
SystemVerilog Assertions in the Design Process 171

REQUIREMENTS FOR A SYNCHRONOUS FIFO,
First-In First-Out Buffer

Document #: fifo_req_001
Release Date: __
Revision Number: ____
Revision Date: __
Originator
 Name: ____
 Phone: ___
 email: __

Approved:
 Name:
 Phone:
 email:

Revisions History :
Date:
Version:
Author:
Description:
Synchronous FIFO to be used as an IP. FIFO management (e.g., push,
pop, error handling) is external to the FIFO.

172 SystemVerilog Assertions Handbook

1. SCOPE
1.1 Scope
This document establishes the requirements for an Intellectual Property (IP) that
provides a synchronous First-In First-Out (FIFO) function.

The specification is primarily targeted for component developers, IP integrators,
and system OEMs.

1.2 Purpose

These requirements shall apply to a synchronous FIFO with a simple interface for
inclusion as a component. This requirement includes SystemVerilog assertions
to further clarify the properties of the FIFO.

1.3 Classification
This document defines the requirements for a hardware design.

2. DEFINITIONS
2.1 PUSH
The action of inserting data into the FIFO buffer.

2.2 POP

The action of extracting data from the FIFO buffer

2.3 FULL

The FIFO buffer being at it maximum level.

2.4 EMPTY
The FIFO buffer with no valid data.

2.5 Read and Write Pointers
Pointers represent internal structure of the FIFO to identify where in the buffer
data will be stored (write pointer, wr_ptr), or be read (read pointer, rd_ptr)

3. APPLICABLE DOCUMENTS
3.1 Government Documents
None
3.2 Non-government Documents

None

4. ARCHITECTURAL OVERVIEW
4.1 Introduction
The FIFO component shall represent a design written in SystemVerilog with
SystemVerilog assertions. The FIFO shall be synchronous with a single clock
that governs both reads and writes. The FIFO typically interfaces to a controller
for the synchronous pushing and popping of data. Figure 4.1 represents a high
level view of the interfaces.

FIFO Requirements Example (continued)

SystemVerilog Assertions in the Design Process 173

Figure 4.1 High Level View of the FIFO Interfaces

The FIFO shall include the following features:
1. Parameterized storage space for data buffers
2. Parameterized data widths for the data.
3. Flag information for FULL, EMPTY, ALMOST FULL at the ¾ level,
 ALMOST EMPTY at the ¼ level.
4. A synchronous RESET capability.

4.2 System Application
The FIFO can be applied in a variety of system configurations. Figure 4.2-1
demonstrates one such configuration where the FIFO interfaces on one side to a
bus controller, and on the other side to a different controller. All buses use the
same system clock. It is the responsibility of the enqueue/dequeue controller to
manage the integrity of quantity of data transferred into and extracted out of the
FIFO.

Figure 4.2-2 Hardwired Application of a FIFO

FIFO

Controller Controls

Data_in
Data_out

Status

FIFO

Enqueue/

Dequeue

Controller

Controls

Data_in

Data_out

Status

Bus B

Controller

Bus A

Controller

BUSA

BUSB

FIFO Requirements Example (continued)

174 SystemVerilog Assertions Handbook

5. PHYSICAL LAYER

The physical hardware interfaces shall be as shown in Figure 5.0

Figure 5.0 Interfaces of the FIFO

A SystemVerilog description of the interface is shown in Figure 5.1.

// PACKAGE for type and parameter definitions
// ch4/fifo_queue/fifo_pkg.sv

package fifo_pkg;
 timeunit 1ns;
 timeprecision 100ps;
 localparam BIT_DEPTH = 4; // 2**BIT_DEPTH = depth of fifo
 localparam FULL = int'(2** BIT_DEPTH -1);
 localparam ALMOST_FULL = int'(3*FULL / 4);
 localparam ALMOST_EMPTY = int'(FULL/4);
 localparam WIDTH = 32;
 typedef logic [WIDTH-1 : 0] word_t;
 typedef word_t [0 : 2**BIT_DEPTH-1] buffer_t;
 // Other types for testbench support can be added here
endpackage : fifo_pkg

//17

17 The complete SystemVerilog interface with assertions is in file ch4/fifo_if.sv

clk

reset_n

data_in

push

pop

almost_full

full

data_out

almost_empty

empty

error

FIFO

FIFO Requirements Example (continued)

