
74 SystemVerilog Assertions Handbook, 4th Edition

property p_mem_write_read (mem_read, mem_write); // untyped arguments
 int v_address, v_data; // local variables
 logic v_parity; // in assertion variable declaration
 @ (posedge clk)
 $rose(go) |=> request ##[1:5] rdy
 ##0 q_memory_write(v_address, v_data, v_parity, write)
 ##[1:$] mem_read && address==v_address
 ##1 data==v_data && parity==v_parity;
 endproperty : p_mem_write_read
 ap_mem_write_read : assert property (p_mem_write_read(read, write));
endmodule : Ch2_formal

 Figure 2.7.5-2 Property using local variables (Ch2/Ch2_formal.sv)

The property p_mem_write_read states that upon a new go, a request is followed after a delay of
one to five cycles by rdy. Following the rdy is the sequence q_memory_write that stores, upon a
memory write the values of the memory access into variables local to that sequence. These
include the address, data, and computed parity that is written into the memory. That information
is later used upon the occurrence of a read to compare the memory data against what was
previously written. Since the owner of these variables (v_address, v_data, v_parity, write) is the
property p_mem_write_read, the consumer sequence q_memory_write must return the collected
information back to the property variables. Thus, the property local variables get connected to
the q_memory_write sequence variable lv_address, lv_data, lv_parity when the sequence is
called. The sequence must then provide that information to the calling host, the property in this
case. To accomplish this intimate link between the producer of the variables and the consumer of
those variables, the consumer must declare those variables as local with a type and a direction.

Following the write, the property waits for a memory read at the previously stored address that
was collected via the sequence q_memory_write that collected the write information into the
variables local to the property.

2.7.6 No empty match in local variables assignments (rule 5)

 Rule: The subsequence to which a local variable assignment is attached must not admit an
empty match. For example, consider the sequence following sequence:

a ##1 (b[*0:1], v_addr=0) // Illegal because sequence equivalent to:
a ##1 (b[*0], v_addr=0) or a ##1 (b[*1], v_addr=0)
 ---- Empty Match // v_addr cannot be assigned in an empty match

However, the following is acceptable because there is no empty match.
 ((a ##1 b[*0:1]), v_addr=0) // OK because sequence is equivalent to:
 ((a ##1 b[*0]), v_addr=0) or ((a ##1 b[*1)], v_addr=0))
 ((a), v_addr=0)) or ((a ##1 b[*1)], v_addr=0))
 Not empty Not empty

2.7.7 Local variable must be written once before being read (rule 6)
 Rule: A local variable must have a value assigned to it through initialization or assignment

prior to being read. Consider the following:
 sequence q_test (// ch2/2.7/auto_var.sv
 local inout int lv_count);
 (a, lv_count+= 1); //
 endsequence : q_test

 property p_test;
 int v_c; //.
 q_test(v_c);
 endproperty : p_test

Uninitialized local
variable v_c is getting
passed to an input type
formal

Understanding Sequences 75

 property p_test_OK;
 int v_c;
 (1, v_c=0) ##0 q_test(v_c) // v_c is uninitialized, value read in q_test
 endproperty : p_test_OK

2.7.8 Variable is unassigned if not flowed out (rule 7, 10)
 Rule: Local variables formal arguments of direction input and local variables declared in an

assertion_variable_declaration do not flow out of the sequence in which they are used. Thus,
such local variables become unassigned and do not flow out to the calling sequence. In addition,
a local variable in an assertion_variable_declaration is not visible by other sequences or
properties. For example:

sequence q_lv_no_flow_out(local input int lv_count);
 int v_data;
 `true ##1 (b, lv_count+=10, v_data=0) ##1 j==0; // Illegal,q_top. j is not
visible
endsequence : q_lv_no_flow_out

sequence q_top;
 int v_ct, j=0; // j is local
 (a, v_ct=0)
 ##1 q_lv_no_flow_out(v_ct) // passing v_ct to sequence.
 // Variable not flowed out. of q_lv_no_flow_out
 ##1 v_ct ==10 // v_ct is actually == 0 since formal argument not flowed out of the sequence
 ##1 v_data==0; // Illegal, v_data of sequence q_lv_no_flow_out cannot be referenced
endsequence : q_lv_no_flow_out

2.7.9 Local variables in concurrent and, or, and intersect threads (rule 14)
 Rule: When local variables are used in sequences that have concurrent threads, it is possible

that the values of the local variables may not be assigned, or assigned by one thread and not the
other, or assigned in both threads at the same or at different cycles with different values.
Concurrent threads in sequences occur with the use of the and, or, and intersect operators. [1]
In general, there is no guarantee that evaluation of the two threads results in consistent values
for the local variable, or even that there is a consistent view of whether the local variable has
been assigned a value. Therefore, the values assigned to the local variable before and during the
evaluation of the composite sequence are not always allowed to be visible after the evaluation of
the composite sequence. Below are some examples of local variable flow.

