

5 USING THE FACTORY
PATTERN

This chapter describes the factory pattern to design highly reusable testbenches. The factory
pattern allows the top-level test to change the pattern without having to rewrite the code, just as a
widget factory can stamp out new parts without having to install new machines. Factory pattern
is a well known concept in Object Oriented programming and can be adopted to provide
additional flexibility in the choice of classes to be used in the verification. To demonstrate this
concept, we use a factory pattern in two examples. In the first example we are using an atomic
generator but we select a transaction instance with different constraints than what was defined in
the basic transaction class. In the second example we are using a command transactor that uses
an error injection object to randomly force errors. However, we are modifying in the testcase the
instance that was defined in the environment. Chapter 6 also uses the second example to
demonstrate the callback pattern.

74 A Pragmatic Approach to Adopting VMM

5.1 FACTORY DEFINITION

The term “factory” originates from the car manufacturing process where every car being built has
the same set of base class of objects being installed, such as “radio”, “seat”, “engine”, etc.
However, each car being manufactured has a different type of “radio” (e.g., AM/FM with DVD,
or AM only, or AM / satellite / cell phone), or different type of engine (e.g., 6 cylinders, 8
cylinders, etc). A factory pattern is used to accommodate a manufacturing process that calls for
the installation of radios, engines, seats, etc, but yet to allow individual selection of the items
being installed. The base software calls for the installation of these items; however, the actual
choice of the objects to be installed is deferred in the software via a link that relates to the
purchase order.

In Object-Oriented programming, a factory pattern is a well known technique for creating an
object. It lets a subclass decide which class to allocate, thus deferring the allocation of the class
to subclasses.1 For example, a generator designed to generate basic Ethernet L2 packets can be
later reused to create TCP-IP packets with very little modification. Without the factory pattern
technique, such a change would require extensive change to already known-to-work code, which
is generally discouraged. A typical use of VMM factories is in transactors that generate
transaction objects. For examples, factories can be used to do the following:

• Select a class with a specific error injection algorithm.
• Select a transaction class with different constraints.
• Select a class with additional coverage.
• Select a class with different reporting procedures.

The advantage of a factory approach is that the original implementation of the transactor remains
unchanged even though it can create very different objects. The behavior of the transactor can be
entirely different that what was implemented by default originally. Such flexibility is required in
verification to leverage on stable, working code, yet be able to tailor to specific testcase needs.
Such a change can be done at the program block level without changing the underlying transactor
or environment level. For example, you can change the behavior of a transaction generator by
modifying the sets of transaction constraints to use. Such flexibility comes with a well designed
base transactor. The design and coding guidelines of such a factory-based transactor is illustrated
in the next sections.

5.2 FACTORY EXAMPLE – CONSTRAINTS

Consider the case where you defined a transaction class with a set of constraints, an atomic
generator (e.g., with the `vmm_atomic_gen), and an environment instantiated in a program. You
simulated the design and obtained a set of coverage metrics; now you want to rerun the model
with a different set of constraints. To achieve this goal you need to extend your transaction class.
But the question then becomes, “how big of a change is this?” Do you need to create a new
generator and a new set of interconnections in the environment? Is this a big change? NO!
VMM flow control and the factory pattern used by the atomic generator are designed such that it
allows you to make the testcase redefinition in the program block without modifying the
environment. To achieve this flexibility, certain rules must be observed in the design of the
classes.

In the FIFO example, we define a base FIFO_xactn class with a set of constraints. We then
create an atomic generator using the macro `vmm_atomic_gen(Fifo_xactn, "FIFO Xaction

1 For more information on using factories in Object Oriented programming, refer to Design Patterns:
Elements of Reusable Object-Oriented Software (Addison-Wesley Professional Computing Series) by
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides ISBN: 0201633612.