SystemVerilog Assertions in the Design Process 175

// INTERFACE of FIFO

interface fifo_if(input clk, reset_n);
 import fifo_pkg:: *; // access to package
 logic push; // push data into the fifo
 logic pop; // pop data from the fifo
 logic almost_full; // fifo is at 3/4 maximum level

 logic almost_empty; // fifo is at 1/4 maximum level
 logic full; // fifo is at maximum level

 logic empty; // fifo is at the zero level (no data)
 logic error; // fifo push or pop error
 word_t data_in;
 word_t data_out;

// FIFO DUV, FIFO Slave interface
 modport fslave_if (
 output empty,
 output almost_empty,
 output almost_full,
 output full,
 output data_out,
 input data_in,
 input push,
 input pop);

 // FIFO driver, FIFO Driver interface
 modport fdrvr_if (
 output data_in,
 output push,
 output pop,

 input empty,
 input almost_empty,
 input almost_full,
 input full,
 input data_out);
 // tasks / sequences / properties / assertions shall be added here (see Section 5.1)

endinterface : fifo_if
Figure 5.1 SystemVerilog FIFO Interface

5.1 Interface Port Description
The individual port elements in the interface in figure 5.1 are described in this
section with requirements on them captured as assertions. Since some of the
ports describe data intensive portion of the system (such as the data being popped
from the FIFO), some of the SystemVerilog testbench features such as queues
and tasks are used to capture their requirements. Since these tasks and queues
are meant solely for the purpose of specification and verification, and do not have
a direct correlation to the hardware implementation of the FIFO, they are

Interface description with
modports clarifies the use
of the ports. Maintain
ordering convention:

outputs first, inputs last.

Used by application
interfaced to the
FIFO

FIFO Requirements Example (continued)

176 SystemVerilog Assertions Handbook

declared in the interface itself:

// Data queue for verification.
// Queue, maximum size is 2**BIT_DEPTH
 word_t dataQ [$:2**BIT_DEPTH-1];
// Data read from queue

 word_t data_fromQ;

// Push and Pop tasks
task pop_task;
 begin

 data_in <= 'X; // unsized Xs
 pop <= 1'b1;
 data_fromQ <= dataQ.pop_front();
 @ (posedge clk);
 end

endtask : pop_task

task push_task (word_t data);
 begin
 $display ("%0t %m Push data %0h ", $time, data);
 data_in <= data; //data to be written
 push <= 1'b1;
 dataQ.push_back(data); // push to dataQ
 @ (posedge clk);
 end

 endtask : push_task

task idle_task(int num_idle_cyles);
 begin
 push <= 1’b0;
 pop <= 1’b0;
 data_in <= ‘X;
 assert (num_idle_cycles < 10000) else
 $warning (“%0t %0m idle_task is invoked with LARGE number of idle
cycles %0d “, num_idle_cycles);
 repeat (num_idle_cycles) @ (posedge clk);
 end

endtask : idle_task

Data Queue

Input data stored into
FIFO buffer 1 cycle
following the push

Use immediate assertion
for simple, local checks.

FIFO Requirements Example (continued)

SystemVerilog Assertions in the Design Process 177

5.1.1 Data Input/Output

Figure 5.1.1 provides a timing diagram of the interface.

Figure 5.1.1 FIFO Interface Timing Diagram

5.1.1.1 Data_In
Direction: Input, Peripheral -> FIFO;
Size: Determined by WIDTH parameter; Active level: High
Data sent from a peripheral device to the FIFO under the control of the push

control.
5.1.1.2 Data_Out
Direction: Output, FIFO -> Peripheral;
Size: Determined by WIDTH parameter; Active level: High
FIFO data sent to a peripheral device under the control of pop signal.

5.1.2 Push / Pop

5.1.2.1 push

Direction: Input, Peripheral -> FIFO; Size: 1 bit, Active level: high
When push is active, data_in shall be stored into the FIFO buffer at the next
clock cycle. It is an error if a push with no pop control occurs on a full FIFO.
The following property characterizes these requirements:

// never a push and full and no pop

 sequence q_push_error;
 !(push && full && !pop);
 endsequence : q_push_error
 ap_push_error : assert property (@(posedge clk) q_push_error);

5.1.2.2 pop
Direction: Input, Peripheral -> FIFO; Size: 1 bit, Active level: high
When pop is active, data_out shall carry the data that was first stored into the
FIFO, but was not yet popped. The data_out shall be asserted in the same cycle
of pop control. It is an error if a pop control occurs on an empty FIFO. The
following properties and task characterize these requirements:

 // Data out timing and data integrity

FIFO Requirements Example (continued)

178 SystemVerilog Assertions Handbook

 property p_pop_data;
 @ (posedge clk)
 pop |-> data_out == data_fromQ;
 // from 5.1 pop_task
 endproperty : p_pop_data
 ap_pop_data : assert property (p_pop_data);

 // never a pop on empty
 sequence q_pop_error;
 ! (pop && empty && !push);

 endsequence : q_pop_error
 ap_pop_error : assert property (@ (posedge clk) q_pop_error);

5.1.2.3 Push-Pop Data Sequencing

Data entered into the FIFO buffer shall be outputted in the same order that it is
entered. The push_task and pop_task tasks, and the properties characterized in
sections 5.1.2.1 and 5.1.2.2 define the ordering sequence. Specifically, data
pushed in the back of the FIFO buffer is extracted from the front of the buffer in
a first-in, first-out manner.

5.1.3 Status Flags

5.1.3.1 Full
Direction: Output, FIFO -> Peripheral ; Size: 1 bit, Active level: high
When the FIFO reaches the maximum depth of the buffer, as defined by the
parameter BIT_DEPTH, then the full flag shall be active. The following
sequence and property characterize this requirement:
sequence qFull;
 @ (posedge clk)
 dataQsize == BIT_DEPTH;

endsequence : qFull

property p_fifo_full;
 @ (posedge clk) qFull |-> full;
endproperty : p_fifo_full
ap_fifo_full : assert property (p_fifo_full);

5.1.3.2 Almost Full
Direction: Output, FIFO -> Peripheral ; Size: 1 bit, Active level: high
When the number of entries in the FIFO reaches or is greater than the predefined
value of ¾ of the maximum depth of the buffer, as defined by the parameter
ALMOST_FULL, then the almost_full flag shall be active. The following
sequence and property characterizes this requirement:
sequence qAlmost_full;
 @ (posedge clk)
 dataQsize >= ALMOST_FULL;
 endsequence : qAlmost_full

FIFO Requirements Example (continued)

int dataQsize; // queue size
assign dataQsize=dataQ.size;
// See section 8.2.7 for

// guidelines on using dynamic

// data types inside properties.

SystemVerilog Assertions in the Design Process 179

property p_fifo_almost_full;
 @ (posedge clk) qAlmost_full |-> almost_full;
endproperty : p_fifo_almost_full
ap_fifo_almost_full : assert property (p_fifo_almost_full);

5.1.3.3 Empty

Direction: Output, FIFO -> Peripheral ; Size: 1 bit, Active level: high
When all the enqueued data has been dequeued, then the empty flag shall be
active. A reset shall cause the empty flag to be active. The following sequence
and properties characterize these requirements:
 // sequence definition, use in cover for empty

 sequence qEmpty;
 @ (posedge clk)
 dataQsize==0;

 endsequence : qEmpty

 property p_fifo_empty;
 @ (posedge clk) qEmpty |-> empty;
 endproperty : p_fifo_empty

 ap_fifo_empty : assert property (p_fifo_empty);

 The property for the flags at reset time is defined in section 5.1.4.

5.1.3.4 Almost Empty

Direction: Output, FIFO -> Peripheral ; Size: 1 bit, Active level: high
When the number of entries in the FIFO reaches or is less the predefined value of
¼ of the maximum depth of the buffer, as defined by the parameter
ALMOST_EMPTY, then the almost_empty flag shall be active. The following
sequence and property characterize this requirement:
 sequence qAlmost_empty;
 @ (posedge clk) dataQsize <= ALMOST_EMPTY;
 endsequence : qAlmost_empty

 property p_fifo_almost_empty;
 @ (posedge clk) qAlmost_empty |-> almost_empty;
 endproperty : p_fifo_almost_empty
 ap_fifo_almost_empty : assert property (p_fifo_almost_empty);

5.1.4 Reset

Direction: Input, Peripheral -> FIFO ; Size: 1 bit, Active level: low
The reset_n is an active low reset control that clears the pointers and the status
flags. The reset_n is asynchronous to the system clock clk. See properties
defined in section 5.1.3.3 for the behavior of the empty flag when reset_n is
asserted in the FIFO.
 property p_fifo_ptrs_flags_at_reset;
 @ (posedge clk)
 !reset_n |-> ##[0:1] !almost_empty && ! full && !almost_full && empty;
 endproperty : p_fifo_ptrs_flags_at_reset
 ap_fifo_ptrs_flags_at_reset : assert property (p_fifo_ptrs_flags_at_reset);

