

Appendix A Q/A

Chapter 1, VMM FRAMEWORK

Q1. Why does VMM, based on SystemVerilog, use an object-oriented (OO) approach? Why
are classes used instead of modules?
A1. . Using object-oriented approach has proven to be highly successful in managing highly
complex projects in the Software domain, and given the rising complexities of hardware
verification, lessons can be learned from the Software domain. Hence use of OO programming
for verification is becoming the only viable way to create, maintain reusable testbenches.
Specifically, OOP provides inheritance, polymorphism and virtual methods so that you can
modify the behavior of a verification environment without having to modify what already works.
On the specific question on the use of class versus module instances in SystemVerilog , Janick’s
reply to the Verification Guild posting entitled Why VMM base on OO SV?1 provides an
interesting summary. The advantages of using class instead of module or SystemVerilog
interface instances include:

1. Classes can be instantiated dynamically, thus the structure of the testbench can be
decided at runtime (e.g. based on a randomly-generated DUT configuration). The
closest that module comes to meeting this requirement is with the for-generate and if-
generate constructs. However, these are elaboration time features and the final
structure gets frozen before any code has had the chance to run. Hence any
“random” configuration will require recompilation/elaboration thereby impacting
productivity.

2. You can have a base class that enforces consistency across all components (e.g., they
all have a "start" function). You cannot have base modules.

3. You can have a base class that provides generic functionality to all modules (e.g., the
messaging service). You cannot have base modules.

4. Classes can all be derived from a common base class, so you can create generic
functionality. For example, you can maintain a queue of all transactors in an
environment so you can easily start them all by iterating over the queue instead of
having to know where each and all of the transactors are.

5. You can pass a reference to a class instance around. For example, a scoreboard could
know which transactor is producing a specific transaction. You can't do that with
modules.

6. You can extend the behavior of a class and modify it. For example, this is needed to
add error injection, sample data for functional coverage, or integrate a scoreboard.
You cannot do that with a module.

7. Randomization ease - Classes can be randomized at once thus providing a complete
random transaction. However, module elements need to be randomized individually
with a call to std::randomize() on every element. Classes also provide convenient
way to manage declarative constraints using SystemVerilog’s constraint blocks.

1 http://verificationguild.com/modules.php?name=Forums&file=viewtopic&p=5238#5238

158 A Pragmatic Approach to Adopting VMM

8. Queue of classes – A testbench is more of a dynamic entity, and many a times we do
require an array/queue of transactions, descriptors etc. Module and interfaces are
static and don’t lend themselves easily to such requirements.

9. For efficiency purposes, you can pass handles of the class instances to other objects
without creating duplicate copies all across the system.

10. Better memory usage, as Garbage Collection mechanism is built-in in SystemVerilog
for class-based systems.

Using modules to build a verification environment looks easy at first glance, but they are difficult
to maintain because you constantly need to modify them to adapt to changes to the verification
lifecycle. That is also true for interfaces; however, with SystemVerilog virtual interfaces you can
create references to their instances).

Q2. Why is SystemVerilog a suitable language to create a verification framework?
A2. Section 1.2.1 addresses the capabilities of SystemVerilog constructs for verification that
supports OO programming.

Q3. Why is a framework such as VMM useful for the design of testbenches?
A3. Section 1.3 addresses the concept of a framework that facilitates the design of testbenches
through quick build, reuse, flexibility, and extendibility.
The major differences between a VMM compliant testbench and a conventional transaction-based
testbench include the following aspects:

1. The formalization of the sequencing of steps taken during the verification cycle. This is
explained in Chapter 4 in the discussion of the environment.

2. The methodology used to generate and consume transactions, including the automation
with the use of VMM macros. This is explained throughout the book.

3. The methodology and support used to adapt transactions to modifications through
factories and callbacks. This is explained in Chapter 5 and 6.

4. The methodology used to report logging and status information. This is explained and
used throughout the book.

Appendix A Q/A 159

Chapter 2, VMM TRANSACTIONS AND CHANNELS

Q1. Why are transactions specified in a class instead of a struct within a transactor?
A1. Defining transactions in classes offers the following advantages:

1. It follows the Transaction-Level Modeling recommendations.
2. It allows the transactions to be extended with class extensions, thus extending the

properties and constraints of the transactions.
3. It allows flexibility of use in defining in the environment which class to use as the

transaction and channel.