2.7.9.1 Variables assigned

 Rule: When two sequences are ORed, each sequence produces its own thread that can get
carried through to the next step, such as an end point (no more continuity), concatenation with
another sequence, or as antecedent to a consequent. For example,
 (sequence1 or sequence2) ##1 seq3 // is equivalent to
 (sequence1 ##1 sequence3) or (sequence1 ## sequence3) // two threads
Note that multithreaded sequence do occur with range operators. For example:
 (a ##[1:2] b) // is equivalent to
 (a ##1 b) or (a ##2 b).
 Also, (a ##1b[*1:2]) // is equivalent to:
 (a ##1 b[*1]) or (a ##1 b[*2]).
If the sequence makes assignments to local variables, then each of the sequence involved in the
ORing carries its own individual and separate copy of the local variables. Those separate copies
of the local variables are carried all the way through each of the ORed sequence thread. This
concept is shown graphically in Figure 2.7.9.1.

@ entry, lv_count=v_ct (which is 0)
@ end point, lv_count ==10, v_data ==0.
@ exit of sequence, lv_count and v_data
do not flow out to q_top; they re local to the sequence

76 SystemVerilog Assertions Handbook, 4th Edition

Figure 2.6.8.1 Oring of Two Sequences Maintain Individual Copies of the Local Variable

Throughout the Lifetime of Each Thread. Threads exits separately

Each matching thread of an or operand continues as a separate thread; that matching thread
carries with it its own copy of the local variables, which flow out of the composite sequence and
out of the implication operator (i.e., |->, |=>). Thus, in summary, the local variables in properties
with an antecedent and consequent are handled in the following manner:
1) If a multithreaded antecedent updates a local variable within its thread, each thread carries its
own copy of the local variable.
2) If that property local variable is used in the consequent, the copy of that local variable is
carried for each of those threads.
Consider the following property:
property p_abv;
 bit v;
 (a, v=1) or (b, v=0) |=> v==1;
endproperty : p_abv
The antecedent of this property has two threads (a, v=1) and (b, v=0); each of those thread
carries its own individual copy of the local variable. In the consequent, each antecedent thread
must be evaluated with consequent. In this case, the individual copy of the local variable for each
thread is carried into the consequent when that thread is evaluated. Thus for thread (a, v=1) the v
in the consequent is the copy used in that thread. Similarly, for thread (b, v=0) the v in the
consequent is the copy used in that thread.
The equivalent property to p_abv is the following:
property p_abv_eqv;
 bit v1, v2;
 ((a, v1=1'b1) |=> v1==1) and
 ((b, v2=1'b0) |=> v2==1);
endproperty : p_abv_eqv
In the above example, if a==1'b1, and b==1'b1, then the property will fail.

Understanding Sequences 77

 Rule: There are strict rules on the flowing out of the local variable copied into each of the
ORed sequences. [1] A local variable flows out of the composite sequence if it flows out of each
of the operand sequences, as is the case for the above example. If the local variable is not
assigned before the start of the composite sequence and it is assigned in only one of the operand
sequences, then it does not flow out of the composite sequence. For example:

sequence q_no_flow_out; // ch2/2.7/or_multi.sv
 int v_x, v_y;
 ((a ##1 (b, v_x = data, v_y = data1) ##1 c) or // v_x and v_ y assigned
 (d ##1 (`true, v_x = data) ##0 (e==v_x))) // v_x assigned, v_ y unassigned
 // Thus, v_x flows out, and v_y does not flow out
 ##1 (v_y==data2); // Local variable v_y referenced in expression where it does not flow.
/ Illegal: v_y cannot be read in thread 2 because it was not uninitialized
/ in the thread or during the initialization of the local variable at declaration.
endsequence : q_no_flow_out

sequence q_flow_out1; // OK
 int v_x, v_y;
 ((a ##1 (b, v_x = data, v_y = data1) ##1 c) or // v_x and v_ y assigned
 (d ##1 (`true, v_x = data, v_y=0) ##0 (e==v_x))) // v_x and v_ y assigned
 ##1 (v_y==data2);
endsequence : q_flow_out1

sequence q_flow_out; //
int v_x, v_y;
((a ##1 (b, v_x = data, v_y = data1) ##1 c)or // Thread 1: v_x and v_ y assigned and flow
out
(d ##1 (`true, v_x = data) ##0 (e==v_x))) // Thread 2: v_x assigned

 // Thus, v_x flows out, and v_y does not flow out
##1 (v_x==data2); // v_ y unassigned, but is not used in the subsequent sequence ##1
(v_x==data2)