Using the Factory Pattern 75

Generator"). While this basic environment will be a good fit for random PUSH, POP kind of
transactions, to write a focused testcase with PUSH transactions alone, you need a transaction
with stringent constraints. We also define two class extensions of Fifo_xactn called
Fifo_xactn_no_push and Fifo_xactn_no_pop, each with different sets of constraints, as shown in
Figure 5.2-1.

vmm_xactor

`vmm_atomic_gen(Fifo_xactn,
 "FIFO Xaction Generator")

Fifo_xactn_atomic_gen

+Fifo_xactn__channel out_chan
+Fifo_xactn_ randomized_obj;
+int unsigned stop_after_n_insts
+int unsigned stream_id
+enum {GENERATED} generated
+enum {DONE} done

+new()
+main()
+task inject(<class_name> data, ref bit dropped)()

Creates

vmm_data

Fifo_xactn

+kind
+data
+idle_cycles
+reset_cycles
+constraint cst_xact_kind
+constraint cst_data
+constraint cst_idle
+constraint cst_reset

+new()
+copy()
+allocate()
+psdisplay()

Fifo_xactn_no_push

+constraint cst_xact_kind

+allocate()

Fifo_xactn_no_pop

+constraint cst_xact_kind

+allocate()
different constraint expressions
in subclasses

Figure 5.2-1 UML for Transactions and Atomic Generator Classes

In addition to the constraints, we need to define the copy method.2 Generators use copy() while
monitors use allocate(). The vmm_data::allocate() method is simply a call to the new() method
and appears redundant. But, it enables the creation of factories and the use of polymorphism in
transactors, which is not possible with the direct use of the constructor. Fifo_xactn_no_pop class
is shown in Figure 5.2-2.

class Fifo_xactn_no_pop extends Fifo_xactn;
 constraint cst_xact_kind {
 kind dist {
 PUSH := 25,
 POP := 0,
 PUSH_POP :=0,
 IDLE := 3,
 RESET := 1
 };
 } // cst_xact_kind

2 VMM Rule 4-76 All classes derived from the vmm_data class shall provide implementations for the
psdisplay(), is_valid(), allocate(), copy() and compare() virtual methods.

76 A Pragmatic Approach to Adopting VMM

 extern virtual function vmm_data copy(vmm_data to=null);
endclass : Fifo_xactn_no_pop

function vmm_data Fifo_xactn::copy(vmm_data to);
 Fifo_xactn cpy;
 if (to !=null) begin
 if (!$cast(cpy, to)) begin
 `vmm_fatal(log,
 "Attempting to copy a non fifo_xactn instance");
 return;
 end
 end else cpy =new;
 super.copy_data(cpy);
 cpy.kind = this.kind;
 cpy.data = this.data;
 cpy.idle_cycles = this.idle_cycles;
 copy = cpy;
endfunction : copy

Figure 5.2-2 Fifo_xactn_no_pop Example for Fifo_xactn (ch5_fct_xactn /fifo_xactn.sv)

The VMM atomic generator is implemented using a factory pattern so that it is reuse friendly. A
factory-based generator can be used for the generation of transactions derived from different
transaction descriptors.3 The property <class_name> randomized_obj is a transaction or data
descriptor instance that is repeatedly randomized to create the random content of the output
descriptor stream. The atomic generator uses a factory pattern to generate the output stream
instances. The generated stream can be constrained using constraint techniques defined in IEEE
P1800, section 13. Figure 5.2-3 demonstrates the environment as it relates to the use of classes.
This environment remains unchanged when you want to use a different transaction model, such as
the NO POP case in the constraints (see ch5_fct_xactn/fifo_xactn.sv for model of the constraint).

class Fifo_env extends vmm_env;
 Fifo_xactn_atomic_gen fifo_xactn_gen_0; // atomic generator declaration
..
function void Fifo_env::build();
 ..

// Instantiation of transaction generator
 this.fifo_xactn_gen_0 = new ("fifo_gen", 0, fifo_channel_0);
…
endfunction : build

Figure 5.2-3 The Environment Remains Unchanged
Redefinition Performed at program Level (ch5_fct_xactn/fifo_env.sv)

3 VMM book page 127, OOP Primer: Virtual Methods
 VMM book page 217, OOP Primer: Factory Pattern

Note: If the extended class has the
same variables as its base class,
then there is no need for a copy in
the extended class since the copy
from the base class will be used.

fifo_xactn_gen_0.randomized_obj is not addressed here. Instead,
fifo_xactn_gen_0.randomized_obj uses default Fifo_xactn type generated
during the creation of the generator with the macro

