

1 VMM FRAMEWORK

New technologies are needed to verify today’s ever larger and more complex designs. These
technologies came in the form of new languages such as Open Vera, e and recently
SystemVerilog. However, having a powerful language alone was not sufficient to handle these
designs as every design team had to find a way to make use of the extensive list of features in the
language to address the problems at hand. New methodologies and frameworks appeared to
handle the verification tasks, including Transaction-Level Modeling (TLM)1, Reference
Verification Methodology (RVM)2, Advanced Verification Methodology (AVM)3, and Universal
Reuse Methodology (uRM).4 In mid 2005, Synopsys and ARM collaborated and published an
open verification methodology built on the strong concepts of RVM, and the result was a
document – The Verification Methodology Manual (VMM) for SystemVerilog – supplemented
with a set of SystemVerilog libraries (classes and macros).5 VMM supports transaction-based
verification (TBV), directed verification, coverage-driven verification (CDV), constrained-
random testing (CRT), and assertion-based verification (ABV), and proposes an optimal usage of
each of these advanced techniques. This chapter addresses the features that SystemVerilog
provides in the field of verification, and why VMM represents a viable framework for
verification.6 In this chapter, we present a short review of the SystemVerilog constructs used in
testbenches along with an overview of a typical VMM compliant testbench architecture.

1 Transaction Level Modeling: An Overview http://www.ics.uci.edu/~gajski/presentation/Transaction.ppt
2 Synopsys, http://www.synopsys.com/products/simulation/pioneer/pioneer_ntb.html
3 Mentor Graphics, http://www.mentor.com/products/fv/news/questa_avm.cfm
4 Cadence, Incisive Plan-to-closure Methodology http://www.cadence.com/
5 VMM is an adaptation of RVM for SystemVerilog documented in the book Verification Methodology
Manual for SystemVerilog, Springer 2006. Additional information on VMM is available at
http://vmm-sv.org/
6 This book addresses SystemVerilog and VMM only and makes no attempt to compare languages or other
frameworks.

2 A Pragmatic Approach to Adopting VMM

1.1 FRAMEWORK

What is a framework? The dictionary defines it as:7
1. A structure for supporting or enclosing something else, especially a skeletal

support used as the basis for something being constructed.
2. An external work platform; a scaffold.
3. A fundamental structure, as for a written work.
4. A set of assumptions, concepts, values, and practices that constitutes a way of

viewing reality.

In software development, a framework is a defined support structure in which another software
project can be organized and developed. A framework may include support programs, code
libraries, a scripting language, or other software to help develop and glue together the different
components of a software project. The word "framework" has become a buzzword due to recent
continuous and unfettered use of the term for any generic type of libraries.

A software framework is a reusable design for a software system (or subsystem). This is
expressed as a set of abstract classes and the way their instances collaborate for a specific type
of software (Johnson and Foote 1988; Deutsch 1989). Most software frameworks are object-
oriented designs. Although designs don't have to be implemented in an object-oriented language,
they usually are.

VMM is a framework for the verification of hardware FPGA and ASIC designs, and is built with
SystemVerilog as its supporting language.8 VMM provides the support environment to create a
reusable and extensible testbench in a transaction-level style. As such, you need to understand
how to use this framework. In this book we will demonstrate how the various concepts and
libraries are used to build such a testbench. These concepts are introduced in this chapter and are
explained in the subsequent chapters.

1.2 WHY SYSTEMVERILOG FOR VERIFICATION

SystemVerilog is a rich language that provides constructs needed to support advanced
methodologies for verification of today’s complex designs. These methodologies include
transaction-based verification (TBV), coverage-driven verification (CDV), constrained-random
testing (CRT), and assertion-based verification (ABV). Directed testcases is another
methodology that, despite its low productivity rate, continues to be required to exercise deep
corner cases or initialization of DUT. A proper methodology must be able to support directed
tests – but directed tests should not be the primary verification approach.

Functional coverage can be further divided into temporal coverage (with SystemVerilog
assertions (SVA)), and data coverage (with covergroup). A good transaction-based verification
methodology with CRT relies on constrained randomization of transactions and the channeling of
those transactions to transactors for execution (i.e., driving the device under test (DUT) signals
for testing). These methodologies can use the collection and access of functional coverage so as
to dynamically modify the test scenarios. An adaptation of these methodologies supported by
reusable libraries is explained in the book Verification Methodology Manual (VMM) for
SystemVerilog.

7 From http://www.answers.com/framework
8 Note: This framework can be implemented in another language. For example, RVM is the same
framework implemented using OpenVera. VMM could be implemented in SystemC.

VMM Framework 3

1.2.1 SystemVerilog Constructs Supporting Verification

A summary of the SystemVerilog constructs supporting verification is shown in Table 1.2.1

Table 1.2.1 SystemVerilog Constructs for Verification

SystemVerilog
Construct

Verification Application

Interface and virtual
interface

Encapsulates the communication between different components of the
design by grouping the signals used for communication, capturing legal
and illegal behavior of these signals via assertions, covergroup etc.

