
3 TRANSACTION GENERATOR, 
COMMAND TRANSACTOR, 
AND MONITOR    

A transactor is a generic term used to identify components of the verification environment (i.e., 
classes) that interface between two levels of abstractions for a particular system/design (e.g., a 
particular protocol or the generation of transactions).  A transactor can be defined as something 
that executes or observes transactions over time.  Transactors can be stopped, started and reset.  
Several components can be identified as “transactors” including transaction generators to 
generate transactions; command transactors to drive a hardware interface; and monitors to collect 
information off a hardware interface.1  The lifetime of transactors is static in the verification 
environment: They are created at the beginning of the simulation and stay in existence for the 
entire duration. They are structural components of the verification environment (implemented 
with SystemVerilog classes).  It is important to note that the implementation of a transactor with a 
class offers many advantages over an implementation with a module or an interface.  Specifically, 
unlike a module/interface, a class enables the definition of constraint blocks, allows inheritance, 
can turn ON/OFF the constraints, and can select the randomization modes of individual 
properties.  In addition, as addressed in Chapter 5 and 6, a class allows the use the factory and 
callback patterns.     

This chapter addresses various types of transactors in a VMM framework with focus on 
transaction generators, primarily atomic.  This chapter introduces the concept of scenario, and 
custom generators, but delays the discussions of those generators to chapters 7 and 8.  Other 
topics addressed in this chapter include the command transactor (a.k.a.BFM) and monitor 

                                                      
1 Note: Scoreboards perform the verification between what is observed and what is expected.  Scoreboards 
are not considered transactors because they typically perform their tasks in zero-time, and are not extended 
from any VMM base class. 



34   A Pragmatic Approach to Adopting VMM 

Typically, only a handful of transactors get created. In contrast, transactions have a dynamic 
lifetime: Thousands of transactions get created during a simulation run by generators (which are 
themselves transactors), flow through other transactors (e.g., command transactors or BFMs), get 
recorded with monitors (also transactors), get compared in scoreboards, and then freed. 
 
Transactors can be classified as:  

1. Proactive transactors:  Those are transactors that generate stimuli (i.e., initiate 
transactions) under control of the timing of the stimuli.  An AMBA bus master is an 
example of such transactors.  Another example is a segmenter that breaks down large 
packets into smaller ones, and passes those smaller packets to other transactors.  

2. Reactive transactors:  Those are transactors that react to the environment, thus they also 
generate stimuli, but in response to some event of interface activity.  A slave BFM is an 
example of a reactive transactor: it provides ACK/NACK/DATA to transaction initiated 
by the DUT.   

3. Passive transactor:   This transactor could be a monitor that collects information from 
the DUT interfaces and passes that information to a scoreboard for verification.  The 
monitor is addressed in Section 3.3.  

3.1 TRANSACTION GENERATOR 

In its simplest form, a transaction generator is a transactor that creates transactions as per the 
definition and constraints of the transaction class, and puts the created transactions into an output 
channel.  Figure 3.1 demonstrates the placement of the generator in the context of the testbench.   
Generators can be classified as: atomic, scenario, and custom.    

To better understand an atomic generator, it is important to understand the structure of a 
generator.  To achieve this goal, we’ll describe a simple custom generator without the bells and 
whistles.  Chapter 7 extends that design to one with greater functionality and flags.  We’ll then 
address the generator supported by VMM macros, which greatly simplify and speedup the design 
of transaction generators that meet most of your needs.  However, we elaborate the discussion of 
custom generators in the event your needs are so unique that you may want to build your own.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Generator in the context of the testbench 

Environment

Testbench 

DUTDUT

Clock 
generators

DUT 
Interfaces Transactions 

Command 
Transactor 

Monitor
transactors

scoreboard 

Program

Generator
This chapter



Transaction Generator, Command Transactor, and Monitor    35  
 

3.1.1 Atomic generator  

3.1.1.1 Simple atomic generator  

Conceptually, an atomic transaction generator generates individual instances of a specified 
transaction class, and puts those instances into a channel for consumption by another transactor.  
Specifically, an atomic generator first randomizes an object of the transaction class, and then puts 
a copy (i.e., a newly allocated copy version) of that transaction into the output channel.  Figure 
3.1.1.1-1 provides a UML view of a user defined FIFO Transaction Generator.    
 