Using the Factory Pattern 77

The changes are made in the program to redefine the data instance that gets generated, as shown
in Figure 5.2-4. Note that the Fifo_env::build() is first exercised, thus setting the
fifo_xactn_gen_0.randomized_obj to a default object of type FIFO_xactn. Following the
Fifo_env::build(), you redefine the handle of the fifo_env_0.fifo_xactn_gen_0.randomized_obj to
the handle of the desired transaction instance:

 fifo_env_0.fifo_xactn_gen_0.randomized_obj= fifo_xactn_no_pop;

Following this redefinition, you then call the Fifo_env::run for the remainder of the test.

program automatic fifo_test_pgm ();
 timeunit 1ns; timeprecision 100ps;
 //include files + log + fifo_env_0 instantiation
 `include "test.svh"
 initial :test
 begin
 // Build all components of an environment - testbench
 `vmm_note(log,"Start of Test");
 // Do the build first
 fifo_env_0.build();
 // modify the default environment for the fifo_env_0.randomized_obj
 begin : setting_up_the_factory_for_the_generator
 // Declare an instance and instantiate desired transaction with constraints
 Fifo_xactn_no_pop fifo_xactn; // No pop constraint
 // Fifo_xactn_no_push fifo_xactn_no_push; // no push
 fifo_xactn=new();
 `vmm_trace(log,
 "Modifying reference of randomized_obj to NO POP");
 fifo_env_0.fifo_xactn_gen_0.randomized_obj= fifo_xactn;
 end : setting_up_the_factory_for_the_generator
 // now run the environment.
 // Since the build was exercised already, it will not be repeated in the run
 fifo_env_0.run();
 `vmm_note(log, "End of Test");
 end :test
endprogram : fifo_test_pgm

Figure 5.2-4 program Level (ch5_fct_xactn/fifo_pgm.sv)

An interesting question: does the run() re-exercise the build from the environment, and if it did,
wouldn’t that redefine our earlier changes? The answer to the first question is NO. Referring to
section 4.1.2 “Test Flow Section”, the first call to a step within the flow (e.g., fifo_env_0.build())
executes all of the preceding steps up to and including the called step (i.e., gen_cfg() and build()
are executed). If another step is called, then the flow continues from where it left off, up to and
included the called step. For example, a call to fifo_env_0.run() that follows build() executes
reset_dut(), cfg_dut(), start(), wait_for_end(), stop(), cleanup(), and report()). It is an error to
call a step prior to the last executed step. Thus, in the program, if you call Fifo_env::build(), then
Fifo_env::gen_cfg(), an error message will be issued. This stepping forward flow methodology
ensures that all tests execute in the proper sequence. It also allows the modification of handles or
variables to be executed after the Fifo_env::build(). The remaining control flow can then
continue to the other steps. A simulation of this code with trace ON demonstrates the build
process, as shown in Figure 5.2-5. With VCS, trace is turned on with the
“+rvm_log_default=trace” command line option.

2

3

1

78 A Pragmatic Approach to Adopting VMM

0.00 ns test [Normal:NOTE] | Start of Test
0.00 ns fifo_env [Trace:INTERNAL] | Generating test configuration...
0.00 ns fifo_env [Trace:INTERNAL] | Building verification environment...
0.00 ns fifo_env [Trace:DEBUG] | doing build
0.00 ns fifo_env [Normal:NOTE] | Sim shall run for no_of_xactions 231
0.00 ns fifo_env [Trace:DEBUG] | end of build
0.00 ns test [Trace:DEBUG] | Modifying reference of randomized_obj to NO POP
0.00 ns fifo_env [Trace:INTERNAL] | Reseting DUT...
1950.00 ns fifo_env [Trace:INTERNAL] | Configuring...
1950.00 ns fifo_env [Trace:INTERNAL] | Starting verification environment...
1950.00 ns fifo_env [Trace:INTERNAL] | Saving RNG state information...
1950.00 ns fifo_env [Trace:INTERNAL] | Waiting for end of test...
1950.00 ns FIFO Xaction Generator Atomic Generator [Trace:INTERNAL] | Started
1950.00 ns cmd_xactor [Trace:INTERNAL] | Started
1950.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.0 Fifo
Xaction RESET Cycles 0
1950.00 ns Fifo Monitor Xactor [Trace:INTERNAL] | Started
2250.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.1 Fifo Xaction PUSH
2350.00 ns Fifo Monitor Xactor [Trace:DEBUG] | Found a PUSH Xactn at time 2350.00 ns data e7