Hardwiring the generation of transactions to a struct within the transactor has several
disadvantages, including:

1. Lose flexibility in picking and choosing constraints and generator.
2. Creates a too closely bound verification environment with little flexibility.
3. struct cannot be extended, inherited etc. Basically the struct is not a fundamental building

block of an OOP-based technique.
4. It cannot contain methods (tasks/functions). As demonstrated in Chapter 2, it is very

logical to associate with transactions certain transaction specific methods (e.g. copy,
display etc.).

Q2. Why can’t transactions specified in a class be used without the need of a channel?
A2. The answers to Q1 also apply to this question. Channels are point-to-point data transfer
mechanisms. Channels provide a separation between the generation and the consumption of the
transactions. Also, channels provide additional flexibility when the requirements change. For
example, if multiple consumers are extracting transaction descriptors from a channel, the
transaction descriptors can be distributed among the various consumers using vmm_broadcast.
Another distribution scheme with vmm_scheduler fullfills the need to distribute transactions in a
controlled scheduling scheme from multiple channels connected to multiple transactors to a single
target/destination.. Those transactors may drive a multi-bus system to achieve high bandwidth in
the transmission of data. The use of vmm_broadcast and vmm_scheduler are addressed in Chapter
8.

Q3. How do you build a custom channel?
A3. There is no need to build a custom channel. This is the responsibility (and advantage) of the
framework. To build a channel off a known transaction just use the macro
`vmm_channel(class_name). However if you still insist to create one, SystemVerilog provides
constructs such as queues, mailboxes and dynamic arrays to support building reusable channel
like objects.

Q4. If I extend my transaction class (e.g., class Fifo2_xactn extends Fifo_xactn) do I also
need to define and use a new channel?
A4. No, you do not need, nor should you, create a new channel. Using virtual methods, all code
that is written for Fifo_xactn will be able to deal with Fifo2_xactn subclass because the latter is
derived from the former. The virtual method will be used to implement transaction-dependent
functionality (such as display or packing). As per general OOP, a channel of base class type,
Fifo_xactn in this case, can carry its derived class objects as well.

160 A Pragmatic Approach to Adopting VMM

Chapter 3, Transaction Generator, Command
Transactor, and Monitor

Q1. Why does the transaction generator send the transactions to the channel instead of
directly to the transactor?
A1. If the generator sends the transactions directly to the transactor, then a synchronization
scheme would be needed for the insertion of the transactions into the transactor. There are
several such techniques that can be used, such as the use of notifications. However, this implies
that the generator must know the instance name of the transactor. This reduces the reusability
and flexibility of the transactors and generators. Requirements do change, and there is a need for
the testbench to easily adapt to those changes. For example, if the design requires redundancy
with multiple instantiations of transactors, the separation between the generators and the
transactors with the channels allow for such adaptation. Channels can quickly adapt to such a
new environment with the use of vmm_broacast or vmm_scheduler (addressed in Chapter 8).

Q2. Why is a transactor extended off the base class vmm_xactor?
A2. The vmm_xactor provides many needed functions, including:

• Interaction with the execution of steps in the environment, as described in the VMM
book on page 127. This includes the start, stop, and reset of the transactors.

• Provision of the logging services.
• Provision of the notification services.
• Service to the `vmm_callback macro (see Chapter 6).

Q3. What role does a monitor play?
A3. A monitor is a transactor extended from vmm_xactor class, and extracts transactions as
observed on the DUT interfaces. Those transactions are then transferred to a scoreboard for
verification through either a channel or through a notification, as explained in Chapter 7.

Appendix A Q/A 161

Chapter 4, Building the Environment and Testbench

Q1. Why is it necessary to build the verification environment in a separate class?

A1. The user environment must be defined as an extension of vmm_env to take advantage of the
automations provide by the base class.