// That subsequence only needs v_x, which does flow out since it was initialized.
endsequence : q_flow_out

2.7.9.1.1 first_match(seq1 or seq2)
 Rule: As mentioned above, the ORing of two sequences produces two threads, each with

their own individual copies of the local variables. A first_match of an OR of two sequences
(i.e., first_match(seq1 or seq2)) causes the match of its operand sequence to be minimal in
length, but it does not forbid multiple matches of the same minimal length. As long as all the
matches are of the same minimal length, they can have different valuations of the local variables.
If an evaluation of first_match of a sequence has a double match of the same length, these two
matches could have different values for the local variables at the end points. For example:

int k=1;
property p_abvFM; // ch2/2.7/match_abc.sv
 bit v;
 first_match((a, v=1) or (b, v=0)) |=> v==k;
endproperty

Property p_abvFM results in 2 matches if a==b==1 since each thread is a match. That example results in
a failure of the property when a==b==1 because one thread will succeed, and the other will fail.

Guideline: In sequences used as antecedents, ensure a unique first_match.

78 SystemVerilog Assertions Handbook, 4th Edition

Design Example:
Given signal a and signal b, b must be high (consecutively or non-consecutively) at least n
number of times between rose(a) and fall(c) n is defined in a module variable called "count".

The following solution guarantees a unique first_match:
property p_ab_count_OK; // ch2/2.7/pulsesOK.sv
 int v;
 ($rose(a), v=0) |->
 first_match (
 (b || $fell(c)[->1] ##0
 ((b, v=v+1'b1) or !b && $fell(c))
)[*1:$] ##0 $fell(c)
)
 |-> v >=count;
endproperty

Note: The following sequence may result in non-unique first_matches, and that is problematic.
 first_match (##[1:2]
 (b || $fell(c)[->1] ##0
 ((b, v=v+1'b1) or !b && $fell(c)))[*1:$] ##0 $fell(c))
This is because there is one thread starting at ##1, and the other at ##2. If at ##1 and at ##2
b==1 and c==1 (i.e., no fell(c), and if the match occurs at a later cycle then each of those two
threads will have a match with a fell(c). However, an error will occur because each of those two
threads that matches will have different values for their local variable, assuming that some b's
occurred before the fell(c). .

2.7.9.2 Variables and

 Rule: [1] In the case of and and intersect, a local variable that flows out of at least one
operand shall flow out of the composite sequence unless it is blocked. A local variable is blocked
from flowing out of the composite sequence if either of the following statements applies:

1) The local variable is assigned in and flows out of each operand of the composite sequence,
or
2) The local variable is blocked from flowing out of at least one of the operand sequences.

The value of a local variable that flows out of the composite sequence is the latest assigned value.
The threads for the two operands are merged into one at completion of evaluation of the
composite sequence.

When two sequences are ANDed or INTERSECTed, each sequence produces its own thread.
However, unlike the ORing of two sequences, the and/intersect of two sequences produces a
single end point at the termination of the threads. This means that the two threads merge into a
single starting point; this contrasts to the Oring of two sequences where each thread is carried
separately to the next sequence.

If the sequence makes assignments to local variables, then each of the sequence involved in the
ANDing or INTERSECTing carries its own individual and separate copy of the local variables.
However, only those local variables that are NOT assigned in both threads flow out of the
sequence. This concept is shown graphically in Figure 2.7.9.2. Thus, it is illegal to have the
same variables being assigned in each of the threads and have that variable flow out of the
sequence because the outputs of these operators produce a single end point with updated values
for the variables.

Understanding Sequences 79

 Figure 2.7.9.2 ANDing / INTERSECTing of two sequences maintain individual copies of

the local variable throughout the lifetime of each thread. Threads combine into a single exit
point

The following demonstrates various cases of this rule.

 sequence my_and;
 logic v;
// my_and_part1 my_and_part2
 (((a, v=x) ##1 b) and (c ##1 d))

 ##1 e==v; // OK since v assigned ONLY in
 // one thread of the 2 threads of the and operator
 endsequence : my_and

 sequence q_no_out_flow(v);
 (
 ((a, v=x) ##1 b) intersect
 (c ##1 (d, v=y))
)
 ##1 v==1; // v is blocked from flowing out
 // because it is common to both threads
 endsequence : q_no_out_flow

 property p_and_legal;
 int x,y;
 ((a ##1 (b, x = data, y = data1) ##1 c) and
 (d ##1 (`true, x = data) ##0 (e==x))
) ##1 (y==data2)
 // |=> x==1; // Local variable x referenced in expression where it does not flow.
 |=> y==1; // local variable y is not assigned in both threads.
 endproperty : p_and_legal

v is assigned here

v flows out

v is NOT assigned here