FIFO Requirements Example (continued)

180 SystemVerilog Assertions Handbook

5.15 Clock

Direction: Input, Peripheral -> FIFO ; Size: 1 bit, Active edge: rising edge
The clk clock is the synchronous system clock for the FIFO for both the read and
write transactions, active on the positive edge of the clock. The clock shall be at
50% duty cycle.

5.16. Error
Direction: Output, FIFO -> Peripheral; Size: 1 bit, Active level: high
When either an overflow (push on full) or underflow (pop on empty) error has
occurred, the error flag shall be asserted. The following properties characterize
the error output.

 // Reusing the q_push_error and q_pop_error definitions,
property p_error_flag;
 @ (posedge clk)
 q_push_error or q_pop_error |=> error;
endproperty : p_error_flag
ap_error_flag : assert property (p_error_flag);

6. PROTOCOL LAYER
The FIFO operates on single word writes (push) or single word reads (pop).

7. ROBUSTNESS
7.1 Error Detection
The FIFO shall lump all overflow (push on full) or underflow (pop on empty)
errors as a single error output. See section 5.16 for details.

8. HARDWARE AND SOFTWARE
8.1 Fixed Parameterization
The FIFO shall provide the following parameters used for the definition of the
implemented hardware during hardware build:

BIT_DEPTH where 2**BIT_DEPTH represents the depth of FIFO.
WIDTH represents the data width.
ALMOST_FULL (0.75 * (2 ** BIT_DEPTH))
ALMOST_EMPTY (0.25 * (2 ** BIT_DEPTH))

8.2 Software Interfaces

The FIFO shall enter input data (data_in) into the FIFO buffer when the push
control is active. It shall provide data from the buffer upon an activation of the
pop control. See section 5.1.2 Push / Pop for definition of the properties that
characterize these controls. The FIFO contains no internal registers that can be
configured.

9. PERFORMANCE
9.1 Frequency

The FIFO shall support a maximum rate of 25 MHz.

This section typically contains the internal registers
that the software can access and configure.

FIFO Requirements Example (continued)

SystemVerilog Assertions in the Design Process 181

9.2 Power Dissipation
The power shall be less than 0.01 watt at 25 MHz.

9.3 Environmental
Does not apply.

9.4 Technology

The design shall be adaptable to any technology because the design shall be
portable and defined in SystemVerilog RTL.

10. TESTABILITY
None required.

11. MECHANICAL
Does not apply.

12. Backup Information
A copy of the FIFO interface model and supporting package is included in the
download files.

FIFO Requirements Example (continued)

182 SystemVerilog Assertions Handbook

6.3.2 Verification Plan

The following demonstrates the application of assertions in a verification plan to clarify
the verification goals and milestones.

VERIFICATION PLAN FOR SYNCHRONOUS FIFO,
First-In First-Out Buffer

Document #: fifo_ver_plan_001
Release Date: __/__/__
Revision Number: ____
Revision Date: __/__/__
Originator
 Name:
 Phone:
 email:

Approved:
 Name:
 Phone:
 email:

Revisions History:
Date:
Version:
Author:
Description:
Describes verification approaches for the FIFO buffer.

…

Header page

Pertinent
logistics data
about the
requirements.

Conform to
company
policies and
style

FIFO Verification Plan Example

SystemVerilog Assertions in the Design Process 183

1. SCOPE
1.1 Scope

This document establishes the verification plan for the FIFO design specified in
the requirements specification. It identifies the features to be tested, the test
cases, the expected responses, and the methods of test case application and
verification. SystemVerilog Assertions properties specify characterizations that
the design must meet, and test sequences that must be covered.

The verification plan is primarily targeted for component developers, IP
integrators, and system OEMs.

1.2 Purpose
The verification plan provides a definition of the testbench, verification
properties, test environment, coverage sequences, application of test cases, and
verification approaches for the FIFO design as specified in the requirement
specification number fifo_req_001, and in the implementation document number

fifo_dsgn_001.18

The goals of this plan is not only to provide an outline on how the component
will be tested, but also to provide a strawman document that can be scrutinized
by other design and system engineers to refine the verification approach.