Figure 5.2-5 Simulation Run Demonstrating the Build Process

The key points in setting up the factory patterns in the program block for modifying transaction
objects generated by a transactor:

1. Build the environment build().
fifo_env_0.build();

2. Following the build(), declare within a begin end block a declaration and an instantiation
of the desired transaction object.

 begin : setting_up_the_factory_for_the_generator
 Fifo_xactn_no_pop fifo_xactn;

 fifo_xactn=new();
// Must then point handle of desired object to the new allocated handle.

 fifo_env_0.fifo_xactn_gen_0.randomized_obj= fifo_xactn;
 end : setting_up_the_factory_for_the_generator

3. Continue with the environment run() method.
fifo_env_0.run();;

And that’s it! If you need to change the choice of transactions with a different set of constraints,
just change the ONE line that declares the transaction variable. For example, to select the NO
PUSH set of constraints, substitute the transaction class declaration with

Fifo_xactn_no_push fifo_xactn; // No push constraints

No other changes are required.

5.3 FACTORY EXAMPLE – ERROR INJECTION

Figure 5.3-1 represents the top level view of the testbench. The transactor injects a data error
using an algorithm defined in an error injection class. In addition, the conditions needed to inject
the error are also in that class. We’re interested in selecting one of many algorithms for the
scheduling and implementation of the errors.

1

2

3

Using the Factory Pattern 79

Figure 5.3-1 Test environment with Error Injection

We’re demonstrating the use of the factory pattern for an error injection. Note that a factory
pattern to inject errors requires that the error injection mechanism be already implemented in the
lower level transactors, such as command-layer transactors. If it is not implemented a priori,
errors can only be injected using callbacks. However, a callback extension can use a factory
pattern to provide controllability over the injected errors

Two decisions must be made for the error injection: When to inject the error, and what error to
inject. The factory pattern can help in those decisions because it can be modified from the
program without having to modify or extend the transactor any further.

The scheduling of the error was not initially specified as an element of the kind enumeration
scheduled for randomization. This is because, like a real project, it came as a late requirement.
Instead, we’ll use a variable inject_err that is randomized with a constraint only when
kind==PUSH. If that variable has the value INJECT, then the data to be written is modified with
the flip_data function defined in the Data_err_inject class (or in an extension of that class).

In the file ch5_fct_inject_err /fifo_pkg.sv we define an enumeration type

typedef enum {INJECT, NO_INJECT} inject_err_t;

In class Inject_err we define the property inject_err along with a constraint to determine the
scheduling of the error injection.

rand inject_err_t inject_err;

The Inject_err class represents a template for an error injector class with a default of no errors by
setting the constraint to a distribution of NO error injection. It also includes a dummy function to
corrupt the data, but is implemented such that, if called, it does NOT corrupt the data. The
Inject_err2 class extends the Inject_err class, and provides a constraint for a distribution on the
error injection. We also specified the algorithm to corrupt the data. Our simple algorithm flips
some data bits. Those classes are shown in Figure 5.3-2.

Environment

Testbench

DUTDUT

Clock
generators

DUT
Interfaces Transactions

Transactors

Program

Generator This Chapter

Error
Injection

80 A Pragmatic Approach to Adopting VMM

class Inject_err;
 import fifo_pkg::*;
 static vmm_log log = new("Inject_err", "class");
 rand inject_err_t inject_err;
 constraint cst_inject_err{
 inject_err dist {
 INJECT := 0, // No errors by default
 NO_INJECT :=100
 };
 } // cst_inject_err

 virtual function word_t corrupt_data(word_t data);
 word_t local_data;
 // local_data={{data[WIDTH-1:1], !data[0]}};
 local_data=data; // no errors
 `vmm_trace(log,
 $psprintf("data=%h, corrupted %h", data, local_data));
 corrupt_data=local_data;
 endfunction : corrupt_data
endclass : Inject_err

// --------------------
class Inject_err2 extends Inject_err;
 constraint cst_inject_err{
 inject_err dist {
 INJECT := 5,
 NO_INJECT :=100
 };
 } // cst_

 virtual function word_t corrupt_data (word_t data);
 word_t local_data;
 local_data={{data[WIDTH-1:2], !data[1], data[0]}};
 `vmm_trace(log,
 $psprintf("data=%h, corrupted %h", data, local_data));
 corrupt_data=local_data; endfunction : corrupt_data
endclass : Inject_err2

Figure 5.3-2 Inject_err Class (ch5_fct_inject_err/inject_err.sv)

Since we have two possible implementations of the error injection function corrupt_data, we will
use a factory pattern to specify which inject error class instance to use. Figure 5.3-3 provides a
UML for the class relationships to build a factory for the FIFO command-layer transactor.

