

8 ADVANCED TOPICS

This chapter addresses some of the advanced concepts in VMM such as scenario generator,
scheduler, and broadcaster. Other previously addressed topics are further explained such as
messaging servicing, and functional coverage. To demonstrate some of the advanced features of
VMM, we use a serial-to-parallel converter design, as it provides a model with different
characteristics than the FIFO model. This along with the FIFO model will be used throughout to
explain the concepts. The Serial-to-parallel converter is first described.

120 A Pragmatic Approach to Adopting VMM

8.1 SERIAL-TO-PARALLEL CONVERTER DUT INTERFACE

The DUT is a simple serial-to-parallel converter that converts input serial bit stream into parallel
output stream of 8-bits. A new serial input data transfer starts when ser_sop (Serial Start Of
Packet) signal is high for one clock, and the transfer ends when ser_eop (Serial End Of Packet) is
high. The packet length is arbitrary; hence any number of clocks can elapse between a ser_sop
and ser_eop. The transfer can also be aborted by asserting the signal ser_abort. The serial input
interface is synchronous to the input clock clk. On the output side, the parallel data is sent out via
an eight bits wide par_data bus. The data on this bus is considered valid when a qualifying
signal par_data_valid is high. The clock for the parallel interface is same as that of the input
side, i.e. clk.

Figure 8.1-1 and 8.1-2 demonstrate the S2P interface with the modports used throughout the
design and the testbench.1 We designed a VMM-based verification environment for this S2P
design along the lines of what has been addressed in the previous chapters. The files used for this
model include:

• ch8/s2p_xactn.sv transaction class that describes the basic transaction modeled as a
packet with variable length.

• ch8/s2p_cmd_xactor.sv command-level transactor.

• ch8/s2p_atomic_gen.sv that contains an atomic generator using `vmm_atomic_gen macro.

• ch8/s2p_env.sv that encapsulates the various pieces of the environment.

Figure 8.1-1 S2P Interface

1 VMM Rule 4-9 Individual modports shall be declared for each type of proactive, reactive and passive
transactors.

ser_dat
a

ser_abort

clk

rst_n

ser_sop

ser_eop

s2p_dut
core

par_data

par_data_valid

S2p_if

s2p_dut

Advanced Topics 121

interface s2p_if (input logic clk, rst_n);
 logic ser_data;
 logic ser_sop, ser_eop, ser_abort;
 logic [7:0] par_data;
 logic par_data_valid;

 clocking ser_cb @ (posedge clk);
 output ser_data, ser_sop, ser_eop, ser_abort;
 endclocking : ser_cb

 modport ser_drv_mp (clocking ser_cb);

 clocking par_cb @ (posedge clk);
 output par_data, par_data_valid;
 endclocking : par_cb

 modport par_drv_mp (clocking par_cb);

// Monitor view of the interface.
 clocking mon_cb @ (posedge clk);
 input ser_data, ser_sop, ser_eop, ser_abort;
 input par_data, par_data_valid;
 endclocking : mon_cb

 modport s2p_mon_if_mp (clocking mon_cb);
endinterface : s2p_if

Figure 8.1-2 S2P Interface (file ch8/s2p_if.sv)

8.2 VMM SCENARIO GENERATOR

Chapter 3 introduced the various types of generators to generate random transactions. While the
basic atomic generator is quite easy to use and provides basic randomization features, it is limited
in capabilities when the verification requires a “sequence of related transactions”. For example:

• A memory controller may need correlation in the sequence of read and write addresses. A
video stream may need a color bar of seven colors, with each bar of width 25 pixels.

• A CPU may need instructions that meet particular sequence patterns.

No matter how many atomic transactions are generated, it is very unlikely that you would satisfy
such requirements because the specific set of sequences are not likely to randomly occur. This is
where a “scenario generator” is very useful. How can scenarios be defined? Before getting into
the details of the mechanics, let us first analyze a simple example. Consider the verification of a
vending machine design that accepts the following coins: dimes, quarters and dollars. Let us
assume that a soft drink costs $2. What are the possible input sequences to get to a soft drink?
Following are some of them:

• 5 Dimes, 2 Quarters and a Dollar
• 2 back-to-back Dollars
• 8 continuous Quarters
• 2 Quarters, a Dollar and 2 Quarters

122 A Pragmatic Approach to Adopting VMM

The above list is non-exhaustive, but it represents the kind of scenarios needed for verification.
An atomic transaction represents a single coin being inserted - a Dime, a Quarter or a Dollar.
However, a scenario generator represents a sequence of coins being inserted, where the sequence
satisfies a set of related constraints. Some of the requirements for a scenario generator are:

• It should be able to generate a sequence of atomic transactions, that we call items. These
items represent one single scenario for the user (such as 2 back-to-back Dollars). The
length of such a scenario should be constrainable.

• It should allow constraints on the individual elements in the items so that we can get to a
final count of $2 given a random starting point.

How can such scenario be generated using SystemVerilog? While there are several ways to
achieve it, we will show a piece of code using iterative constraints. Figure 8.2-1 shows the
simple code to achieve this.

typedef enum {DIME, QUARTER, DOLLAR} coin_t;
class Vend_inp_c;
 //Instantiate an array of items to be generated.
 rand coin_t items [];
 // How many items? i.e. the length field
 rand bit [3:0] length;
// Describe one scenario
 constraint cst_2Q_1D_2Q_seq {
 this.length == 4;

 foreach (this.items [i]) {
 // i==0, i==1, 2 Quarters
 (i < 2) -> this.items[i] == QUARTER;

 // i==2, 1 Dollar
 (i == 2) -> this.items[i] == DOLLAR;

 // i==3, i==4, 2 Quarters
 (i > 2 && i < 5) -> this.items[i] == QUARTER;
 } // foreach
 } // cst_2Q_1D_2Q
endclass : Vend_inp_c

Figure 8.2-1 Scenario Generator Using Iterative Constraints

The above code describes just one possible scenario. However, you typically need a set of such
scenarios that VMM calls scenario_set[$]. The scenario_set[$] represents the set of available
scenario descriptors that may be repeatedly randomized to create the random content of the output
stream. Note that the above code does not show the complete generation of the scenario such as
randomizing the items etc.

Conceptually a scenario generator builds on an atomic generator; and imposes constraints on the
individual transactions with reference to the previous (or next) transactions. The generation
process for the scenario generator is different than the process in the atomic generator. While the
atomic generator creates a single object of the transaction, the scenario generator creates a queue
of objects of the transaction. Aside from this difference, the two generators are very similar -
they both send their output to a single channel. Figure 8.2-2 and 8.2-3 show this concept.

Advanced Topics 123

Figure 8.2-2 Atomic generator

Figure 8.2-3 Scenario generator

Considering the S2P design, the following are some of the potential scenarios, as shown in Figure
8.2-4:

• Alternating a good packet and an error packet.

• A sequence of 5 good packets, followed by an error packet, and then a sequence of 5
good packets.

Figure 8.2-4 Sample scenarios for S2P

Out
Channel

s2p transaction
randomized_obj

Scenario
Generator

s2p
transaction

Array of s2p
transactions

items[]

Good
packet

Bad packet

124 A Pragmatic Approach to Adopting VMM

Such scenario requirements often stem from the higher level system perspective. In this section
we demonstrate how to build a scenario generator for the above stated requirements. VMM
provides the `vmm_scenario_gen pre-built macro to build a scenario generator. It is used with the
basic transaction class as an argument. For example,

`vmm_scenario_gen(S2p_xactn)

This macro creates the required infrastructure for a scenario generator. From a user perspective,
it does the following for the above example:

• Creates a transactor named S2p_xactn_scenario_gen - this is the top level scenario
generator for our design.

• Creates a skeleton scenario class named S2p_xactn_scenario.

• This scenario base class contains a SystemVerilog dynamic array named
S2p_xactn_scenario::items[] of type S2p_xactn.

• Declares a variable S2p_xactn_scenario::scenario_kind to identify the scenario.

• Provides a mechanism to associate an unique identifier to a scenario via
S2p_xactn_scenario::define_scenario() method.

Some of the key elements of the VMM scenario generator (called S2p_xactn_scenario_gen in our
example) are:

• A single scenario is represented by an array of atomic transactions. This is named as
items[]. The length of this array is user constrainable.

• Individual elements of this items array can be constrained using the SystemVerilog
constraint block.