vmm_xactor

+vmm_log

Fifo_xactn_atomic_gen

+Fifo_xactn_channel out_chan
+Fifo_xactn randomized_obj;

+new()
+main()

 
 

Figure 3.1.1.1-1 UML View of a Simple FIFO Transaction Generator 
 
Figure 3.1.1.1-2 shows a functional flowchart of an atomic generator.  The code shown in Figure 
3.1.1.1-1 represents the core of the code that emphasizes the randomization of the local 
transaction (randomized_obj), and then the insertion of a copy of that randomized transaction into 
the local channel (out_chan). 
 
class simple_gen extends vmm_xactor; 
 //.. 
  task main();   
  //Looping construct // defined by the requirements  
      randomized_obj.randomize(); 
      $cast(inst, randomized_obj.copy(randomized_obj)); 
      this.out_chan.put(inst); // randomized_obj and inst are of type Fifo_xactn 
    //end of looping  
  endtask : main 
endclass : simple_gen 

Figure 3.1.1.1-1 Core Code for Randomization of the Local Transaction (randomized_obj) 

 
 

 



36   A Pragmatic Approach to Adopting VMM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1.1.1-2 Flowchart of an Atomic Generator 

3.1.1.2 `vmm_atomic_gen 

The fastest, and recommended method to implement an atomic generator is to use the VMM 
macro:  `vmm_atomic_gen(class_name, Class_Description) 
That macro defines an atomic generator class named <class_name>_atomic_gen to generate 
instances of the specified class.   In our FIFO example, we have in file fifo_gen_xactor.sv the 
`vmm_atomic_gen statement for the generation of the class Fifo_xactn_atomic_gen as shown in 
Figure 3.1.1.2-1.   
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1.1.2-1 Application of the macro `vmm_atomic_gen 

 
Figure 3.1.1.2-2 is a UML view of the VMM atomic transaction generator. 

 

creation

`vmm_atomic_gen (Fifo_xactn, 
"FIFO Xaction Generator")

class Fifo_xactn_atomic_gen

randomize one object 

Need more 
transactions? 

Push copy to 
output channel 

Start generation 

Yes 

No 

Done 



Transaction Generator, Command Transactor, and Monitor    37  
 

vmm_xactor

+vmm_log

`vmm_atomic_gen(Fifo_xactn, 
         "FIFO Xaction Generator")

Fifo_xactn_atomic_gen

+Fifo_xactn_channel out_chan
+Fifo_xactn randomized_obj;
+int unsigned stop_after_n_insts
+int unsigned  stream_id 
+enum {GENERATED} generated
+enum {DONE} done

+new()
+main()
+task inject(Fifo_xactn data, ref bit dropped)

Creates

Fifo_xactn_atomic_gen_callbacks

+task post_inst_gen()

Creates

 
 

Figure 3.1.1.2-2 UML Elaborate View of a VMM Atomic Transaction Generator 
 
The generator provides the constructor shown below:   

function new(string inst,  
             int stream_id = -1,  
             Fifo_xactn_channel out_chan = null); 

 
This function is used in the environment to create a new instance of the Fifo_xactn_atomic_gen 
class with the specified instance name and optional stream identifier.  
 
Each atomic generator can be thought of generating a stream of transactions and can be 
associated with a unique stream_id.  The generator can be optionally connected to the specified 
output channel.  If no output channel instance is specified, one will be created internally in the 
Fifo_xactn_atomic_gen::out_chan property.  In our FIFO environment (file ch3/fifo_env.sv) the 
allocation of the atomic generator is as shown in Figure 3.1.1.2-3.  In addition, the association 
between the generator out_chan and the channel instance is performed in the build function via 
the constructor argument.  This discussion of the environment is expanded in Chapter 4.  
 