Using the Factory Pattern 81

The following guidelines and comments were followed to build such a factory pattern:

1. Define all methods in the factory class as virtual. This allows for future expansion to
access methods defined in this base class.

2. Define in the command-layer transactor an instance of the base class of the error
injector. Instantiate that instance in the main() if it was not allocated.
// (ch5_fct_inject_err /fifo_cmd_xactor.sv)
 class Fifo_cmd_xactor extends vmm_xactor;
 Inject_err factory_inject_err;
 ..
 task Fifo_cmd_xactor::main();
 …
 if (this.factory_inject_err==null)
 this.factory_inject_err=new();
 forever
 // main body of main
 endtask : main
 endclass : Fifo_cmd_xactor

3. Do not change the original environment that worked with the base error injector
class. The base error injector class is not used in the environment.
//(ch5_fct_inject_err/fifo_env.sv)
In the Fifo_env::build() :

Instantiate the command-layer transactor
this.fifo_cmd_xactor_0 = new("cmd_xactor",

 0,
 `TOP.f_if,
 fifo_channel_0
);

4. Define in the program do the following: (//(ch5_fct_inject_err /fifo_pgm.sv)

a. In the initial block, initiate the build.
Begin : initial_pgm
 fifo_env_0.build();

b. In a begin end block, declare an object to inject the desired error.
Instantiate that new object and assign it to the command transactor instance
of the error injector.

begin : factory_4_error_injection
 Inject_err2 inject_err; // ** New error injection
 inject_err=new();
 fifo_env_0.fifo_cmd_xactor_0.factory_inject_err =
 inject_err;

 end : factory_4_error_injection

c. Following this, continue with environment control flow with the run()
method.

 fifo_env_0.run();
 end : initial_pgm
endprogram : fifo_test_pgm

Command-layer
transactor

Environment

Program

82 A Pragmatic Approach to Adopting VMM

Figure 5.3.-3 UML for the FIFO Command-Layer Transactor

In the command transactor, the push_task first randomizes the factory_inject_err, and then
determines the value to be assigned to the f_if.driver_cb.data_in (data_in of the virtual FIFO
interface clocking block). The push_task() is shown in Figure 5.3-4.

task Fifo_cmd_xactor::push_task (word_t data);
 f_if.driver_cb.data_in <= data; // default assignment
 if (factory_inject_err.randomize())
 if (factory_inject_err.inject_err==INJECT)
 f_if.driver_cb.data_in <=
 factory_inject_err.corrupt_data(data);
// ** Common control
 f_if.driver_cb.push <= 1'b1;
 f_if.driver_cb.pop <= 1'b0;
 @ (f_if.driver_cb);
 f_if.driver_cb.push <= 1'b0;
 endtask : push_task

Figure 5.3-4.push_task with Error Injection (ch5_fct_inject_err /fifo_cmd_xactor.sv)

Using the Factory Pattern 83

An example of a simulation run displayed the results shown in Figure 5.3-5.

0.00 ns test [Normal:NOTE] | Start of Test
0.00 ns fifo_env [Trace:INTERNAL] | Generating test configuration...
0.00 ns fifo_env [Trace:INTERNAL] | Building verification environment...
0.00 ns fifo_env [Normal:NOTE] | Sim shall run for no_of_xactions 231
0.00 ns test [Trace:DEBUG] | redefine the env error injector
0.00 ns test [Trace:DEBUG] | Now continue with the remaining verifications steps
0.00 ns fifo_env [Trace:INTERNAL] | Reseting DUT...
1950.00 ns fifo_env [Trace:INTERNAL] | Configuring...
1950.00 ns fifo_env [Trace:INTERNAL] | Starting verification environment...
1950.00 ns fifo_env [Trace:INTERNAL] | Saving RNG state information...
1950.00 ns fifo_env [Trace:INTERNAL] | Waiting for end of test...
1950.00 ns FIFO Xaction Generator Atomic Generator [Trace:INTERNAL] | Started
1950.00 ns cmd_xactor [Trace:INTERNAL] | Started
1950.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.0 Fifo
Xaction PUSH
1950.00 ns Fifo COMMAND Layer Xactor [Trace:INTERNAL] | Started
…