• In a system there can be many different scenarios. Every single scenario is of a unique
kind and hence needs to be identified with a unique ID that VMM calls scenario_kind.
When this object is randomized, it selects the identifier of the scenario that is generated.

Following are the steps to build a scenario generator in VMM.

1. Use the macro `vmm_scenario_gen to create the basic infrastructure.

2. Declare a new class for the specific scenario by deriving it from S2p_xactn_scenario
(This base class is created by the macro). We called the new class S2p_scen_GP_EP,
which is shown in Figure 8.2-5.

3. Declare an int variable to identify this scenario.

4. Use the method S2p_xactn_scenario::define_scenario() to associate a unique identifier
for the scenario.

5. Add a suitable constraint block to define the desired scenario. This is the key step in
defining the scenarios. This constraint block should fix the length of the scenario. To
constrain the individual transactions in the scenario, you need to constrain the items[]
array. SystemVerilog supports iterative constraints that can operate on arrays, which is
very useful here.

Advanced Topics 125

class S2p_scen_GP_EP extends S2p_xactn_scenario;
// an integer to identify the this scenario
 int sc_id_alternate_GP_EP;

 function new();
 this.sc_id_alternate_GP_EP = define_scenario
 (.name(“Alternating Good and Error Packets”),
 .max_len(10));
 endfunction : new

 constraint cst_GP_EP {
 if (this.scenario_kind ==
 this.sc_id_Alternate_GP_EP) {
 this.length == 10; //Constrain the length

 // Constrain individual transactions
 // Note that items[] is declared in base class
 foreach (items [i]) {
 (i % 2) -> items[i].err_pkt == 0; // Good Packet
 !(i % 2) -> items[i].err_pkt == 1; // Error Packet
 } // foreach
 } // if
 } // cst_GP_EP
endclass : S2p_scen_GP_EP

Figure 8.2-5 Creating of a Scenario Generator (file ch8/s2p_scen_gen.sv)

6. Instantiate the scenario generator in the environment and start its activities. As noted in

Chapter 4, this is done in several steps, the instantiation belongs to the structural segment,
the allocation of the scenario generator occurs in the build() step, and the transactor is
started in task start(). This is shown in Figure 8.2-6.

class S2p_env extends vmm_env;

 S2p_scenario_gen s2p_sc_gen_0; // Variable declaration
 ..
 virtual function void build();
 s2p_sc_gen_0 = new("S2p Scen Gen", 0, s2p_chan_0);
 // Instantiation of generator
 ..
 endfunction : build

 task start ();
 this.s2p_sc_gen_0.start_xactor(); // Start of generator
 ..
 endtask : start
endclass : S2p_env

Fig 8.2-6 Building a Scenario Generator in vmm_env class (ch8/ s2p_scen_env.sv)

Creating a
unique identity
for the scenario

Constraint
applicable only
to this scenario

3

4

5

6a

6b

126 A Pragmatic Approach to Adopting VMM

7. Instantiate in the program block the specific scenario, and add it to the scenario_set[$] of
the scenario generator. The details on this scenario_set[$] are provided in Section 8.2.1;
for now assume that this is a Queue of scenarios, and you need to push your own
scenarios into this Queue.

program automatic s2p_scen_pgm;
 // Instantiate the scenario of interest
 S2p_scen_GP_EP s2p_scen_0;

 // ..
 initial begin : b1
 s2p_scen_0 = new();
 s2p_scen_0.allocate_scenario();
 s2p_env_0.build();
 // Push it to the top level scenario_set queue
 // More on this in next section
 s2p_env_0.s2p_sc_gen_0.scenario_set.push_back(s2p_scen_0);
 s2p_env_0.run();
 end : b1
endprogram : s2p_scen_pgm

Figure 8.2-7 Instantiating a Scenario Generator in a testcase (ch8/ s2p_scen_pgm.sv)

A sample run with this test yields alternating GOOD and ERROR packets as shown in the log file
in Figure 8.2-8.

1950.00 ns [Normal:NOTE] | S2P GOOD Pkt, data b6a859d4
2950.00 ns [Normal:NOTE] | S2P ERROR Pkt, data 66b4a122
3950.00 ns [Normal:NOTE] | S2P GOOD Pkt, data 33c34598
4950.00 ns [Normal:NOTE] | S2P ERROR Pkt, data 102030aa
5950.00 ns [Normal:NOTE] | S2P GOOD Pkt, data aa020398
6950.00 ns [Normal:NOTE] | S2P ERROR Pkt, data bb559087

Figure 8.2-8 Simulation result of S2P using scenario generator

8.2.1 Handling multiple scenarios

The verification of complex designs requires a set of scenarios that are randomized to simulate
complex testcases. To appreciate the need for multiple scenarios, consider a networking system
that handles internet traffic. While the major portion of the traffic is data packets, there are some
control packets, and other types of packets typically sent to a host processor for analysis. To
simulate this system, one requires generating: “A specific, focused (directed) scenario - such as
downloading a video stream, followed by one (or few) random transaction and then again a
directed scenario.” To create this kind of mixed scenarios, the VMM scenario generator provides
the following infrastructure:

• A SystemVerilog Queue of scenarios, scenario_set[$] that represents a set of scenarios,
with each scenario containing a number of transactions.

• A mechanism to choose one of the scenarios as the next candidate. This is supported via
an election class named <class_name>_scenario_election.

7b

7a

Advanced Topics 127

With this you can create a few scenarios of interesting combinations, and have them added to the
scenario_set[$] queue. You can have the election class pick one of the scenarios as per a pre-
defined election policy. This is represented in Figure 8.2.2-1.

Figure 8.2.1-1 Scenario Generator

It is important to note that the macro introduced in the previous section, `vmm_scenario_gen
creates these components automatically for the user. Figure 8.2.1.-2 shows a more
comprehensive UML diagram of the entire infrastructure that gets generated by this macro.

For the verification of complex designs, it is common for verification engineers (or vendors of
complex interfaces) to create libraries of comprehensive sets of scenarios that can be used during
the verification process. These libraries can be packaged in SystemVerilog packages for direct
use.

scenario_set[$]

Out Channel
Array of s2p
transactions

s2p
transactions

128 A Pragmatic Approach to Adopting VMM

Figure 8.2.1-2 UML view of a Scenario Generator

8.2.2 Default scenario_set created by the `vmm_scenario_gen macro

So far we have shown the minimum steps required to use the `vmm_scenario_gen scenario
generator macro to produce a realistic scenario. Given that this macro is generic and design
independent, the default scenario it creates has to be generic as well. The default scenario that
this macro creates is an atomic transaction, but embedded inside the items[] array, as demanded
by a generic scenario. In other words, the default scenario that this macro creates is of length
ONE, and is exactly the same as an atomic transaction. This is shown in Figure 8.2.2-1

vmm_xactor

`vmm_scenario_gen(S2p_xactn,
 "S2p Xaction Generator"

S2p_xactn_scenario_gen

+S2p_xactn_channel out_chan
+S2p_xactn randomized_obj;
+int unsigned stop_after_n_scenarios
+int unsigned stop_after_n_insts
+S2p_xactn_scenario scenario_set
+S2p_scenario_election select_scenario
+int unsigned stream_id
+enum {GENERATED} generated
+enum {DONE} done

+new()
+main()
+task inject(S2p_xactn data, ref bit dropped)

Creates

S2p_xactn__scenario_gen_callbacks

+pre_scenario_randomize()
+post_scenario_gen()

Creates

S2p_xactn_scenario

+log
+stream_id
+scenario_id
+rand int unsigned scenario_kind
+rand int unsigned length
+rand S2p items

+define_scenario()
+redefine_scenario()
+scenario_name()
+allocate_scenario()
+fill_scenario()
+apply()
+Operation1()

S2p_xactn_scenario_election

Creates

Creates

[]

[$]

Advanced Topics 129

Figure 8.2.2-1 Default Scenario Generator

The `vmm_scenario_gen macro creates this basic scenario, and adds it to the set of scenarios. By
default, the scenario_set[0] of a VMM scenario generator contains an atomic transaction. This
will enable the immediate use of the scenario generator, even without defining any specific
scenario. However, as you define more complex scenarios, you would progress away from the
default scenario and progress to your definition of scenarios. To accomplish this, you simply
delete the default scenario from the scenario_set[$] queue or override it. Figure 8.2.2-2 shows
how to override the default atomic transaction in the S2P example.

program automatic s2p_scen_pgm;
S2p_scen_GP_EP s2p_scen_0;
 // ..
 initial begin : b1
 s2p_scen_0 = new();
 s2p_env_0.build();
 //s2p_env_0.s2p_sc_gen_0.scenario_set.push_back(s2p_scen_0);
// Instead of adding to the scenario_set, replace the
// 0th element of this queue.
 s2p_env_0.s2p_sc_gen_0.scenario_set[0] = s2p_scen_0;
 s2p_env_0.run();
 end : b1
endprogram : s2p_scen_pgm

Figure 8.2.2-2 Overriding the Default Atomic Transaction in VMM Scenario Generator
(file ch8/s2p_scen_gen.sv)

Note: Just like the atomic generator, the scenario provides properties provide control over the
scenarios. For example, the property vmm_scenario_gen::stop_after_n_scenarios will stop the
generator after the specified number of scenarios have been generated and entirely consumed by
the output channel. The rand vmm_scenario_gen::repeated defines the number of times the items
in the scenario are applied. The repeated instances in the scenario count toward the total number
of instances generated but only one scenario is considered generated, regardless of the number of
times it is repeated.