class Fifo_env extnds vmm_env; 
 Fifo_xactn_atomic_gen fifo_xactn_gen_0;     
 Fifo_xactn_channel fifo_channel_0; // variable declaration     
 .. 
 function void Fifo_env::build(); 
    super.build(); 
     // instantiation of channel  



38   A Pragmatic Approach to Adopting VMM 

    this.fifo_channel_0 = new("fifo_chan","channel"); 
    // Allocation of command-layer transactor  
    this.fifo_cmd_xactor_0 = new("cmd_xactor", 
                        0, 
                        `TOP.f_if,  
                        fifo_channel_0 
                        ); 
  // allocation of atomic generator  
  this.fifo_xactn_gen_0 = new ("fifo_gen", 0, 
                                fifo_channel_0); 
…  
 endfunction : build 
endclass : Fifo_env 

Figure 3.1.1.2-3  Environment for linkage of Channel to Generator and 
Command-Layer Transactor (Ch4_fifo/fifo_env.sv) 

In addition to creating the random transactions as per the properties of the transaction class (i.e., 
the rand data members and constraints), the generator puts additional information into the class 
properties of the transactions that it generates.  However, to better understand these actions, you 
need to understand the properties of vmm_data, from which the transaction class extends.  

 
The base class vmm_data has three properties used for identification.  These 
properties are defined within the environment for different purposes.  

1. The data_id is a simple counter that is incremented by the atomic 
generator at every generation of a transaction.  It will be reset to 0 
when the generator is reset and after the specified maximum number of 
instances has been generated.  This data_id count allows the 
testbench to read the number of generated transactions and make 
decisions or reports based on that count.  

2. There is one stream_id per instance of a generator. The 
vmm_data::stream_id property of the transaction instance is set to the 
generator’s stream_id before each randomization.  Basically, this 
mechanism allows the tagging or association of every transaction with 
its generator.   Thus, if a system has multiple generators a transactor 
receiving (i.e., getting) those transactions can make callback decisions 
based on the source of the generator (Callbacks are addressed in 
Chapter 6).   An example of such a decision can be an error injection.   

3. The scenario_id is addressed in Chapter 8. 

vmm_data

+int stream_id
+int scenario_id
+int data_id

UML for key 
properties of 
vmm_data 

  
Because these IDs uniquely identify each transaction instance, like a serial number, they are very 
useful as a debugging aid during the analysis of a simulation run with hundreds of transactions 
because they can help track the transaction flow across the system.   
 
The macro for the atomic generator provides more useful features than what is already addressed, 
including the termination and notification of the end of the generation of transaction.  As shown 
in the generic generator flow chart in Figure 3.1.1.1c, one of the fundamental controls any user 
expects in a generator is “how many transactions to generate”.  The VMM generation macro 
declares a class property named stop_after_n_insts (meaning: STOP after n number of transaction 
instances).  When the user-specified number of transactions is reached, the generator indicates the 



Transaction Generator, Command Transactor, and Monitor    39  
 

DONE notification used by the environment to know when the generator has completed the 
creation of transactions onto the channel.  The environment (addressed in Chapter 4) can wait for 
this end of transaction generation with the following statement:  

   this.fifo_xactn_gen_0.notify.wait_for 
                   (Fifo_xactn_atomic_gen::DONE); 

The generator provides the DONE notification using the vmm_notify::indicate function.  
Notification is explained in Chapter 7.  Another feature of this atomic generator macro is the 
automatic declaration and implementation of a callback class (fifo_xatcn_atomic_gen_callbacks) 
that implements a façade for the atomic generator callback.  This callback includes a method 
(virtual task post_inst_gen) that is invoked by the generator after a new transaction or data 
descriptor has been created and randomized, but before it is added to the output channel.  This 
could be used to hook up a functional coverage model to qualify the generator’s randomness, for 
instance.  We address the discussion of callbacks in Chapter 6.  
 