Class and virtual class Fundamental building block for an Object-Oriented Verification
environment. Builds reusable extensible classes for the definition of
constrained-random variables and the collection of supporting tasks
related to common objectives.

Constraint Provides a way to constrain random generation. Pure random generation
is almost never useful for practical designs. However, constraints and
their associated methods lay the foundation for CRT in SystemVerilog.

Mailbox / Queue Provides channeling and synchronization of transactions and data. May
also be used by scoreboard for verification

Clocking block Identifies clock signals, and captures the timing and synchronization
requirements of the blocks being modeled. Provides a synchronous
communication between testbench and design.

Program block Provides an entry point to the execution of testbenches. Creates a scope
that encapsulates program-wide data. Provides a syntactic context that
specifies scheduling in the Reactive region. Creates a clear separation of
testbench and design, thereby eliminating potential race conditions when
the same design constructs are used to model testbenches.

covergroup Provides a way to measure verification effectiveness by capturing parts
of traditional test plan in an executable fashion. Provides coverage of
variables and expressions, as well as cross coverage between them.

Assertions, cover
(SystemVerilog
Assertions)

Captures temporal behavior of the design as assumptions, checks those
behaviors, and provides functional coverage and reporting of
information upon error. Assertions can interact with the testbench.

API Supports Application Programming Interface (API) for assertions and
coverage.

The SystemVerilog class construct deserves some explanation because classes are core to the
VMM methodology. A class is a collection of data (class properties) and a set of subroutines
(methods) that operate on that data.

• Classes can be inherited to extend functionality.
• Classes can be virtual (requiring a subclass or derived class)
• Classes can be used to build libraries for common functions, e.g., VMM.
• Classes must be instantiated (i.e., create an object) and allocated (i.e., create storage) to

be used.
• The randomize function can be used to randomize class variables (that are qualified via

rand; individual randomization of scalar variables is also possible).
• Classes can be typed and parameterized.
• Classes can be passed as objects (instance of class) to methods in other classes and to

mailboxes and queues.

4 A Pragmatic Approach to Adopting VMM

• Classes that need to interconnect to physical interfaces can use virtual interfaces that are
referenced to the appropriate SystemVerilog interfaces instances (e.g., DUT interface)

With the number of directed test cases exponentially increasing, it is becoming a huge task to
scale up that methodology to modern day designs. CRT provides a viable alternative as it puts
the burden on the machine rather than the user – the same test run with a different seed creates a
different set of scenarios. CDV works hand-in-hand with CRT to monitor the verification
progress.

SystemVerilog supports the generation of constrained-random values with the use of the
randomize function, the rand and randc type-modifiers, randcase and randsequence statements,
and the rich sets of constraints with the constraint construct.

Coverage is another important ingredient in the verification process because it provides feedback
on the progress of the verification effort. SystemVerilog supports two types of coverage:
temporal coverage with SVA’s cover, and data coverage with covergroup. It also allows them to
be used together. For instance a PCI abort condition can be detected via a SVA sequence, and the
slaves being addressed during such an abort condition can be monitored using covergroup, which
bins or groups the address space. The results of the coverage information may also be used to
create a reactive testbench based on the coverage information extracted dynamically during
simulation.

Assertions play a key role in the verification process as they provide a concise way to capture
design behavior spread across multiple and possibly varying numbers of clock cycles. In
addition, assertions can be tightly coupled to the verification environment through the action
blocks or calls to tasks from within an assertion thread. They also can be used as SystemVerilog
events. This interaction capability with the testbench can provide the following:

• Write to a variable, thus having the capacity to modify the flow of the testbench.

• Update user’s implementation of coverage. For example, bits of an initialized static
vector can be modified when an assertion (i.e., assert or cover) reaches a certain state
(e.g., passes or is covered). When that vector is all ONEs, then the desired coverage
is reached. In addition, SystemVerilog API can also extract coverage info.

• Upon a failure, write information about the failure, along with a text message that can
include all the relevant variables of the design, the local variables of the assertion
thread, simulation time, severity level, etc.

• SystemVerilog sequence can create an event when the sequence is finished, and that
is very useful to synchronize various testbench elements.

Note that assertions can be written in modules, programs, or interfaces. Assertions are not
allowed in classes. However, Chapter 6 demonstrates the capability, via callbacks, to copy class
properties (i.e., variables) to a debug SystemVerilog interface. This allows you to write within
the debug interface assertions derived from both the DUT interface and copies of the variables
defined in the class object.

VMM Framework 5

1.3 WHY VMM?

SystemVerilog is a vast language with a 550+ page LRM (on top of IEEE Standard 1364-2001
Verilog HDL). It is easy to get trapped in its landscape and use it in a sub-optimal way to achieve
the end goal - i.e., finding all bugs as efficiently as possible. A good methodology is the best way
to use the language to its optimum. Figure 1.3-1 shows the impact of such a methodology in
capturing the power of SystemVerilog. VMM represents a methodology supported by a standard
library that consists of a set of base and utility classes to implement a VMM-compliant
verification environment and verification components. VMM provides several benefits in the
construction of testbenches. These include unification in the style and construction of the
testbench and in the reporting of information; speedy creation of a layered and reusable testbench;
and access to high-level tests using constrained random stimulus and functional coverage to
indicate which areas of the design have been checked.