Scenario
Generator

s2p
transaction

Array of
size 1

Out_channel

130 A Pragmatic Approach to Adopting VMM

8.3 CREATING DUMMY SINKS FOR CHANNEL OUTPUTS

A VMM channel has a producer and a consumer. Given the complexity of verification, it is quite
possible to have a situation where the producer and consumer are being developed separately, and
hence both may not be concurrently available for testing. For example, a generator might be
ready prior to the availability of the corresponding command transactor. In such situations, it is
desirable (and often necessary) to be able to test the producer alone, with the consumer replaced
with an interim model. This can be achieved with a dummy or artificial sink created for a
channel and hooked up in the environment until the real consumer becomes available. This
would help flush out any design issues with the producer, without having to wait for the
integration of all the components. This is also a useful technique to quickly test advanced VMM
components, such as a scenario generator, broadcaster, etc. Since the design of these components
is complex, they often need a few iterations to get them to behave as per user expectations.
Emulating the consumer with a simple model reduces the issues to be resolved in the
development of the producer. Having an artificial sink for channels expedites the development of
such complex verification components. There are several techniques to achieve this goal,
including:

• Producer uses a nonblocking channel
• Use the VMM channel’s built-in vmm_channel::sink() method.
• Create a quick, dummy consumer, a.k.a an artificial sink transactor

These techniques are addressed in the following subsections.

8.3.1 Using a Nonblocking Channel

With this approach, the producer simply uses a nonblocking completion model, thus not relying
on the channels to be sunk by a consumer. This technique allows other items to be added into the
channel. This is often very useful in monitor transactors that continuously sample the DUT
outputs. Consider the S2P design, where the output data can be available every 8 clocks,
assuming an incoming packet length of 8 and a continuous, uninterrupted stream of input data.
The parallel data interface monitor, which is a transactor, samples the DUT output data and sends
it to higher layers via its output channel. The design has to be tested even if there are no higher
layer components available yet. The monitor cannot use the vmm_channel::put() because it is a
blocking method, and hence will block the monitor from further monitoring the DUT interface
until the channel is freed up by a consumer. The use of the sneak() methods provides a
nonblocking task to insert items into a channel, as demonstrated in Figure 8.3.1

class S2p_mon_xactor extends vmm_xactor;
 virtual s2p_if s2p_if_0;
 S2p_xactn allocated_xactn; // Using a factory pattern

 function new(string inst, integer stream_id,
 virtual s2p_if new_s2p_if,
 S2p_xactn_channel out_chan);
 ..
 this.allocated_xactn = new();
 ..
 endfunction : new

Advanced Topics 131

 virtual task mon_dut_if();
 forever begin : w1
 S2p_xactn cur_xactn;
 super.wait_if_stopped();
 wait (s2p_if_0.mon_mp.mon_cb.par_data_valid === 1’b1);
 $cast(cur_xactn, this.allocated_xactn.allocate());

 cur_xactn.pkt_pld = s2p_if_0.mon_mp.mon_cb.par_data;
 // .. Other code not shown
 // vmm_channel::put() is a Blocking method
 // this.out_chan.put(cur_xactn);
 // Instead use, vmm_channel::sneak()
 this.out_chan.sneak(cur_xactn);
 end : w1
 endtask : mon_dut_if
endclass : S2p_mon_xactor

Figure 8.3.1-1 Dummy sink using non blocking channel (file ch8/s2p_mon_xactor.sv)

VMM recommends the use of vmm_channel::sneak() method for such monitors.2 The sneak() is
similar to its counterpart put() in operation, except that it does NOT block if the channel is full,
instead it “sneaks” the new transaction into the channel. A downside of using this approach is
that potentially the channels can lead to increased memory usage, particularly in long running
simulations.

8.3.2 Using vmm_channel::sink() method

To prevent potential accumulation of transactions inside a VMM channel, VMM provides a
built-in method, vmm_channel::sink() that flushes the content of the channel and sinks any further
objects put into it. We used this technique in the design of the FIFO model for the monitor
channel that was not used by any component. This code is shown in Figure 8.3.2-1.

task Fifo_env:: start();
 super.start();
 this.fifo_xactn_gen_0.start_xactor();
 this.fifo_cmd_xactor_0.start_xactor();
 this.mon_0.start_xactor();
 this.mon_0.fifo_mon_chan_0.sink(); // flush content of channel
endtask : start

Figure 8.3.2 Application of the sink Method for a Channel

A question that arises is, if a channel is currently being sunk, can I restore it to a normal flow
such that it does not sink the future transactions? Yes! A channel that is currently sunk via
vmm_channel::sink() can be restored to normal flow using the vmm_channel::flow()method.
This can be done in the program block at any time. For example, in the program block for a FIFO
(Figure 8.3.2-2):

2 VMM Rule 4-117 Reactive or passive transactors shall use the vmm_channel::sneak() method to put
transaction descriptors in their output channels.

132 A Pragmatic Approach to Adopting VMM

 begin : test
 fork : f1 fifo_env_0.run(); join_none : f1
 #10000; // dummy delay
 // Return to normal flow
 fifo_env_0.mon_0.fifo_mon_chan_0.flow();
 end : test

Figure 8.3.2-2 Using the vmm_channel::flow Method

While this built-in vmm_channel::sink() is a fit for some situations to prevent channel build up, it
is not very convenient to verify that a producer is working as expected. This is because, the
vmm_channel::sink() method does not display the transactions that came through the channel,
which is a fundamental requirement for verifying the producers. We explore a viable alternative
of building an artificial sink transactor in the next section.

8.3.3 Using an artificial sink transactor

A real consumer samples the transactions from the channel with the vmm_channel::peek()
method, waits for the completion of that transaction, and then uses the vmm_channel::get()
method to remove the transaction from the channel. An artificial sink mimics the real consumer
by retrieving the transaction, but without performing any further processing, thereby speeding up
the development process. The only processing that an artificial sink does is to display the
transaction that was observed. This artificial sink is modeled as a transactor; hence it can be used
in exactly the same way as a real consumer.3 The sink is instantiated and started in the
environment. Figure 8.3.3-1 represents sample code for an artificial sink.

class S2p_asink extends vmm_xactor;

 S2p_xactn_channel in_chan;
 function new(string inst, int unsigned stream_id = -1,
 S2p_xactn_channel new_in_chan=null);
 super.new(“Artificial Sink”, inst, stream_id);
 if (new_in_chan!=null) this.in_chan = new_in_chan;
 else begin : null_chan_guard
 `vmm_note (log, “A NULL channel was passed to a sink”);
 this.in_chan=new(“s2p_channel”, “channel”);
 return;
 end : null_chan_guard
 endfunction : new
 extern task artificial_sink(S2p_xactn_channel chan);
 extern task main();
endclass : S2p_asink

task S2p_asink::artificial_sink(S2p_xactn_channel chan);
 S2p_xactn cur_tr;
 forever begin : w_0
 chan.get(cur_tr);
 `vmm_note(this.log,
 cur_tr.psdisplay(.prefix(“ART_SINK: Removing a transaction: “));
 end : w_0
endtask : artificial_sink

3 In simple cases, this can be modeled using a fork..join as well.

Advanced Topics 133

task S2p_asink::main();
 super.main();
 fork
 this.artificial_sink(in_chan);
 join_none
endtask : main

Figure 8.3.3-1 Sample code for an artificial sink (file ch8/s2p_asink.sv)

We defer the application of this artificial sink transactor to more realistic cases in the next
sections.