2050.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.1 Fifo
Xaction PUSH
2150.00 ns FIFO_MON [Normal:NOTE] | Found a PUSH Xactn at time 2150.00 ns data 153

2150.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.2
Fifo Xaction PUSH

2150.00 ns Inject_err [Trace:DEBUG] | data=0000015c, corrupted 0000015e
2250.00 ns FIFO_MON [Normal:NOTE] | Found a PUSH Xactn at time 2250.00 ns data 15e
2250.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.3 Fifo
Xaction POP

Figure 5.3-5 Simulation Results with Error Injection Using Factory Pattern

Error injector corrupted the Monitor observed the corrupted data

Build()

Run()

No data corruption

With data corruption

84 A Pragmatic Approach to Adopting VMM

5.4 FILE STRUCTURE

Table 5.4 demonstrates the file Structure and the purpose of each file. Figure 5.4 is a graphical
representation of the relationships between the files for this chapter.

Table 5.4. File Structure and Functions
/ch5/ch5_fct_xactn and /ch5/ch5_fct_inject_err directories

File Function Used by
fifo_pkg.sv Defines types and initialized variables ALL
fifo_if.sv Defines the FIFO interface RTL and by program,

testbench, transaction
and transactors

fifo_csr_if.sv Defines the FIFO configuration interface RTL, property models,
and by environment, and
possibly transactors

fifo_xactn.sv Defines the transaction class with the constraints
Also used for the channel generation with:
 `vmm_channel (Fifo_xactn)

`vmm_channel macro for
generation of channel,
`vmm_atomic_gen
macro for generation of
atomic generator,
monitor transactor for
creation of transaction
from observed values on
bus interface

fifo_rtl.sv Represents the FIFO RTL DUT Top level
fifo_props.sv Defines the properties for assertions Top level for bind
fifo_log_fmt.sv Defines formatting information for display FIFO environment
fifo_pgm.sv Creates the modeling for simulation and initiates the

run in the environment
Top level

fifo_env.sv Creates the build and start for simulation program
fifo_mon_xactor.sv Creates a copy of the observed transaction onto a

transaction channel.
Scoreboard, top level

top_tb.sv Represents the top level and instantiates the RTL,
the bind, the monitor, etc

none

fifo_gen_xactor.sv Uses the macro `vmm_atomic_gen for generation of
atomic generator, defines the constraints for the
number of transactions

 Environment for
creation of the build
model

inject_err.sv Error injection classes Command transactor
test.svh Common include files Program block
fifo_response.sv Class derived from vmm_data to provide a response

to a transactor (e.g., generator) through a channel
command transactor and
environment

Using the Factory Pattern 85

Figure 5.4 Relationships of Files for Factory Pattern

fifo_pkg.sv

fifo_if.sv

fifo_xactn.sv
fifo_xactn_

channel

`vmm_
channel

fifo_gen_
xactor.sv fifo_xactn_

atomic_gen

`vmm_atomic_
gen

(fifo_xactn,..)

fifo_cmd_xactor .sv

fifo_mon_xactor.sv

fifo_env.sv

fifo_pgm.sv

fifo_props.sv

fifo_rtl.sv

top_tb.sv

fifo_log_fmt.sv

all

Generated classes

In fifo_env.sv

In fifo_pgm.sv

vmm.sv

fifo_csr_if.sv

data_err_inject
.sv

86 A Pragmatic Approach to Adopting VMM

Chapter 5 Questions and LAB

Q1: When should a factory pattern be used in a transactor such as a generator?

Q2. When would you use an atomic generator as created via the macro `vmm_atomic_gen?

Q3. Why a custom generator is sometimes needed?

Q4. Why do generators use the copy method while monitors use the allocate method to
create a new object?

Lab05.
Use a factory to select a different transaction class for the randomization of the
transactions. See instructions in subdirectory lab/lab05/todo/readme.txt.