3.1.1.3 Scenario generator  

A scenario is “a sequence of random or directed stimulus that is particularly interesting to the 
device under test. A scenario is unlikely to be spontaneously generated with individually 
constrained-random stimulus. Multiple scenarios are applied to the device under test during a 
single simulation”. We can consider a scenario as a sequence of atomic operations that are 
organized in a specific order.  Scenario examples for a microprocessor bus could be:  

1. READ IDLE IDLE  (RD_I_I) 
2. READ IDLE WRITE WRITE  (RD_I_WR_WR) 
3. LOAD IDLE IDLE  (LD_I_I) 
4. READ READ READ (RD_RD_RD) 

 
Thus, unlike an atomic generator that generates random operations, a scenario generator creates 
random sequences made up of atomic operations organized in a specific sequence.  VMM defines 
a scenario generator as one that generates scenarios in random order, and produces a stream of 
transactions that correspond to the generated scenarios.   How can random scenario generators be 
designed? There are several methodologies including:  
 

1. Atomic generator that use an atomic choice of possible streams or sequences.  This is 
similar to the atomic generator (with the `vmm_atomic_gen macro), but instead of 
selecting an atomic operation (e.g., READ), the selections are streams (e.g., RD_I_I,  
RD_I_WR_WR, LD_I_I, RD_RD_RD).  Those streams are then decomposed into 
individual atomic operations by a functional transactor  

2. Custom generator that uses the randsequence.  This is addressed in Chapter 7.  
However, an example of the randsequence is shown below:  
        randsequence (stream) 

        stream : first second third; // := 10 | second := 20 | third :=1; 
          first  : idle | load_data;  
          second : idle :=2 | enable_count := 7 | reset:= 1; 
          third  : idle:=8 | enable_count :=2;  
          idle         : {idle_task();}; // kind=IDLE; 
          load_data    : {load_data_task();};   
          enable_count : {enable_count_task();};   
          reset        : {$display("reset, display only");};   
        endsequence 

 
1 2 31 2 3



40   A Pragmatic Approach to Adopting VMM 

3. Use of the VMM macro ` vmm_scenario_gen along with iterative constraints on the 
transactions to create scenarios.  This approach with the use of constraints is explained in 
Chapter 8. 

 
3.2 COMMAND-LAYER TRANSACTOR  

A transactor uses transactions to do something.  For example, the simplest command-layer 
transactor gets a transaction descriptor from a channel, decodes it, and converts the transaction 
job to appropriate signal level activity as per the design specification (in our FIFO model, this 
would mean asserting the correct signals such as push, pop, data etc.).  VMM recommends that 
the command layer transactor is actually independent of the actual DUT signal names to foster 
reuse and recommends usage of a SystemVerilog virtual interface instead.2 This virtual interface 
is hooked up to the actual interface at the environment level, as shown in Figure 3.1.1.2-3 
(connecting to the DUT is discussed in more detail in Chapter 4).  Command-layer transactors are 
often known as BFMs.    

In the FIFO example, the command-layer transactor is responsible to get the generated 
transactions off the transaction channel, and translate them to stimuli on the FIFO interface, such 
as PUSH and POP control signals.  We’re also demonstrating the use of transaction completion 
information back to the generator via a response channel.3  The generator could use inline code or 
callbacks to handle the completion information, such as do a retry in the event of a failure 
(Callbacks are addressed in Chapter 6).  Figure 3.2-1 demonstrates a UML architecture of the 
command-layer transactor in the environment.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.  
 

                                                      
2 VMM Rule 4-108 Physical interfaces shall be specified using a virtual modport interface as an argument 
to the transactor constructor. 
3 VMM Suggestion 4-139 Consumer transactors may use a different descriptor to return transaction 
completion information. 



Transaction Generator, Command Transactor, and Monitor    41  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2-1 UML Architecture of FIFO Transactor in the Verification Environment   



42   A Pragmatic Approach to Adopting VMM 

The key elements of this command-layer transactor architecture include the following:  
1. Class properties: The properties declared at the top level of the transactor include: 

a. Virtual interface:  The virtual interface is used instead of direct hierarchical signal 
references to support reuse and adaptability to a testbench with multiple instances of the 
interface.  An example of this application may be a change to the requirements where the 
FIFO subsystem must be redundant, thus needing two command transactors (each with 
possible variations) and two instances of the actual FIFO interface.  The declaration of 
that class property is shown below and makes use of the driver modport. 