8.4 VMM SCHEDULER

A scheduler, by definition schedules multiple tasks to a shared resource in a pre-defined order. In
the context of verification, scheduling is often a desired mechanism to mimic real-life scenarios.
For example:

• A networking device often gets multiple data streams competing to transmit data on a
single bus.

• In a processor, the main memory is often sought for access by multiple agents at the same
time.

• In a SoC, multiple bus masters seek to control a shared bus at the same time.

• Transaction Level Modeling (TLM) often uses such schedulers to emulate the
environment of the system.

There are several ways to create such situations in a simulation environment. One of the simplest
mechanism is to spawn off several threads (using fork-join for example), and hope that it will
mimic real-life scenarios. Conceptually that works, but in reality, you need a much more
controlled mechanism to determine the order of the individual scenarios. The VMM Scheduler is
designed to provide users with such a sophisticated mechanism. It accepts multiple sources and
schedules them into a single destination. The source and destination of the VMM scheduler are
vmm_channels, and the scheduler itself is implemented as a SystemVerilog class named
vmm_scheduler. From a hardware perspective, a scheduler can be visualized as a Multiplexer, as
shown in Figure 8.4-1. Figure 8.4-2 represents the UML for the vmm_scheduler class. .

Figure 8.4-1 Scheduler

Selection
Scheme

Destination

Sources Scheduler

134 A Pragmatic Approach to Adopting VMM

vmm_scheduler

+out_chan
+vmm_channel destination

+new()
+start_xactor()
+stop_xactor()
+reset_xactor()
+new_source()
+sched_on()
+sched_off()
+schedule()
+get_object()

vmm_xactor

Figure 8.4-2 UML for vmm_scheduler

We will use our S2P design as a vehicle to explain a working VMM scheduler. Consider the case
of three packet-stream generators; the first stream generator generates packets of length 8 bits, the
second generates packets of 8 bit length but with an error (i.e. abort condition), and a third one
generates 64 bit packets. The testplan requires that we inter-mix these interesting packets in a
round-robin manner. We will use a scheduler and the consumer to this inter-mixed data stream is
the s2p_cmd_xactor model. Figure 8.4-3 represents the scheduler flow diagram

Figure 8.4-3 Scheduler Flow diagram

In the above diagram, the consumer of the vmm_scheduler is a command transactor, however for
the design of the scheduler alone that is often not required. We will make use of an artificial sink
transactor described in Section 8.3.3. Such choices during the development of a verification
environment often speed up the process. The basic steps in building this scheduler for the S2P
model are as follows:
In the S2p_env class, under structural segment (Refer to Chapter 4):

vmm_schedulervmm_scheduler

Transaction
generator

Transaction
generator

Transaction
generator

Advanced Topics 135

1. Declare a variable of the vmm_scheduler class.
vmm_scheduler s2p_scheduler;

2. Instantiate an array of packet generators. We can use a SystemVerilog dynamic array of
S2p_atmoic_gen class for better reuse and maintainability.
S2p_xactn_atomic_gen gen[];

3. Declare a dynamic array of input channels src_channel [] and a destination channel
dest_channel of type S2p_xactn_channel.
S2p_xactn_channel src_chan[];
S2p_xactn_channel dest_chan;

4. Declare a local property S2p_env::num_scheduler_sources of type int unsigned. This
property can be updated by the testcase, can be randomly generated etc.
int unsigned num_scheduler_sources;

5. Declare an artificial sink transactor variable.
S2p_asink s2p_asink_0;

In S2p_env class, under the test flow segment (Refer to Chapter 4):
6. In the S2p_env::build() task, allocate the s2p_scheduler object.

 s2p_scheduler = new(
 “S2P Scheduler”, // name
 “0”, // inst
 dest_chan); // Destination

7. Allocate the array of source channel and the generator in build phase based on the local
property S2p_env::num_scheduler_sources. SystemVerilog provides the convenient
foreach construct.

src_chan = new[this.num_scheduler_sources];
gen = new[this.num_scheduler_sources];
foreach (src_chan [id]) begin : fe_l_0
 s2p_chan[id] = new (“Src Channel”, $psprintf(“%d”,id));
end : fe_l_0

foreach (gen [id]) begin : fe_l_1
 gen[id] = new(“S2P_Gen”, id, src_chan[id]);
end : fe_l_1

8. Allocate the dest_channel.
dest_channel = new (“Sched Dest Channel”, “0”);

9. Allocate the artificial sink transactor. Pass the dest_channel as argument to this artificial
sink.

s2p_asink_0 = new(“ART_SINK”, dest_channel);

10. Start the scheduler and the artificial sink and the atomic generators in task start().

this.s2p_scheduler.start_xactor();
 foreach (gen [id]) begin : fe_l_2
 this.gen[id].start_xactor();
 end : fe_l_2
this.s2p_sink_0.start_xactor();

136 A Pragmatic Approach to Adopting VMM

In the testcase (program):

11. Choose the number of inputs to the scheduler. Remember that in Step 4 (above) we have
declared a variable to hold this value that needs to be updated before the S2p_env::build()
phase. So in an initial block in the program block we execute the flow until the
S2p_env::gen_cfg() configuration phase, update this variable, and then continue the
control flow up to the build() step. We used a parameter to select this value.

parameter NUM_SOURCES = 3;
s2p_env_0. num_scheduler_sources = NUM_SOURCES;
s2p_env_0.build();

12. Add the needed sources to the scheduler. VMM provides a method called

vmm_scheduler::new_source() for this process. This is done after the build() phase. A
call to S2p_env::run() takes care of the rest of the test flow.

foreach (s2p_env_0.src_chan [id]) begin : fe_l_1
 s2p_env_0.s2p_scheduler.new_source(src_chan[id]);
end : fe_l_1

s2p_env_0.run();

Figures 8.4-5 shows the environment for the S2P Scheduler. The actual steps are numbered in the
same order as the description above.

class S2p_env extends vmm_env;
 // Structural segment
 // #1 declare a scheduler variable
 vmm_scheduler s2p_scheduler;

 // #2 Dynamic array of generators
 S2p_xactn_atomic_gen gen[];

 // #3 Dynamic Array of Channels
 S2p_xactn_channel src_chan[];
 S2p_xactn_channel dest_chan;

 // #4 how many sources?
 int unsigned num_scheduler_sources;

 // #5 Artificial sink
 S2p_asink s2p_asink_0;

 extern function void build();
 extern task start();
endclass : S2p_env

Advanced Topics 137

// Test flow segment
function void S2p_env::build();
 super.build();
 // #6 allocate scheduler
 s2p_scheduler = new(“S2P Scheduler”, “0”, dest_chan);

 // #7 allocate array of src channel and generator
 src_chan = new[this.num_scheduler_sources];
 gen = new[this.num_scheduler_sources];

 foreach (src_chan [id]) begin : fe_l_0
 s2p_chan[id] = new (“Src Channel”, $psprintf(“%d”,id));
 end : fe_l_0
 foreach (gen [id]) begin : fe_l_1
 gen[id] = new(“S2P_Gen”, id, src_chan[id]);
 end : fe_l_1

 // #8 allocate dest_channel
 dest_channel = new (“Sched Dest Channel”, “0”);

 // #9 allocate artificial sink
 s2p_asink_0 = new (“ART_SINK”, dest_channel);
endfunction : build

task S2p_env::start();
 fork
 super.start();
 join_none
 // #10 start all transactors
 this.s2p_scheduler.start_xactor();
 foreach (gen [id]) begin : fe_l_2
 this.gen[id].start_xactor();
 end : fe_l_2
 this.s2p_sink_0.start_xactor();
endtask : start

Figure 8.4-5 S2P Scheduler environment
(file ch8/s2p_sched_env.sv)

Figure 8.4-6 shows a testcase for the S2P Scheduler.