1.3 Classification

This document defines the test methods for a hardware design.

2 DEFINITIONS

2.1 BFM

A Bus Functional Model is a model that emulates the operation of an interface
(i.e., the bus), but not necessarily the internal operation of the interface.

2.2 Transaction
Tasks that need to be executed to verify the device under test. An example of a
transaction would be a push with specified DATA along with a simultaneous
pop.

3. APPLICABLE DOCUMENTS

3.1 Government Documents

None.

3.2 Non-government Documents

Document #: fifo_req_001, Requirement Specification for a Synchronous FIFO.

18 The implementation document is not supplied because it is not within the scope of this book,
which focuses on SystemVerilog Assertions rather than RTL design.

FIFO Verification Plan Example (continued)

184 SystemVerilog Assertions Handbook

3.3 Executable specifications

Interface verification properties written in SystemVerilog, file ch4/fifo_if.sv.

. 3.4 Reference Sources

 SystemVerilog 3.1a LRM19.

4. COMPLIANCE PLAN
SystemVerilog with assertions along with simulation will be used as the
verification language because it is an open language that provides good
constructs and verification features. This plan consists of the following:

· Feature extraction and test strategy

· Test application approach for the FIFO

· Test verification approach

4.1 Feature Extractions and Test Strategy

The design features are extracted from the requirements specification. For each
feature of the design, a test strategy is recognized. The strategy consists of
directed and pseudo-random tests. A verification criterion for each of the design
feature is documented. This feature definition, test strategy, test sequence, and
verification criteria forms the basis of the functional verification plan. Table 4.1
summarizes the feature extraction and verification criteria for the functional
requirements.

For corner testing, pseudo-random push and pop transactions will be simulated
to mimic a FIFO in a system environment. The environment will perform the
following transactions at pseudo-random intervals:

1. Create push requests
2. Create pop requests
3. Force resets

The properties specified in section 5 of the specification document will be used.
Properties are also used to clarify the test sequences.

19 http://www.eda.org/sv/SystemVerilog_3.1a.pdf

FIFO Verification Plan Example (continued)

186 SystemVerilog Assertions Handbook

Page intentionally left blank.

SystemVerilog Assertions in the Design Process 187

4.2 Testbench Architecture

Several architectural elements must be considered in the definition of the testbench
environment, including the following:

· Reusability / ease of use / portability / verification language

· Number of BFMs to emulate the separate busses

· Synchronization methods between BFMs

· Transactions definition and sequencing methods

· Transactions driving methods

· Verification strategies for design and its subblocks

Figure 4.2.1-1 represents the testbench architecture. The testbench makes use of the
FIFO interface definition, FIFO package, and the FIFO property module. The testbench
includes a transactor block to generate transactions such as reset, push, pop, and idle
cycles. A set of server tasks provides the low level protocols to execute the transactions.

Figure 4.2.1-1 FIFO Testbench Architecture

SystemVerilog will be used for this design because it is a standard language, and is
portable across tools. A reusable design style will be applied. A SystemVerilog package
captures the common parameters for this design and is shown in Figure 4.2.1-2. A
property module file is defined in Figure 4.2.1-2, for binding to the FIFO from within the
testbench. An outline of the FIFO testbench that demonstrates the module instantiations
and binding is shown in Figure 4.2.1-3

Testbench

fifo_if fifo_pkg fifo_props

(f_b)

Transactor

Block

Server

Tasks

f_b FIFO

bind

FIFO Verification Plan Example (continued)

188 SystemVerilog Assertions Handbook

// PACKAGE for type and parameter definitions

package fifo_pkg;
 timeunit 1ns;
 timeprecision 100ps;
 localparameter BIT_DEPTH = 4; // 2**BIT_DEPTH = depth of fifo
 localparameter FULL = int'(2** BIT_DEPTH -1);
 localparameter ALMOST_FULL = int'(3*FULL / 4);
 localparameter ALMOST_EMPTY = int'(FULL/4);
 localparameter WIDTH = 32;
 typedef logic [WIDTH-1 : 0] word_t;
 typedef word_t [0 : 2**BIT_DEPTH-1] buffer_t;

 // types supporting the testbench
 endpackage : fifo_pkg

Figure 4.2.1-2. Supporting Package (/ch4/fifo_queue/fifo_pkg.sv)