       virtual fifo_if.fdrvr_if_mp f_if; 

 
b. Log: This is needed for the reporting of information.  This log originates from the 

vmm_xactor base class and is allocated in its constructor.  

c. Transaction channel: The channel is the data interface mechanism used by command-
layer transactor for fetching (i.e., get) the transactions created by the transaction 
generator. The variable declaration of the channel is:  
“Fifo_xactn_channel in_chan;”. Figure 3.1.1.2-3 demonstrates the linkage 
of the channel instance to the Generator and Command Layer Transactor at instantiation 
of the transactor.   

d. Fifo_response_channel:  The response channel, a.k.a. completion channel, is responsible 
for collecting information off the DUT interface, determining the success or failure of the 
transaction, and reporting this acquired knowledge back to the generator.4    

2. Methods: The transactor methods include the following:  

a. new(): This method is called in the environment when the transactor is constructed. The 
new function in our FIFO transactor  looks as shown in Figure 3.2-2:  

class Fifo_cmd_xactor extends vmm_xactor; 
  import fifo_pkg::*; 
  virtual fifo_if.fdrvr_if_mp f_if; 
  Fifo_xactn_channel    in_chan; // input channnel for transactions  
  Fifo_response_channel resp_chan;  // output responsse channel 
 
  function new(string inst, 
       int unsigned stream_id = -1, 
         virtual fifo_if.fdrvr_if_mp  new_vir_if, 
         Fifo_xactn_channel      new_in_chan=null, 
         Fifo_response_channel   fifo_response_channel=null); 
      super.new("cmd_xactor", inst, stream_id); 
      this.f_if = new_vir_if; 
      if (new_in_chan==null) 
    this.in_chan=new("fifo_chan","channel"); 
      else this.in_chan = new_in_chan; 
      if (fifo_response_channel==null) 
        this.resp_chan=new("fifo_response_chan", "channel"); 
      else this.resp_chan=fifo_response_channel; 
  endfunction : new 

                                                      
4 VMM Rule 4-137 —Consumer transactors shall use the vmm_channel::sneak() method to add completed 
transaction descriptors to the completion channel. 



Transaction Generator, Command Transactor, and Monitor    43  
 

  extern task main(); 
  extern task reset_task (int num); 
  extern task push_task (word_t data); 
  extern task pop_task(); 
  extern task push_pop_task (word_t data); 
  extern task idle_task (int num_idle_cycles); 
endclass: Fifo_cmd_xactor 

Figure 3.2-2 Methods in the Command-Layer Transactor (ch4_fifo/fifo_cmd_xactor) 

The new function of the transactor must call the vmm_xactor::new (or super.new).   The 
new function also makes the association between the arguments of the interface and 
channels to the local interface declaration and channel declarations.  If a channel is null  
then a new channel is instantiated.   

b. main(): Figure 3.2-3 demonstrates the code for the FIFO main task.  The main() task is 
managed by the vmm_xactor base class and is called when the environment invokes the 
start_xactor()  method.  In our example, this is performed in the environment as    
 this.fifo_cmd_xactor_0.start_xactor();  // in environment  

This model of main follows the rules described under “completion and response models” 
using the “in-order atomic execution” described in VMM.  This completion and response 
modeling allows the BFM to inform the higher layer (in this case the generator) that the 
transaction has been executed and with what results.   

 
Key features of this code are:  

1.  Call to vmm_xactor main() task (with super.main()), as required by the VMM. 5 

2.  Declaration of the transaction variable, in our case the Fifo_xactn  
fifo_xactn_0.  Note that we’re only declaring the variable, but not allocating it.  
This variable is used to store the transaction information off the transaction 
channel. 