138 A Pragmatic Approach to Adopting VMM

program automatic s2p_sched_pgm;
 parameter NUM_SOURCES = 3;
 S2p_env s2p_env_0;

 initial begin : test
 s2p_env_0 = new();
 s2p_env_0.gen_cfg();

 // #11 Choose number of inputs to be scheduled
 s2p_env_0.num_scheduler_sources = NUM_SOURCES;
 s2p_env_0.build();

 // #12 Add the number of sources as inputs to the scheduler
 foreach (s2p_env_0.src_chan [id]) begin : fe_l_1
 s2p_env_0.s2p_scheduler.new_source(src_chan[id]);
 end : fe_l_1

 s2p_env_0.run();
 end : test
endprogram : s2p_sched_pgm

Figure 8.4-6 S2P Scheduler testcase (file ch8/s2p_sched_pgm.sv)

A sample run of this scheduler code shows the actual scheduling of the transactions in the log file
as shown in Figure 8.4-7. The transaction ID is marked bold to emphasize that the three streams
are mixed in a round robin manner.

[Normal:NOTE]|ASINK: #0.0.0 s2p ERR Pkt, len 191, data b6a859d4
[Normal:NOTE]|ASINK: #0.1.0 s2p ERR Pkt, len 244, data 52531565
[Normal:NOTE]|ASINK: #0.2.0 s2p GOOD Pkt, len 143, data be409a8d
[Normal:NOTE]|ASINK: #0.0.1 s2p GOOD Pkt, len 212, data 1e52fc5a
[Normal:NOTE]|ASINK: #0.1.1 s2p GOOD Pkt, len 86, data 20e9a7ea
[Normal:NOTE]|ASINK: #0.2.1 s2p GOOD Pkt, len 223, data e5a14c07

Figure 8.4-7 Log file showing the scheduling of different transaction streams

NOTES:
• The addition of new sources to the scheduler is dynamic. A new source can be added

after some simulation cycles, if need be.

• The scheduling mechanism by default is round-robin. If you need purely random
scheduling, you can turn off the constraint block inside the vmm_scheduler class.

8.5 VMM BROADCAST

Channels are point-to-point data transfer mechanisms. But there are situations where the channel
needs to be broadcasted to multiple transactors. For example, consider an Ethernet switching
device with eight ports. Ethernet packets can be of different variants, as there are several fields
that determine the nature of the packet. A generic verification environment for such a design will
have an individual generator for each port. Each generator will generate packets and send them
to individual ports. However there are situations where the verification plan requires that all ports
send exactly the same kind of packets, such as: L2 type, 64-byte packets with no CRC error. For
this kind of testing it is often desirable to have a single generator and broadcast the traffic to all

Advanced Topics 139

ports. With such a broadcaster, one could easily control the packet generation from one central
location and have it broadcasted to all ports. With individual generator for each port, it will be
hard to make sure that every port sends the same packet.

From a hardware perspective, a broadcaster can be visualized as a De-Multiplexer as shown in
Figure 8.5-1.

Figure 8.5-1 A hardware perspective of vmm_broadcast

To solve this potential requirement for a broadcast, VMM provides the vmm_broadcast class,
supported by many methods and properties to tailor its operation to the user’s needs. Figure
8.5-2 represents a UML view of this class.

vmm_xactor

vmm_broadcast

+string name
+string instance
+vmm_channel source
+bit use_references = 1
+bcast_mode_typ mode = AFAP
+Attribute1

+start_xactor()
+stop_xactor()
+reset_xactor()
+broadcast_mode()
+new_output()
+bcast_on()
+bcast_off()
+add_to_output()

Figure 8.5-2 UML View of vmm_broadcast

BROADCASTERBROADCASTERSource Destinations

140 A Pragmatic Approach to Adopting VMM

We will use an Ethernet device example to demonstrate a working VMM Broadcaster code. We
will use the example requirement of having a single generator feeding up to eight different
Ethernet ports, as shown in Figure 8.5-3.

Figure 8.5-3 Ethernet Broadcaster

As with the scheduler example, we will use artificial sinks in place of the actual Ethernet ports to
demonstrate the broadcast operation. Following are the detailed steps to design a VMM
broadcaster for this example.

In Eth_env class, under the structural segment (Refer to Chapter 4):

1. Declare a variable of the vmm_broadcast class.

 vmm_broadcast eth_broadcaster;

2. Instantiate an Ethernet packet generator. We use an atomic generator.

 Eth_xactn_atmoic_gen gen_0;

3. Declare a source channel eth_src_channel and a dynamic array of output channels
eth_dest_channel_array [] of type Eth_xactn_channel.

Eth_xactn_channel eth_src_chan;
Eth_xactn_channel eth_dest_channel_array [];

4. Declare a local property Eth_env::num_bcast_dest of type int unsigned. This property
can be updated by the testcase, can be randomly generated, etc.

 int unsigned num_bcast_dest;

5. Declare an array of artificial sink transactor.

 Eth_asink eth_asink_array[];

broadcaster
Ethernet
Packet

Generator

Ethernet

Port 0

Ethernet

Port 7

Advanced Topics 141

In Eth_env class, under the test flow segment (Refer to Chapter 4):

6. In the Eth_env::build() task, allocate the eth_broadcaster object.

 eth_broadcaster = new(
 “Ethernet Broadcaster”, // name
 “0”, // instance
 eth_src_chan); // Source

7. Allocate the generator and array of destination channel in build phase based on the local
property Eth_env::num_bcast_dest. SystemVerilog provides the convenient foreach
construct.

 eth_dest_channel_array = new[this.num_bcast_dest];
 foreach (eth_dest_channel_array [id]) begin
 eth_dest_channel_array[id] = new (“Eth_Dest_Chan”,
 $psprintf(“%0d”, id));
 end

8. Allocate the eth_src_channel.

 eth_src_chan = new (“Ethernet Source Channel”, “0”);

9. Allocate the array of artificial sink transactors. Pass the dest_channel_arrary[id] as
argument to this artificial sink.

 eth_asink_array = new[this.num_bcast_dest];

 foreach (eth_asink_array [id]) begin
 eth_asink_array[id]=new(“ART_SINK”, dest_channel_array[id]);
 end
10. Start all the transactor components such as: generator, broadcaster and array of artificial

sink in the Eth_env::start() task.

this.eth_broadcaster.start_xactor();

 this.gen_0.start_xactor();
 foreach (eth_asink_array [id]) begin : fe_l_2
 this.eth_asink_array[id].start_xactor();
 end : fe_l_2

142 A Pragmatic Approach to Adopting VMM

In the testcase (program):

11. Choose the number of outputs of the broadcaster. Remember that in Step 4 (above) we
have declared a variable to hold this number, its value needs to be updated before the
Eth_env::build() phase. So in an initial block inside the program, we run the flow until
Eth_env::gen_cfg() phase, update this variable and then call the build(). We used a
parameter to select this number.

eth_env_0.gen_cfg();
eth_env_0.eht_broadcaster.num_bcast_dest = NUM_DEST;

12. Add the destinations to the broadcaster. VMM provides a method

vmm_broadcast::new_output() for this process. This is done after the build() phase. A
call to Eth_env::run() takes care of the rest of the test flow.

program test_pgm;

// ..
initial begin : test
 eth_env_0.build();
 foreach (eth_env_0.eth_dest_channel_array [id])
 begin : fe_l_1
 output_id[id] = eth_env_0.eth_broadcaster.new_output(
 eth_dest_channel_array[id]);
 end : fe_l_1

 eth_env_0.run();
end : test
endprogram : test_pgm

Figures 8.5-4 shows the environment for the Ethernet Broadcaster. The actual steps are
numbered in the same order as the description above.

