxv

Sculpture Created by my Wife Gloria to

 Express my Long Hours with a Laptop in the Creation of HDL Books

Preface xxvi

About the Authors

Ben Cohen is currently a consultant. He has technical experience in digital and analog

hardware design, computer architecture, ASIC design, synthesis, and use of hardware description

languages for modeling of statistical simulations, instruction set descriptions, and hardware

models. He applied VHDL since 1990 to model various bus functional models of computer

interfaces. He authored several books in the field of design and verification languages including

VHDL Coding Styles and Methodologies, first and second edition; VHDL Answers to Frequently
Asked Questions, first and second editions; Component Design by Example; Real Chip Design
and Verification Using Verilog and VHDL; Using PSL/SUGAR with Verilog and VHDL (first

edition, also translated to Japanese); Using PSL/Sugar for Formal and Dynamic Verification, 2nd
Edition; SystemVerilog Assertions Handbook (first edition, also translated into Japanese); and A

Pragmatic Approach to VMM Adoption.

He was one of the pilot team members of the VHDL Synthesis Interoperability Working Group of

the Design Automation Standards Committee who authored the IEEE P1076.6 Standard for
VHDL Register Transfer Level Synthesis. He was a member of the VHDL and Verilog Synthesis

Interoperability Working Group of the Design Automation Standards Committees, and Accellera
OVL and PSL standardization working groups. He participated in the working group for the

development of the new IEEE 1800-2009 LRM for SystemVerilog assertions. He taught several

VHDL, PSL, and SVA training classes.

VhdlCohen Publishing

ben@SystemVerilog.us http://SystemVerilog.us

Preface xxvii

Srinivasan Venkataramanan is Chief Technical Officer (CTO) at CVC Pvt Ltd, a

high-end Design-Verification consulting firm based in Bangalore - India. CVC has been the

pioneer in high-end verification consulting and Corporate trainings on many advanced VLSI

topics. Starting in 2009, CVC productized an internal, time-tested incubation process of bringing

up fresh engineers to be VLSI experts.

Srinivasan’s areas of interest are the advanced verification solutions and methodologies such as

SystemVerilog, OVM, VMM, Assertion-Based Verification, formal verification etc. As part of

CVC, he provides support to leading edge semiconductor design companies on their verification

methodologies and challenges. CVC differentiates itself against other consulting firms by solving

complex customer problems, such as "time-to-debug", "qualifying verification effectiveness",

"choosing the right technology" for a given problem etc.

In his previous employment at Synopsys, India Private Ltd., Bangalore, he was a Senior Staff

Verification Solutions Engineer where he deployed advanced Verification solutions to many

customers across AsiaPac region including Taiwan, China, India and also Israel. He assisted

customers in variety of areas such as evaluating SystemVerilog, optimizing regressions using

multi-core technologies and showcasing value of VCS verification platform to specifcic domains,

such as Image processing, Networking, DSP etc. Prior to joining Synopsys, he worked at Intel,

Philips Semiconductors, and RealChip communications in the areas of front-end design and

verification of ASICs (leading edge high-speed, multi-million gates ASIC designs) with several

HDLs and HVLs, including VHDL, Verilog, Specman, and Vera. He successfully developed

complex verification environments using advanced methodologies, such as Coverage-Driven

Verification and Constrained-random verification using Verisity’s Specman, ABV etc

Srini holds a Masters Degree from the prestigious Indian Institute of Technology (IIT), Delhi in

VLSI Design, and Bachelors degree in Electrical engineering from TCE, Madurai. Srini has co-

authored the following books: A Pragmatic Approach to VMM Adoption; Using PSL/Sugar, 2nd

Edition; and SystemVerilog Assertions Handbook.

He presented several papers at conferences and forums such as DesignCon, DVCon, SNUG etc.

He has been delivering trainings on SVA, SVTB, OVM & VMM to customers for more than 5

years.

CVC Pvt.Ltd.,

Bangalore, India

http://www.cvcblr.com/ srini@cvcblr.com

xxviii SystemVerilog Assertions Handbook, 2
nd

 Edition

Ajeetha Kumari is the founder and CEO and Managing Director of CVC Pvt Ltd, a

high-end Design-Verification consulting firm based in Bangalore - India. At CVC she leads a

team of elite, seasoned Verification professionals focused on next generation verification

automation and productivity techniques. As CEO, her focus is on business development, new

strategic partnerships and exploring new ventures for CVC. She has been providing consultancy

to leading edge semiconductor houses on various verification challenges for over half-a-decade.

Ajeetha is very well networked and known for close interaction with Design-Verification

community on various online forums and events. She presented many papers, tutorials at events

like DVCon, SNUG, CDNLive etc. She has experience with several HDLs and HVLs including

Verilog, VHDL, SystemVerilog, PSL, SystemVerilog Assertions, E and Vera. She co-authored

the following books: A Pragmatic Approach to VMM Adoption; Using PSL/Sugar, 2nd

Edition; and SystemVerilog Assertions Handbook.

She received her M.S. in Electrical engineering from the prestigious Indian Institute of

Technology (IIT), Madras.

CEO & Managing Director
 http://www.cvcblr.com/ akumari@cvcblr.com

Lisa Piper is currently an independent consultant for front end verification. Lisa worked for

Cadence Design Systems for 10 years where she was involved with using assertions in

simulation-based verification, adapting OVL assertions for use in acceleration, and formal

verification(a.k.a. model checking). Product definition, training, assertion methodology, and new

product introduction were key aspects of the job. This also included active participation in IEEE

1800-2009 SVA standardization work. Prior to that, Lisa spent 10 years managing the definition

and applications support of Telecom IC's, LAN IC's, and ATM IC's at Lucent Microelectronics.

This built upon previous experience at AT&T Bell Labs co-developing the first ISDN S/T

Interface chip and designing ISDN phones. Lisa holds an MSEE from Ohio State University.

lisa_piper@systemverilog.us