Q2. Why is the environment in a program rather than in a module?
A2. Using module for both design and verification was shown problematic in Verilog because of
race conditions. SystemVerilog addressed this race condition issue by introducing a separate,
exclusive timeslot for testbench code inside the program block as part of the regular event
scheduling mechanism. Code specified in the program block is executed in the Reactive region
separate from the usual Blocking and Nonblocking assignments of the design code. Since this
separation is provided by SystemVerilog, all compliant tools/implementations should adhere to
those timing execution rules, thereby eliminating those timing race conditions and enhancing
portability. Hence, it is good practice to execute the environment in a program block.

Q3. How is the testflow of the environment initiated? What is the importance of this
testflow?
A3. The testflow is initialted by the vmm_env::run() method. The flow is very important because
it controls the steps involved in the creation of the verification process from configuration to
starting the transactors to waiting until completion of end, and to stopping the transactors, cleanup
and the final report. The testflow in the environment is fundamental to VMM. This testflow is
also very flexible and allows user’s intervention at various stages, as explained and used
throughout this book. Use of such generic testflow helps in the debugging, and the transfer of
ownership of a verification project to different team etc.

162 A Pragmatic Approach to Adopting VMM

Chapter 5, Using the Factory Pattern

Q1: When should a factory pattern be used in a transactor, such as a generator?
A1: A factory pattern is recommended when you anticipate a change in an object allocated by the
transactor. In this chapter we presented two examples, one with the transaction where the
constraints were changed; and the other example with an error injector where the implementation
for the error algorithm is redefined in a subclass. All generators should use factory pattern.

Q2. When would you use an atomic generator as created via the macro `vmm_atomic_gen?
A2. The `vmm_atomic_gen macro is a very convenient technique to generate a transactor
generator with the simple definition of a transaction class with properties qualified with the rand
qualifier. If this is a good match for the problem at hand, then you struck gold! Even if the
problem requires something more complex than a traditional atomic generator, it is often useful to
create this quick generator to allow a quick first pass test of the DUT and the test environment.
Often, this step allows for the detection of infant mortality design failures (i.e., design failures
that can easily be detected with a few simulation cycles).

Q3. Why is a custom generator sometimes needed?
A3. There are situations where specific transactions and data need to be processed by the DUT.
For example, a DUT that performs signal processing may need to process a specific set of image
data generated by an external program, and the monitored results of this processing need to be
compared against expected results, also generated by an external program.

Q4. Why do generators use the copy() method while monitors use the allocate() method to
create a new object?
A4. Generators use the copy() method to send a copy of a transaction object into the channel,
thus maintaining the original transaction pristine. This provides a separation of handles between
the original transaction manipulated by the generator and the consumer that extract the copy from
the channel. In the manipulation of the transaction, the generator may also need the value of the
current transaction to create the next transaction.

However, a monitor needs to allocate a new transaction object to store observed data and then put
this object into the channel. The monitor has no further need for this object.

Appendix A Q/A 163

Chapter 6, Callbacks

Q1. What are good user applications of callbacks?
A1. The following represent some examples:

• Error injector
• Modify or add transaction
• Pass information to a scoreboard
• Pass information to a SystemVerilog interface
• Execute a task prior or after a normal flow of another task. For example, before sending

a packet, do a callback to update the parameters of the packet.

Q2. Do the VMM base classes have callbacks? Which ones? And why?
A2. VMM provides quite a few callbacks in the base classes. For example, in the vmm_xactor
class VMM provides:
The vmm_atomic_gen automatically creates the <class_name>_atomic_gen_callbacks (e.g.,
fifo_xactn_atomic_gen_callbacks) to implements a façade for atomic generator, transactor,
callback methods.2 An example of a callback is
virtual task post_inst_gen(<class_name>_atomic_gen gen,
 <class_name> data,
 ref bit drop);
This callback method is invoked by the generator after a new transaction or data descriptor has
been created and randomized but before it is added to the output channel.

Q3. What are the advantages of transferring information from a transactor via callback to
an interface?
A3. Transferring information from a transactor via callback to an interface provides the following
advantages:

1. The display of the transactor variables onto the interface. This allows the waveform
visualization of those variables, thus facilitating the debug and documentation of the
design.