Advanced Topics 143

class Eth_env extends vmm_env;
 // Structural segment
 // #1 declare a broadcast variable
 vmm_broadcast eth_broadcaster;

 // #2 Ethernet Atomic generator
 Eth_xactn_atomic_gen gen_0;

 // #3 Dynamic Array of Channels
 Eth_xactn_channel eth_src_chan;
 Eth_xactn_channel eth_dest_channel_array [];

 // #4 how many destinations?
 int unsigned num_bcast_dest;

 // #5 Array of Artificial sink
 Eth_asink eth_asink_array [];
 // remaining steps in the environment
 extern function void build();
 extern task start();
endclass : Eth_env

// Test flow segment
function void Eth_env::build();
 super.build();
 // #6 allocate broadcaster
 eth_broadcaster = new(“Ethernet broadcaster”, “0”,
 eth_src_chan);

 // #7 allocate generator and array of destination channel
 eth_dest_channel_array = new[this.num_bcast_dest];
 foreach (eth_dest_channel_array [id]) begin : fe_l_0
 eth_dest_channel_array[id] = new (“Eth_Dest_Chan”,
 $psprintf(“%0d”, id));
 end : fe_l_0

 // #8 allocate eth_src_channel
 eth_src_chan = new (“Ethernet Source Channel”, “0”);

 // #9 allocate array of artificial sink
 eth_asink_array = new[this.num_bcast_dest];
 foreach (eth_asink_array [id]) begin : fe_l_1
 eth_asink_array[id] = new (“ART_SINK”,
 eth_dest_channel_array[id]);
 end : fe_l_1
endfunction : build

144 A Pragmatic Approach to Adopting VMM

task S2p_env::start();
 fork
 super.start();
 join_none
 // #10 start all transactors
 this.eth_broadcaster.start_xactor();
 this.gen_0.start_xactor();
 foreach (eth_asink_array [id]) begin : fe_l_2
 this.eth_asink_array[id].start_xactor();
 end : fe_l_2
endtask : start

Figure 8.5-4 Ethernet Broadcaster Environment (file ch8/eth_broadcast_env.sv)

Figure 8.5-5 shows a testcase for the Ethernet Broadcaster.

program automatic eth_bcast_pgm;
 parameter NUM_DEST = 8;
 Eth_env eth_env_0;
 int output_id[NUM_DEST];

 initial begin : test
 eth_env_0 = new();
 // #11 run the flow till gen_cfg and
 // Choose number of destinations to be broadcasted

 eth_env_0.gen_cfg();
 eth_env_0.eht_broadcaster.num_bcast_dest = NUM_DEST;

 // #12 Run the flow till build() and
 // add the number of destinations as outputs
 // to the broadcaster
 eth_env_0.build();

 foreach (eth_env_0.eth_dest_channel_array [id])
 begin : fe_l_1
 output_id[id] = eth_env_0.eth_broadcaster.new_output(
 eth_dest_channel_array[id]);
 end : fe_l_1

 eth_env_0.run();
 end : test
endprogram : eth_bcast_pgm

Figure 8.5-5 Ethernet Broadcaster testcase (file ch8/eth_broadcast_pgm.sv)

A sample run of this broadcaster code shows that the same packet gets broadcasted to all the
consumers as shown in Figure 8.5-6. The transaction ID is marked bold to highlight that the
same transaction is received by all consumers.

Advanced Topics 145

 Etnet Port Transaction Type Length Data
 <--------> <----> <----> <-----> <---------->
[Normal:NOTE]|ASINK ID 0: #0.0.0 Eth ERR Pkt, len 210, data b6a859d4
[Normal:NOTE]|ASINK ID 1: #0.0.0 Eth ERR Pkt, len 210, data b6a859d4
[Normal:NOTE]|ASINK ID 2: #0.0.0 Eth ERR Pkt, len 210, data b6a859d4
[Normal:NOTE]|ASINK ID 0: #0.0.1 Eth OK Pkt, len 64, data ab098722
[Normal:NOTE]|ASINK ID 1: #0.0.1 Eth OK Pkt, len 64, data ab098722
[Normal:NOTE]|ASINK ID 2: #0.0.1 Eth OK Pkt, len 64, data ab098722
[Normal:NOTE]|ASINK ID 0: #0.0.2 Eth OK Pkt, len 20, data 809011ab
[Normal:NOTE]|ASINK ID 1: #0.0.2 Eth OK Pkt, len 20, data 809011ab
[Normal:NOTE]|ASINK ID 2: #0.0.2 Eth OK Pkt, len 20, data 809011ab

Figure 8.5-6 Log file showing the broadcast operation of same transaction

NOTES:

• The broadcaster can be configured to operate in 2 modes – ALAP (As Late As Possible)
and AFAP (As Fast As Possible).4

• The broadcaster by default sends only handles of the source transaction to the output
channels. This is a very efficient way as a single copy is maintained and all consumers
use references to this transaction. If you need individual copies, set the use_references
argument to the vmm_broadcast::new() to 0. Such a control is also possible on an
individual output basis by passing the use_references bit to the
vmm_broadcast::new_output() method.

• The scheduling mechanism by default is round-robin. If you need a purely random
scheduling, you can turn off the constraint block inside the vmm_scheduler class. The
vmm_scheduler_election is a class that implements the random election rules for the next
scheduling cycle. vmm_scheduler::randomized_sched is an instance of
vmm_scheduler_election class. This vmm_scheduler_election class has a constraint
named "default_round_robin" that can be set to constraint_mode(0). Thus, in the initial
block of the program:

// Setting the scheduling to random
my_env_0.my_scheduler.randomized_sched.default_round_robin.
constraint_mode(0);

8.6 VMM LOG

A typical verification environment produces significant amount of log messages to inform the
users about the progress and activities during a simulation run. Often the messages are added by
newcomers and a consistent style in printing the information may not be followed. A consistent
style of message logging helps in extracting the needed information from a log file. The
requirements for a comprehensive log message handler can be surprisingly much larger than what
it initially conceived. More often than not, every design team thinks about such huge list of
requirements, but given the amount of time it would take to create such an infrastructure and the
effort to maintain it, this activity is put in the back burner and never gets done. A significant
advantage of a framework such as VMM is that it already has a built in library to handle most of
these requirements (and much more). The base class vmm_log is the VMM’s message service
that offers a very flexible and convenient way to handle the messages in a simulation
environment. Some of the key features of vmm_log are:

4 The VMM pp 399

146 A Pragmatic Approach to Adopting VMM

• Easy to use, pre-built macros to hide the complexity and to present users with a syntax
resembling Verilog’s $display.

• Consistency in message format across the entire project.

• Customizable message format capability.

• Promotion and demotion capabilities of the message severities, - to turn errors to
warnings for example.

• Tracking of the number of errors in the system. This allows users to react to a pre-
specified error count in order to avoid running a simulation beyond a certain number of
errors (Such a run with 1000 errors is often meaningless; a threshold of 10 is often a good
choice to stop the simulation).

• Determines the PASS/FAIL condition of a simulation run based on error counts.

8.7 CUSTOMIZING VMM MESSAGE OUTPUT FORMAT

Almost every design verification team has its own style preferences in extracting information out
of the simulator including log data, coverage analysis flow, etc. A generic methodology, such as
VMM, needs to cater to such a wide audience to be acceptable. One of the fundamental tools for
a verification engineer is the simulation log file. In the authors’ experience, a good 40% of a
verification engineer’s time is spent in analyzing the log file(s). This means that the format of log
file that displays the messages needs to be highly customizable.
Typically users extract key information from log files via PERL, UNIX-Shell script etc. Thus,
while adopting or migrating to VMM, teams may want to reuse their existing scripts and have the
log files produced in the format that their scripts expect. For example, consider a sample VMM
code: `vmm_error(this.log, “Sample Error”);
The default format of vmm_log is spread across two lines in the output as shown Figure 8.7-2.

!ERROR![FAILURE] on Pgm_Logger() at 1950:

 Sample Error!

Figure 8.7-2 Sample vmm_log with Default Format

While this 2-line format may be seen as useful by some, other design teams prefer to have every
output message in one single line. That eases post-processing of log files via commands such as
UNIX grep etc. VMM allows the entire message to be customizable. To be able to customize the
message format, you need to overload the virtual function format_msg in the vmm_log_format
class. The prototype for the format_msg function is shown in Figure 8.7-3.

virtual function string format_msg(string name,
 string inst,
 string msg_type,
 string severity,
 ref string lines[$]);

Figure 8.7-3 Prototype for the format_msg Function

There are five arguments to this function; each one is briefly explained from a user stand point
below.

Advanced Topics 147

name & inst: Identifies the message service agent that issued this message, and is useful to
quickly locate from which file/component this message originated from.

msg_type: Message Type can be FAILURE, NOTE, DEBUG, TIMING, XHANDLING,
TRANSACTION, COMMAND, REPORT, PROTOCOL, CYCLE.

severity: Indicates the seriousness of the message, such as FATAL, ERROR, WARNING etc.

lines[$] : A SystemVerilog queue of strings containing the actual message.