3.  Transaction descriptors peeked from the input channel.6  The peek task gets 
a reference to the next transaction descriptor that will be retrieved from the 
channel at the specified offset without actually retrieving it.  If the channel is 
empty, the function will block until a transaction descriptor is available to be 
retrieved. Otherwise, the peek is non-blocking.  The peek method keeps the 
producer blocked from generating transactions into the channel (of size 1) 
while the current transaction is being executed.  
this.in_chan.peek(fifo_xactn_0);   

4. vmm_data::STARTED and vmm_data::ENDED notifications. Those 
indications inform the generator of the status of the command transactor.7  In 
Chapter 7, we use this notification to inform the generator of the standing of 
the BFM transactor.  This information may be used by the generator to take 
action. 

fifo_xactn_0.notify.indicate(vmm_data::STARTED);   

                                                      
5 VMM Rule 4-95 . Extensions of the vmm_xactor::main() task shall call super.main(). 
6 VMM Rule 4-121 Transaction descriptors shall be peeked from the input channel. 
7 Recommendation 4-123 The vmm_data::STARTED and vmm_data::ENDED notifications should be 
indicated. 



44   A Pragmatic Approach to Adopting VMM 

5.  Information to the vmm_xactor::log is provided for debugging and 
documentation purposes, as shown below:  vmm_trace is used to avoid getting 
the message by default. 

`vmm_trace(log,  
$psprintf("Got a new fifo xaction from in_channel %s ",          

                      fifo_xacn_0.psdisplay())); 

6. Actions based on transaction descriptor. Once the transaction descriptor is 
obtained, the command-layer transactor can determine what actions to take 
based on the properties (i.e., variables) of the peeked transaction.  The 
transaction can easily be decoded and acted upon to assert signals onto the 
interface.  For example, 

 
     case (fifo_xactn_0.kind) 

      PUSH : this.push_task(fifo_xactn_0.data); 
      POP  : this.pop_task();  
        … 

The called tasks perform the actual interface bit wiggling.  For example, the task 
push_task (word_t data); performs as follows:  

task push_task (int data); 
     begin 
        `vmm_debug(this.log,$psprintf("%m Push data %0h ", data));  

    f_if.driver_cb.data_in <= data; 
    f_if.driver_cb.push <= 1'b1; 
    f_if.driver_cb.pop  <= 1'b0; 
    @ ( f_if.driver_cb); 
       f_if.driver_cb.push <= 1'b0; 
      end 
  endtask : push_task 

Note:  The clocking block of the driver interface is used in the assignment 
and reading of the interface signals, as this ensures that the proper setup 
and hold times are used.8 

7. Checks on the success of the execution. Following the bit-wiggling tasks 
(e.g., push, pop) to the DUT, we can check on the success of the execution of 
the transaction (e.g., a DUT may have responded with a RETRY).  We can 
also notify the producer of this status.   In our simple model, we assumed 
success with an indication of ENDED.  

    fifo_xactn_0.notify.indicate(vmm_data::ENDED,  
                                 fifo_response); 
    // Send the response to generator thru the response channel 
          // in nonblocking manner. 
      this.resp_chan.sneak(fifo_response) 

8. Flush the transactor descriptor. Use the get task to flush the already used 
transactor descriptor from the channel.  

this.in_chan.get(fifo_xactn_0); 
  

                                                      
8 VMM Rule 4-12  The clocking block shall be included in modports port list instead of individual clock 
and synchronous signals. 



Transaction Generator, Command Transactor, and Monitor    45  
 

task Fifo_cmd_xactor::main(); 
    Fifo_xactn  fifo_xactn_0;  // transaction to get  
    Fifo_response  fifo_response; // response to generator 
    fork 
      super.main(); 
    join_none 
    forever 
    begin : main_loop 
      // Rule 4-121 
      this.in_chan.peek(fifo_xactn_0); 
      // Rule 4-123 
      fifo_xactn_0.notify.indicate(vmm_data::STARTED);     
      `vmm_trace(log,  
                     $psprintf("Got a new fifo xaction from in_channel %s ", 
               fifo_xactn_0.psdisplay())); 
      case (fifo_xactn_0.kind) 
        PUSH : 
          this.push_task(fifo_xactn_0.data); 
        POP  : 
         this.pop_task();  
        PUSH_POP : 
         this.push_pop_task(fifo_xactn_0.data); 
        IDLE : 
          this.idle_task(fifo_xactn_0.idle_cycles); 
        RESET : 
          this.reset_task(fifo_xactn_0.reset_cycles);  
      endcase 
      // Can do checks here if needed 
      fifo_response=new(); 
      fifo_response.kind = fifo_xactn_0.kind; 
   fifo_response.status= PASSED; 
      // ..  
              // Now do a get() to unblock producer 
              // Rule 4-123 
      fifo_xactn_0.notify.indicate( 
            vmm_data::ENDED, fifo_response); 
      // Send the response to generator thru the response channel 
      // in nonblocking manner. 
      this.resp_chan.sneak(fifo_response); 
      // Rule 4-121       
      this.in_chan.get(fifo_xactn_0);     
    end : main_loop 
  endtask : main  

