
110 SystemVerilog Assertions Handbook, 4th Edition

If the DMA path is true (i.e., $rose(dma_command) is true, and (dma_req ##[1:3] dma_ack) is

true), but bus_req is false, then the ap_DMA_BusAccess assertion is vacuous; this is because the

antecedent of the followed-by is true but its consequent is vacuous.

3.10.4 nexttime, s_nexttime
The (nexttime[k] property_expression)family of operators specify an occurrence of a property

expression that starts after n cycles, and specify the outcome of the results under various conditions

including the lack of or existence of n cycles and the outcome of the property expression. There are

four variations of the nexttime operators, two of which are the weak operators (without the prefix

“s_”), and two of which are the strong operators (with the prefix “s_”). Those include:
property_expr ::=

 nexttime property_expr // Weak Nexttime

| nexttime [constant _expression] property_expr // Weak Nexttime

| s_nexttime property_expr // Strong Nexttime

| s_nexttime [constant_expression] property_expr // Strong Nexttime

Since the nexttime property_expr is equivalent to the nexttime[1] property_expr, its description

will be implied when addressing the non-indexed nexttime.

& Rule: [1] The indexed weak nexttime property nexttime [constant_expression]

property_expr evaluates to true if, and only if, either there are not constant_expression clock ticks

or property_expr evaluates to true beginning at the last of the next constant_expression clock ticks.

& Rule: [1] The indexed strong nexttime property s_nexttime [constant_expression]

property_expr evaluates to true if, and only if, there exist constant_expression clock ticks and

property_expr evaluates to true beginning at the last of the next constant_expression clock ticks.

The nexttime property operators are equivalent to the followed-by operator with the antecedent

equal to the sequence (##k 1'b1). Specifically,

Property Equivalent property
nexttime [k] property_expr

// k is a constant_expression
((##k 1'b1) #-# property_expression)

Example:
 ap_a_cd: assert property(a |-> s_nexttime [2] (c ##3 d));

The above assertion states that if a==1’b1 at cycle n, the assertion requires that c==1’b1 two cycles

later at cycle n+2, and d==1’b1 three cycles after that at cycle (n+2) + 3. The “strong” form of

nexttime (s_nextttime) implies that (n+2) and (n+3) cycles must occur, otherwise the assertion

fails.

3.10.4.1 Vacuity
Table 3.9.9.1 shows the possible conditions on the number of clocks and the evaluations of the

property_expression P for (nexttime [k] P)and (s_nexttime [k] P)

Table 3.9.9.1 nexttime and s_nextttime evaluations

Number of k clocks in simulator

and evaluation result of property P
 (nexttime [k] P) (s_nexttime [k] P)

* k clocks exist and P is true nonvacuously True Nonvacuous True Nonvacuous

* k clocks exist and P is vacuous True vacuously True vacuously

* k clocks exist and P is false False False

* k==0, P is not evaluated to completion True vacuously False

* One more clock exists, but less than k clocks True vacuously False