Given that all individual pieces of the message are available as different arguments, it is simple
procedural code to customize the message. To have the output formatted in single line such as
“1950.00 ns [*ERROR*:FAILURE] | Sample Error”,
you can use the vmm_log_format::format_msg function as shown in Figure 8.7-4.

class s2p_log_fmt extends vmm_log_format;
 virtual function string format_msg(string name,
 string instance,
 string msg_type,
 string severity,
 ref string lines[$]);

 foreach (lines [l])
 $sformat(format_msg, "%0t %s [%0s:%0s] | %s",
 $time, name, severity, msg_type, lines[l]);

 endfunction : format_msg
endclass : s2p_log_fmt

Figure 8.7-4. S2P log format (file ch8/s2p_log_fmt.sv)

A single derived class can alter the message format of all vmm_log instances in the environment
as the VMM Log is designed to cater such a versatile requirement; this is very convenient for
design teams to customize all log messages from a single place. The new derived class
s2p_log_fmt needs to be used in the environment. A sample usage is shown in Figure 8.7-5.

`include "s2p_log_fmt.sv"
class S2p_env extends vmm_env;
 S2p_log_fmt log_fmt_cntl;

 function new(virtual s2p_if.ser_drv_mp new_vif
);
 $timeformat(-9,2, " ns");
 this.log_fmt_cntl = new();
 this.log = new("S2P Env Logger", "0");
 this.log.set_format(this.log_fmt_cntl);
 endfunction : new
endclass : S2p_env

Figure 8.7-5 S2P log format usage in the environment (file ch8/s2p_env.sv)

The important lines of code in Figure 8.7-5 are shown in bold font. Essentially, the base class
vmm_log provides a function set_format() that takes this vmm_log_format class object as an
argument and makes the change effective.

148 A Pragmatic Approach to Adopting VMM

Guideline: Every project team should agree on a common log messaging format to use
throughout the project, and implement the same.5

8.8 FUNCTIONAL COVERAGE

In this section we present how to arrive at coverage points for a design, using FIFO and S2P as
design examples. We will then demonstrate how to integrate a coverage model to an existing
VMM verification environment. Later on we show how to use a good constrained-random
environment to target coverage holes using different seeds.

8.8.1 Extracting coverage points

One of the first steps in adopting functional coverage is answering a key question of “What to
cover”? Such a question is often not relevant to its code coverage counterpart, as code coverage
covers all of what is coded in the design. Functional coverage requires explicit definitions of
what needs to be covered. This is often referred to as the “Coverage Plan”, and represents an
evolving technology. When this technology is adopted well, it has proven to be very effective in
many leading edge designs. From an overall perspective, formalizing the answer to “What to
cover” is a good thing as users expect a good ROI (Return On Investment) in adopting a new
technology. A detailed Coverage Plan is critical to a fruitful functional coverage adoption.

While the exact details on a comprehensive coverage plan are beyond the scope of this book, we
will show some of the coverage plan items as relevant to the example designs being used: the
FIFO and S2P. Before we list the coverage points, it is useful to understand the characteristics of
coverage plan. Specifically:

• A coverage plan should list important features of the design.

• A coverage plan should be of sufficient details so that it can be easily used to capture the
coverage points using SystemVerilog construct such as covergroup and cover property.
For example, stating that the FIFO should work in all configurations is too abstract a
statement. Instead breaking that statement into the interesting threshold values for the
configuration registers is more practical.

• An item in a coverage plan should convey valuable information other than simply many
uncorrelated data points.

The coverage plan documentation is thereafter captured in SystemVerilog. The choice of
constructs is situation dependent - data coverage is better captured using the covergroup, while
temporal coverage such as bus interfaces, latency etc. are easier to capture using the cover
property.

Interesting coverage points for the FIFO model include:

• Fifo Full
• Fifo Empty
• Fifo Full and a Push
• Fifo Full and a simultaneous occurrence of Push and Pop
• Fifo Empty and a Pop
• Fifo Empty and a simultaneous occurrence of Pop and Push

5 The VMM page 134. To ensure a consistent look and feel to the messages issued from different sources,
a common message service should be used.

Advanced Topics 149

• Fifo threshold registers: boundary values of almost_empty_threshold and
almost_full_threshold.

• Fifo threshold value in between minimum and maximum.
• Fifo almost_full / Fifo almost_empty followed by reset

Interesting coverage points for the S2P design include:
Basic coverage points:

• Various packet lengths: 8, 16, 24, 32,
• Odd packet lengths - not multiple of 8 (to test the padding logic in design).
• Packet abort during start of packet (sop)
• Packet abort during end of packet (eop)
• Packet aborts occurring in between sop & eop.

Cross coverage across basic points:

• Cross of packet abort and packet length.
• Sequence coverage - abort followed by good packet.
• Good packet followed by abort packets and then good packets.

8.8.2 Integrating coverage models into the environment

Functional coverage integration into a VMM environment is often done through callbacks as it
provides an easy entry point for the coverage model.6 In the FIFO model we added two callback
methods inside the command transactor that enabled us to cover the basic coverage model. The
coverage model is build as a separate class as shown in Figure 8.8.2-1. Note that this directly
stems from the coverage plan. The code snippet in the figure shows the implementation of the
coverage item: “Occurrence of Full, Push and Pop”.

class Fifo_fcov_plug_in extends Fifo_fcov_cb;

 Fifo_cov_model fifo_cov_model_0;
 virtual fifo_if.fifo_mon_if_mp vif;

 covergroup full_cg;
 full_cpt : coverpoint fifo_cov_model_0.full;
 push_cpt : coverpoint fifo_cov_model_0.push;
 pop_cpt : coverpoint fifo_cov_model_0.pop;

 pp_during_full_cr : cross full_cpt,push_cpt,pop_cpt;

 endgroup : full_cg
endclass : Fifo_fcov_plug_in

Figure 8.8.2-1 Façade for FIFO Coverage Callback
(file ch8/fifo_cov_model.sv)

The callback implementation is shown in file ch8/fifo_fcov_cb_defs.sv.

6 Integration of coverage model can also be done using vmm_notify and/or peeking to an existing
transaction channel via vmm_channel::tee() method. Depending on the problem at hand one approach is
easier than the other.

150 A Pragmatic Approach to Adopting VMM

8.9 SEEDING THE RANDOMIZATION

One of the key motivations of a constrained random testing is to be able to create a constrained
random testcase that produces different scenarios when simulated with different seeds. By adding
randomness and simulating the same testcase with several different seeds, the same test should be
able to hit multiple coverage points, effectively replacing multiple directed testbenches. For
example, in the S2P simulation model with the coverage points as identified in the previous
section, the entire packet lengths can be covered by a single test when the simulation is run with
various seeds. Similarly, in the FIFO design, the complex coverage goal requirement for the
generation of PUSH and POP when the FIFO is full is achieved by simple random tests executed
with several seeds.

The randomization seed can be changed using SystemVerilog constructs. Some tools might also
provide other ways to change the randomization seed. To modify the seed in the Synopsys VCS
simulator, use the run time switch: +ntb_random_seed=<number> to transfer the initial
seed to the simulator.

8.10 CHANGING ERROR SEVERITY DYNAMICALLY

One of the common requirements in any practical verification setup is the ability to change the
severity level of certain groups of messages on the fly during a simulation run. For example,
while a certain portion of the design is undergoing major change in the RTL code, the verification
environment might start flagging failures for the correct reasons that the RTL is misbehaving.
But given that this specific portion of the RTL code is undergoing changes, you may want to
temporarily lower the severity of these errors to WARNING. Another good example is the
concept of negative tests - tests that are inducing invalid/error scenarios to make sure that the
system can safely handle such erroneous operations. One of the problems with such negative
tests in a simulation run is that the verification environment flags these errors (assertion
failures7, data integrity, missing packets etc.). One option for the users is to carefully analyze
each and every error occurrence and guarantee that these are indeed false failures. The problem
gets compounded when a negative test scenario is followed by a positive test scenario in a single
simulation run; in such cases the errors are false errors only during the negative testing period and
any error occurring during positive testing period is a potential design bug. A recommended
approach would be to be able to alter the severity of these errors (in general any messages) on the
fly within the test itself. In that case, the test developer knows exactly when to turn an error to a
warning and vice versa.

VMM provides this flexibility via its messaging service, vmm_log with a promotion and
demotion of messages. The function modify() allows the modification of the severity of a specific
(or all) messages issued through it. The prototype of the function vmm_log::modify() is shown in
Figure 8.10-1.