Figure 3.2-3 main Task in FIFO transactor (ch4_fifo/fifo_cmd_xactor) 

 
The simulation of this model is addressed in Chapter 4 and 5.  
 



46   A Pragmatic Approach to Adopting VMM 

3.3 MONITOR 

A monitor is a transactor very similar to a transaction generator with the exception that it extracts 
a transaction from the observed interface, and puts that newly assembled transaction onto a local 
channel.   Thus, in essence, the difference between a transaction generator and a monitor 
transactor is in the creation of the transactions to be put into the channel: the transaction generator 
first randomizes the transactions while the monitor assembles the observed transactions off the 
interface.   Figure 3.3-1 demonstrates this difference. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3-1 Difference between a Generator and a Monitor in the Use of Transactions 
 
Figure 3.3-2 represents the UML of a monitor.  Figure 3.3-3 represents the monitor code for the 
FIFO interface.   
 
Notes about our monitor model:  

1. We kept a count of the number of observed PUSH transactions.  This can be used to 
detect an end of simulation after a desired number of transactions were observed.  

2. In Chapter 5, under the notification section, we expand this model to add notification that 
a PUSH transaction was detected.  This can be used by another model (e.g., scoreboard) 
to perform additional verification checks.   

 

Transactions 

Monitor
transactors

Transaction 
Generator

Transactions 
Interface

Channel 

Channel 

Transactions randomized 
then put into channel

Transaction restructured 
off the interface and then 
put into channel

Generator                                                       Monitor



Transaction Generator, Command Transactor, and Monitor    47  
 

vmm_xactor

+vmm_log log

Fifo_mon_xactor

+virtual fifo_if f_if
+Fifo_xactn_channel push_out_chan
+Fifo_xactn cur_push_xactn
+Fifo_xactn factory_xactn

+new()
+main()
+mon_push()

 
 

Figure 3.3-2 UML of a Monitor Transactor 
 
 
 class Fifo_mon_xactor extends vmm_xactor; 
  virtual fifo_if f_if; 
  Fifo_xactn_channel push_out_chan; 
  Fifo_xactn cur_push_xactn; 
  Fifo_xactn factory_xactn; 
 
  function new(string             inst, 
             int unsigned         stream_id = -1, 
             virtual fifo_if      new_vir_if, 
             Fifo_xactn_channel   new_push_out_chan=null); 
      super.new("Fifo Monitor Xactor", inst, stream_id); 
      this.f_if = new_vir_if; 
      if (new_push_out_chan==null) 
     this.push_out_chan=new("Fifo_mon_chan_0","channel"); 
  else this.push_out_chan = new_push_out_chan; 
  endfunction : new 
   
  extern task main(); 
  extern task mon_push(); 
endclass : Fifo_mon_xactor 



48   A Pragmatic Approach to Adopting VMM 

task Fifo_mon_xactor::main(); 
    `vmm_trace(log, "Inside Monitor"); 
    fork 
      super.main(); 
      this.mon_push(); 
   join_none 
  endtask : main 
 
task Fifo_mon_xactor::mon_push(); 
  string msg; 
  forever begin : mon_push_loop 
    @(this.f_if.mon_cb); 
    if (this.f_if.mon_cb.push === 1'b1) begin 
      $cast(this.cur_push_xactn, factory_xactn.allocate()); 
      this.cur_push_xactn.data = this.f_if.mon_cb.data_in; 
      this.cur_push_xactn.xactn_time = $time; 
      $sformat(msg,"Found a PUSH Xactn data %0d ", 
               this.cur_push_xactn.data); 
      `vmm_trace(log, msg); 
  
      this.push_out_chan.sneak(this.cur_push_xactn); 
    end // if    
  end : mon_push_loop 
endtask : mon_push 
   

Figure 3.3-3 Simplified Model of a Monitor  (Ch4_fifo/fifo_mon_xactor.sv) 
 
Simulation results yielded a log report as shown in Figure 3.3-4. 
 
