
40 SystemVerilog Assertions Handbook, 4
th
 Edition

& Rule: [1] An empty sequence fused with a sequence is empty. An empty sequence is a

sequence that uses the 0 as the repetition number, such as a[*0]. For a sequence overlapping to

match, the one cycle overlap must exist in both sequences. In other words, if either of the two

sequences have an empty match, then there cannot be an overlap because one of the two

sequences is of zero length. Thus, an empty sequence fused with any sequence results in no

match.

& Rule: Table 2.4.1 defines fusion rules with empty sequences. An empty sequence is denoted

as empty, and a sequence is denoted as seq. Assume start==1, b==1, c==1 at all cycles.

Table 2.4.1 Fusion Rules with Empty Sequences
Ch2/fusiont.sv, wave_fusiont.bmp, fusiont_assertion_report.txt

Sequence

Fusion

Result Example Comments

empty ##0
seq

No match start -> b[*0] ##0 c;

 // MFAIL
Empty fused with a sequence is a no
match, assertion fails.

empty ##n
seq
// n > 0

Equivalent to
(##(n-1) seq)

start |-> b[*0] ##1 c;

start |-> b[*0] ##2 c;

start |-> ##0 c; // same as
start |-> c; // assertion passes

start |-> ##1 c; // same as
 // assertion passes

seq ##0
empty

No match start |-> c ##0 b[*0];

 // M FAIL
sequence fused with empty is a no
match, assertion fails

seq ##n
empty
// n > 0

Equivalent to
(seq ##(n-1)
`true)

start |-> c ##1 b[*0];

start |-> c ##2 b[*0];

start |-> c ##0’true; // same as
start |-> c; // assertion passes

start |-> c ##1 1 ##1 b[*0] //
same as
start |-> c ##1 1;
// assertion passes one cycle after c==1

Guideline: Carefully evaluate the meaning of the fusion (##0) operator with other sequences. It

could represent unwanted or unclear properties. The empty sequence is most commonly found in

the definition of ranges. For example, the following property statement (req |=> rdy[*0:1]

##[0:1] ack) states that if req==1 then at the next cycle rdy need not occur if ack occurs.

However, if rdy occurs then ack can occur in that cycle or in the next cycle. This property

expression can be analyzed as follows:

req |=> rdy[*0:1] ##[0:1] ack;
original
property

req |=> (rdy[*0] ##[0:1] ack) or (rdy[*1] ##[0:1] ack); Equivalency

req |=> ((rdy[*0] ##0 ack) or (rdy[*0] ##1 ack)) or (rdy[*1] ##0 ack or rdy[*1] ##1 ack);

 ((rdy[*0] ##0 ack) or rdy[*0] ##1 ack) or rdy ##0 ack or rdy ##1 ack;
 <--No match-> <--##0 ack ----> <- fusion -> <2 cycles seq ->

Equivalency
Equivalency

req |=> (ack) or rdy ##0 ack or rdy ##1 ack;

req |=> ack or rdy && ack or rdy ##1 ack

Equivalency

req |=> ack or (rdy ##1 ack); Final reduction

Understanding Sequences 41

Other examples where the application of fusion can be misguided include the following:
o GOTO: a |-> a[->1];
The following DOES NOT express the notion that "if a, then another a at some time in the

future:
a |-> a[->1]; // is equivalent to

a |-> !a[*0:$] ##1 a; // same as
a |-> (!a[*0] ##1 a) or (!a[*1] ##1 a) or .. (!a[*n] ##1 a);

However, (!a[*0] ##1 a) is equivalent to "a". Thus,

a |-> a; // Final equivalence, which is not the intended property
Note: To express the notion that "if a, then another a at some time in the future
a |=> strong(a[->1]); // OK
a |-> strong(##[1:$] a);

o Range
a |-> ##[0:4] a; //is equivalent to

a |-> ##0 a or ##1 a or ... ##4 a; // is equivalent to

a |-> a; // If(a) then a is equivalent to

a |-> 1; // Since if a==1 in antecedent, it is 1 in the same cycle in the consequent

a |-> ##[0:4] a ##1 b; // is equivalent to:

a |-> (##0 a ##1b) or (##[1:4] a ##1 b); // is equivalent to

a |-> (##1 b) or (##[1:4] a ##1 b);

o with empty match:
a |-> b[*0:1] ##0 c; // is equivalent to

a |-> (b[*0] ##0 c) or (b[*1] ##0 c); // is equivalent to

a |-> 0 or (b[*1] ##0 c); // is equivalent to

a |-> b[*1] ##0 c;

2.4.2 Sequence disjunction (or)
& Rule: The sequence or operator constructs a sequence in which one of two alternative

sequences need to succeed for the disjunction of two sequences to succeed. Each of two

sequences starts at the first clocking event of their respective sequence. Both sequences need not

end at the same cycle. When Oring two sequences, the result is a match if one of the sequences is

a match. If both sequences match, then the one that matched the soonest causes the Oring to

match. If both sequences do not match, then the ORing of the sequences is not a match. If the

sequence is used as a property, then the no-match is a failure of the property. The sequence

(a ##1 b) or (c ##1 d) states that either sequence a b or sequence c d would satisfy the

composite sequence. When one of the sequences matches, the whole composite sequence (i.e.,

(a ##1 b) or (c ##1 d)) is considered ended.

In a multiclocked operation where each sequence has its own separate clock, the two operands of

the or sequences start at the first clocking event of their respective sequence.26 For example, in

the following property
 (@(posedge clk) s0 |=> (@(posedge clk1) s1) or (@(posedge clk2) s2);)
sequence s1 starts at the first clocking event of clk1, and sequence s2 starts at the first clocking

event of clk2.

26 That rule also applies to the and, or, until, implies, iff operators. See 4.4 on multiclocked operations.

same

as

same

as

same

as