7 Provided assertions use a fail action block and the action block uses a vmm_log to emit the error
messages. For a sample, users are referred to the SVA Checker Library shipped along with VCS,
$VCS_HOME/packages/sva/sva_std_task.h

Advanced Topics 151

virtual function int modify
 (string name = "",
 string inst = "",
 bit recursive = 0,
 int typs = ALL_TYPS,
 int severity = ALL_SEVS,
 string text = "/./",
 int new_typ = UNCHANGED,
 int new_severity = UNCHANGED,
 int handling = UNCHANGED);

Figure 8.10-1 Prototype vmm_log:: modify

The usage of this function is quite simple. For example, Figure 8.10-2 demonstrates the demotion
of all errors.

class S2p_env extends vmm_env;
 // ..
 int log_change_id;

 function demote_bfm_errors;
 this.log_change_id = this.s2p_cmd_xactor_0.log.modify
 (.name(“/./”),
 .inst(“/./”),
 .new_severity(vmm_log::WARNING_SEV));

 endfunction : demote_bfm_errors
endclass : S2p_env

Figure 8.10-2 Usage of vmm_log::modify for demotion (file ch8/pro_demo.sv)

There are two important steps in this process:

• Identify the log instance that requires the promotion/demotion

• Change the severity level

The second step is straight forward - specify what the new severity is (FATAL_SEV,
ERROR_SEV, WARNING_SEV, NORMAL_SEV, TRACE_SEV, DEBUG_SEV,
VERBOSE_SEV, DEFAULT_SEV, ALL_SEVS.). The first step is where VMM provides a
great deal of flexibility to the users. You can “identify” the message to be altered via a number of
ways:

• By specific log agent (shown in Figure 8.10-2 above).

• By specifying the name and/or instance of the log agent

• By a specific text message being printed.

Such selection is string based, and VMM allows an awk programming style regular expression in
choosing them. For example, to alter the severity of all messages that have a key word “data
integrity”, one can use the code shown in figure 8.10-3.

152 A Pragmatic Approach to Adopting VMM

class S2p_env extends vmm_env;
 // ..
 int log_change_id;

 function demote_data_integrity_errors;
 this.log_change_id = this.log.modify
 (.name(“/./”),
 .inst(“/./”),
 .text(“/data integrity/”),
 .severity(vmm_log::ERROR_SEV)
 .new_severity(vmm_log::WARNING_SEV));

 endfunction : demote_data_integrity_errors
endclass : S2p_env

Figure 8.10-3 Selection by message text. (file ch8/pro_demo.sv)

Advanced Topics 153

8.11 FILE STRUCTURE

Table 8.11 demonstrates the file Structure and the purpose of each file.

Table 8.11 File Structure and Functions

/ch8/ch8_fifo_fcov directory: FIFO Coverage through Callback

File Function Used by
fifo_pkg.sv Defines types and initialized variables ALL
fifo_if.sv Defines the FIFO interface RTL and by program,

testbench, transaction
and transactors

fifo_csr_if.sv Defines the FIFO configuration interface RTL, property models,
and by environment, and
possibly transactors

fifo_xactn.sv Defines the transaction class with the constraints
Also used for the channel generation with:
 `vmm_channel (Fifo_xactn)

`vmm_channel macro for
generation of channel,
`vmm_atomic_gen
macro for generation of
atomic generator,
monitor transactor for
creation of transaction
from observed values on
bus interface.

fifo_rtl.sv Represents the FIFO RTL DUT Top level
fifo_props.sv Defines the properties for assertions Top level for bind
fifo_log_fmt.sv Defines formatting information for display FIFO environment
fifo_pgm.sv Creates the modeling for simulation and initiates the

run in the environment
Top level

fifo_env.sv Creates the build and start for simulation program
fifo_mon_xactor.sv Creates a copy of the observed transaction onto a

transaction channel
Scoreboard, top level

top_tb.sv Represents the top level and instantiates the RTL,
the bind, the monitor, etc

none

fifo_gen_xactor.sv Uses the macro `vmm_atomic_gen for generation of
atomic generator, defines the constraints for the
number of transactions

 Environment for
creation of the build
model,

inject_err.sv Error injection classes Command transactor
fifo_fcov_model.sv Functional Coverage model for FIFO Environment
fifo_fcov_cb_defs.sv Callback definitions for the FIFO model Command transactor

154 A Pragmatic Approach to Adopting VMM

/ch8/ch8_s2p_scen_gen directory: Scenario Generator

File Function Used by
s2p_if.sv Defines the Serial-to-Parallel interface RTL and by program,

testbench, transaction
and transactors

s2p_xactn.sv Defines the transaction class with the constraints
Also used for the channel generation with:
 `vmm_channel (S2p_xactn)

`vmm_channel macro for
generation of channel,
`vmm_atomic_gen
macro for generation of
atomic generator,
monitor transactor for
creation of transaction
from observed values on
bus interface

s2p_rtl.sv Represents the S2P RTL DUT Top level
s2p_log_fmt.sv Defines formatting information for display. S2P environment
s2p_pgm.sv Creates the modeling for simulation and initiates the

run in the environment
Top level

s2p_env.sv Creates the build and start for simulation program
s2p_mon_xactor.sv Creates a copy of the observed transaction onto a

transaction channel.
Scoreboard, top level

top_tb.sv Represents the top level and instantiates the RTL,
the bind, the monitor, etc

none

s2p_scen_gen.sv Uses the macro `vmm_scenario_gen for generation
of scenario generator.

 Environment for
creation of the build
model,

s2p_scenario_defs.sv Contains scenario definition class with constraints Environment

Advanced Topics 155

/ch8/ch8_s2p_scheduler directory: Channel Scheduler

File Function Used by
s2p_if.sv Defines the Serial-to-Parallel interface RTL and by program,

testbench, transaction
and transactors

s2p_xactn.sv Defines the transaction class with the constraints
Also used for the channel generation with:
 `vmm_channel (S2p_xactn)

`vmm_channel macro
for generation of
channel,
`vmm_atomic_gen
macro for generation of
atomic generator,
monitor transactor for
creation of transaction
from observed values on
bus interface.

s2p_log_fmt.sv Defines formatting information for display. S2P environment
s2p_gen_xactor.sv Uses the macro `vmm_atomic_gen for generation of

atomic generator, defines the constraints for the
number of transactions

 Environment for
creation of the build
model,

s2p_asink.sv Creates artificial sink for verifying the scheduler
model

 Environment for
verifying the scheduler
output

s2p_scheduler_env.sv Creates the scheduler and the envrionment program
s2p_pgm.sv Creates the modeling for simulation and initiates

the run in the environment
Top level

top_tb.sv Represents the top level and instantiates the RTL,
the bind, the monitor, etc

none

/ch8/ch8_eth_bcast directory : Channel Broadcater

File Function Used by
eth_xactn.sv Defines the transaction class with the constraints

Also used for the channel generation with:
 `vmm_channel (Eth_xactn)

`vmm_channel macro
for generation of
channel,
`vmm_atomic_gen
macro for generation of
atomic generator.

eth_log_fmt.sv Defines formatting information for display ETH environment
eth_asink.sv Creates artificial sink for verifying the Broadcaster

model
 Environment for
verifying the broadcaster
output

eth_gen_xactor.sv Uses the macro `vmm_atomic_gen for generation of
atomic generator, defines the constraints for the
number of transactions

 Environment for
creation of the build
model

eth_bcast_env.sv Creates the scheduler and the envrionment program
eth_bcast_pgm.sv Creates the modeling for simulation and initiates

the run in the environment
Top level

eth_top.sv Represents the top level and instantiates
environment

none

156 A Pragmatic Approach to Adopting VMM

Chapter 8 Questions and LAB

Q1. Why are scenario generator needed? Why can’t atomic generator be used instead?

Q2. What technique can be used to define a constraint for a sequence that has 3 PUSH, 2
IDLE, 4 POP instructions?

Q3. How do I repeat a scenario few times?

Q4. Why do I get a default atomic transaction when I use `vmm_scenario_gen macro?

Q5. I created a scheduler using vmm-scheduler – what is the quickest way to verify its
behavior without going through very many DUT simulation cycles?

Q6. In VMM scheduler, how do I get a pure random scheduling (not the default round
robin scheme)?

Lab08
See instructions in subdirectory lab/lab08/todo/readme.txt.