2250.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel  #0.0.3 Fifo Xaction PUSH   
2350.00 ns Fifo Monitor Xactor [Trace:DEBUG] | Found a PUSH data 599  
2350.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel  #0.0.4 Fifo Xaction 
PUSH_POP   
2450.00 ns Fifo Monitor Xactor [Trace:DEBUG] | Found a PUSH Xactn data 550  
2450.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel  #0.0.5 Fifo Xaction PUSH   
2550.00 ns Fifo Monitor Xactor [Trace:DEBUG] | Found a PUSH Xactn data 474  
2550.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel  #0.0.6 Fifo Xaction POP   
2650.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel  #0.0.7 Fifo Xaction POP 
  

Figure 3.3-4 Simulation Results with Monitor Log 



Transaction Generator, Command Transactor, and Monitor    49  
 

File Structure 
Table 3.4 demonstrates the file Structure and the purpose of each file.   Figure 3.5 is a graphical 
representation of the relationship between the files for this chapter.    

Table 3.4.  File Structure and Functions 
File Function Used by 

fifo_pkg.sv Defines types and parameters ALL 
fifo_if.sv Defines the FIFO interface RTL, property models, 

and by program, 
testbench, transaction 
and transactors 

fifo_csr_if.sv Defines the FIFO configuration interface RTL, property models, 
and by environment, and 
possibly transactors 

fifo_xactn.sv Defines the transaction class with the constraints 
Also used for the channel generation with: 
  `vmm_channel (Fifo_xactn) 

`vmm_channel macro for 
generation of channel, 
`vmm_atomic_gen 
macro for generation of 
atomic generator, 
monitor transactor for 
creation of transaction 
from observed values on 
bus interface.  

fifo_rtl.sv Represents the FIFO RTL DUT Top level  
fifo_props.sv Defines the properties for assertions Top level for bind 
fifo_gen_xactor.sv Uses the macro `vmm_atomic_gen for generation of 

atomic generator, defines the constraints for the 
number of transactions  

 Environment for 
creation of the build 
model, 

fifo_cmd_xactor.sv Provides the transactor definition to drive the FIFO 
model.  

FIFO environment  

fifo_mon_xactor.sv Creates a copy of the observed transaction onto a 
transaction channel  

Scoreboard, top level 

Fifo_response.sv Class for command-layer transactor to compose a 
response 

Command-layer 
transactor  

 
 



50   A Pragmatic Approach to Adopting VMM 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  3.4 File Structure and Relationships

fifo_pkg.sv

fifo_if.sv

fifo_xactn.sv
fifo_xactn_

channel

`vmm_
channel

fifo_gen_
xactor.sv fifo_xactn_

atomic_gen

`vmm_atomic_
gen

(fifo_xactn,..)

fifo_cmd_xactor.sv

fifo_mon_xactor.sv

fifo_props.sv

fifo_rtl.sv

all

Generated classes

In fifo_env.sv

In fifo_pgm.sv

vmm.sv

fifo_csr_if.sv



Transaction Generator, Command Transactor, and Monitor    51  
 

Chapter 3 Questions and LAB 
 
Q1. Why does the transaction generator send the transactions to the channel instead of 
directly to the transactor?  
  
 
Q2. Why is a transactor extended off the base class vmm_xactor?  
  
  
Q3. What role does a monitor play? 
  
 
LAB03 
Build a transaction generator using the macro and a command transactor for the counter 
model.  See instructions in subdirectory lab/lab03/todo/readme.txt. 
  
 

 
 
 
 



52   A Pragmatic Approach to Adopting VMM 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 