2. The use of temporal assertions. Temporal assertions are not allowed in classes, but they
are allowed in interfaces. Thus, by copying class variables into interfaces, you can use
those copies in the assertions.

3. The verification of the transactions. The debug interfaces can also include as inputs the
DUT interfaces. This allows you to write assertions that not only deal with the
verification of the DUT, but also with the verification of the transactors to insure that
they abide to the bus protocols

2 VMM Rule 5-11 Generators shall provide a procedural interface to inject data or transaction descriptors.

164 A Pragmatic Approach to Adopting VMM

Chapter 7, Custom Generator and Notifications

Q1. When is a custom generator needed?
A1. There are situations where specific transactions and data need to be processed by the DUT.
For example, a DUT that performs signal processing may need to process a specific set of images.
The generator may call C routines or read files generated by an external source to collect the data
for the transactions. If the generator has access to externally computed results, it may also send
the expected results to a scoreboard though another channel.

Another example, recently reported on the Verification Guild, required the generation of random
CPU instructions with address-related constraints in response to a CPU fetch. One way to
implement this requirement is to generate the instructions on the fly, i.e., embed the instruction
generator in the code memory and generate an instruction whenever a fetch is performed. In
VMM, you would build a reactive transactor with no transaction generator or channel. You could
still have a transaction class with constraints that the reactive transactor could randomize and use
to generate instructions. Factory and/or callback design patterns could also be used within that
reactive transactor.

Q2. When should notification via the vmm_notify be used?
A2. The vmm_notify should be used to provide synchronization between transactors or between a
transactor and the environment. It can also be used to carry vmm_data subclass object as status
of the notification to a scoreboard. An example in the use of the notification to transfer
information between transactors is shown in section 7.1.2, task Fifo_custom_gen::push(word_t
data). This technique is also addressed in the Verification Guild under the heading “RVM
Scoreboards”.3

3 http://www.verificationguild.com/modules.php?name=Forums&file=viewtopic&t=1009

Appendix A Q/A 165

Chapter 8 ADVANCED TOPICS

Q1. Why are scenario generator needed? Why can’t atomic generator be used instead?
A1. As addressed in section 8.2, an atomic generator generates independent transactions based
upon a set of constraints. However, there are situations where specific sequences with constraints
are needed. No matter how many atomic transactions are generated, it is very unlikely that you
would satisfy such requirements because the specific set of sequences are not likely to randomly
occur.

Q2. What technique can be used to define a constraint for a sequence that has 3 PUSH, 2
IDLE, 4 POP instructions?
A2. Section 8.2 demonstrates the use of iterative constraints to achieve such a goal.

Q3. How do I repeat a scenario few times?
A3. Section 8.2 addressed this. The <class_name>_scenario generated by the
`vmm_scenario_gen macro has a property named repeated that enables users to repeat a specific
scenario.

Q4. Why do I get a default atomic transaction when I use `vmm_scenario_gen macro?
A4. Section 8.2.2 addressed this. To keep the design of a scenario generator completely flexible
and generic, VMM creates a default scenario of length == 1, which is essentially an atomic
transaction (Refer to Figure 8.2.2-1).

Q5. I created a scheduler using vmm-scheduler – what is the quickest way to verify its
behavior without going through very many DUT simulation cycles?
A5. Many a times, to verify the operation of scheduling, broadcasting etc. one doesn’t require the
DUT. A quick look at the output should indicate the transaction mix. This is where an artificial
sink is very useful. Refer to Section 8.3.3

Q6. In VMM scheduler, how do I get a pure random scheduling (not the default round
robin scheme)?
A6. VMM scheduler has an election mechanism that allows you to do this.
vmm_scheduler::randomized_sched is an instance of vmm_scheduler_election class. This
vmm_scheduler_election class has a constraint named "default_round_robin" that one can set the
constraint_mode(0) on. See pp 405.

Pseudo-code:
program p;
 my_env_0.my_scheduler.randomized_sched.default_round_robin.constraint_mode(0);
..
endprogram : p

166 A Pragmatic Approach to Adopting VMM