// --
// PROPERTY MODULE for FIFO
// This module is used for verification of the FIFO, and is

// intended to be bound (with the SystemVerilog "bind") to the DUV
module fifo_props (input clk, input reset_n, fifo_if fifo_if);
 import fifo_pkg::*;

 // Coverage points based on value of fifo fullness
// As specified in the Verification Plan, Table 4.1
 property p_t1_full; @ (posedge clk)
 fifo_if.full |=> reset_n==0;
 endproperty : p_t1_full
 cp_t1_full_1: cover property (p_t1_full);

 property p_t2_afull; @ (posedge clk)
 fifo_if.almost_full |=> reset_n==0;
 endproperty : p_t2_afull
 cp_t2_afull_1: cover property (p_t2_afull);

 property p_t3_empty; @ (posedge clk)
 fifo_if.empty |=> reset_n==0;
 endproperty : p_t3_empty
 cp_t3_empty_1: cover property (p_t3_empty);

 property p_t4_aempty; @ (posedge clk)
 fifo_if.almost_empty |=> reset_n==0;
 endproperty : p_t4_aempty
 cp_t4_aempty_1 : cover property (p_t4_aempty);

 property p_push_pop_sequencing; @ (posedge clk)
 fifo_if.push => ##[0:$] fifo_if.pop;
 endproperty : p_push_pop_sequencing

FIFO Verification Plan Example (continued)

SystemVerilog Assertions in the Design Process 189

// coverage of sequences
// As specified in the Verification Plan, Table 4.1

 cp_push_pop_sequencing : cover property (p_push_pop_sequencing);
 c_qFull : cover property (@ (posedge clk) fifo_if.qFull);
 c_qEmpty : cover property (@ (posedge clk) fifo_if.qEmpty);
 c_qAlmost_empty : cover property (@ (posedge clk) fifo_if.qAlmost_empty);
 c_qAlmost_full : cover property (@ (posedge clk) fifo_if.qAlmost_full);
endmodule : fifo_props

Figure 4.2.1-3 Property File for Inclusion with the Bind Construct

(/ch4/fifo_queue/fifo_props.sv)

// FIFO testbench Outline
module fifo_tb;

 timeunit 1ns;
 timeprecision 100ps;
 logic clk = 1'b0; // system clock

 logic reset_n = 1'b0;

 import fifo_pkg::*; // Access to package information

 fifo_if b_if(.*); // instantiation of fifo interface

 fifo_rtl fifo_rtl_1(.*); // instantiation of fifo DUV

 // bind the fifo_rtl model to an implicit instantiation (fifo_props_1)

 // of property module fifo_props
 bind fifo fifo_props fifo_props_1(clk, reset_n, b_if);
 task reset_task(int num_rst_cycles);
 begin
 $display(“%0t Resetting DUT for %0d cycles “, $time, num_rst_cycles);
 reset_n = 1’b0;
 repeat (num_rst_cycles) begin
 {b_if.push, b_if.pop} = $random % 2;
 b_if.data_in = $random;
 @ (posedge clk);
 end // repeat
 reset_n = 1’b1;
 b_if.push = 1’b0;
 b_if.pop = 1’b0;

 end
 endtask : reset_task

 // testbench code
 initial forever #50 clk = ~clk;

190 SystemVerilog Assertions Handbook

 initial

 begin : client
 // directed tests
 reset_task(5);
 // 3 pushes
 for (int i=0; i<= 3; i++) begin
 // push_task($random % WIDTH);
 b_if.push_task($random);
 b_if.idle_task($random % 5);
 b_if.push_task(11);
 end

 // 3 pop

 for (int i=0; i<= 3; i++) begin

 b_if.pop_task;
 b_if.idle_task($random % 5);

 end

 // push/pop random
 for (int i=0; i<= 5; i++) begin

 if ($random %2) begin

 b_if.push_task($random % WIDTH);

 b_if.idle_task($random % 3);

 end

 else begin

 b_if.pop_task;
 b_if.idle_task($random % 4);

 end

 end

 $stop;
 end // block: client

 endmodule : fifo_tb

Figure 4.2.1-4 FIFO Testbench Outline (fifo_tb.sv)

5.0 Design Tools

This is beyond the scope of this book. This section typically defines the names of the
linting, simulation, debugging, formal verification, and any other tool used in the
verification process.

FIFO Verification Plan Example (continued)

FIFO Verification Plan Example (continued)