Figure 1.3-1 Impact of VMM Methodology in Capturing the Power of SystemVerilog

The VMM consists of several base classes as shown in Figure 1.3-2, and described in the VMM
for SystemVerilog book. A brief definition of those base classes is presented below.

vmm_data: This class type is used to build the data model (e.g., transactions). It contains
constraints for valid random values and ultimately randomization.

vmm_log: This is a message class, allowing the users to have consistent, flexible, and
controllable message processing. This class allows the display of complex messages. It is
supported by several macros to facilitate the issuance of messages.

© 2005 Synopsys, Inc. (12)

Good Methodology is Essential to Good Methodology is Essential to
Capture the Power of SystemVerilogCapture the Power of SystemVerilog

Classes Inheritance

Virtual Methods

Coverage Points

Coverage Groups

Assertions

Assertion Coverage

Constraints
Solver

Random Generation

Verification IP

Coverage-Driven

Self-Checking

Abstraction

Transactors

Configuration

Messages

Events
Pass/Fail

Data Structures

Interfaces

SystemVerilog LanguageSystemVerilog Language
FeaturesFeatures

Verification Methodology
Manual for SystemVerilog

(RVM)(VMM)

Find More BugsFind More Bugs
in Less Time!in Less Time!

© 2005 Synopsys, Inc. (12)

Good Methodology is Essential to Good Methodology is Essential to
Capture the Power of SystemVerilogCapture the Power of SystemVerilog

Classes Inheritance

Virtual Methods

Coverage Points

Coverage Groups

Assertions

Assertion Coverage

Constraints
Solver

Random Generation

Verification IP

Coverage-Driven

Self-Checking

Abstraction

Transactors

Configuration

Messages

Events
Pass/Fail

Data Structures

Interfaces

SystemVerilog LanguageSystemVerilog Language
FeaturesFeatures

Verification Methodology
Manual for SystemVerilog

(RVM)(VMM)

Find More BugsFind More Bugs
in Less Time!in Less Time!

6 A Pragmatic Approach to Adopting VMM

vmm_env: This is the environment manager base class. It controls the instantiation of other
classes, resets/starts/stops those classes, registers callbacks, and manages the overall flow of the
simulation. It allows a test to be as simple as an instantiation of this class and the invocation of
the environment’s run task.

vmm_xactor: This is the base class used for the generators, drivers (e.g., BFMs), monitors and
checkers. It is also optionally used for the scoreboard and coverage classes, as well as for other
auxiliary transactor classes.

xvc_xactor: System-level transactors referred to as an extensible verification component (XVC).
XVCs provide a foundation for modular, scalable and reusable system-level verification
environments, with the aim of minimizing test set-up overhead. XVCs can be used to drive block
interconnect infrastructures or external interfaces. They can also support other XVC components
by monitoring system state and providing notification information.9

Figure 1,3-2 VMM Basic Base Classes

The major differences between a VMM compliant testbench and a conventional transaction-based
testbench include the following aspects:

1. The formalization of the sequencing of steps taken during the verification cycle. This is
explained in Chapter 4 in the discussion of the environment.

2. The methodology used to generate and consume transactions, including the automation
with the use of VMM macros. This is explained throughout the book.

3. The methodology and support used to adapt transactions to modifications through
factories and callbacks. This is explained in Chapter 5 and 6.

4. The level of support using the various base-class methods. This is explained throughout
the book

5. The methodology used to report logging and status information. This is explained and
used throughout the book.

9 XVC is not addressed in this book.

Message
Service

vmm_log

Simulation
Control

vmm_env

Data and
Transactions

vmm_data

Interfacing
Transactors

vmm_channel

Extensible
Verification
Component

xvc_xactor

VMM

Transactors

vmm_xactor

VMM Framework 7

1.4 TESTBENCH ARCHITECTURE WITH VMM

Fundamentally, VMM recommends a layered approach to building verification environments.
While layered testbench concepts have been around for several years now, there has not been any
common definition. The different interpretations of the layered testbench concept caused the
design of different verification environments even within the same organization.10 Experience
has shown that such heterogeneous verification environments lead to too much redundancy. For
example, verification IP developed by one group doesn’t fit easily into a slightly different
project/environment. A significant amount of effort can be saved when different teams follow a
unified methodology in the architecture of testbenches. For this to become reality, a reference
verification architecture that is flexible enough to cater to various domains must be developed.
VMM is the industry’s first such non-proprietary, open, standard language-based verification
methodology.

The basic idea of a transaction-level methodology, such as VMM, is to separate the transaction
from the transactor. While there are various definitions for these terms, we define a transaction
as an operation that represents the job to be performed, such as Read / Write / Idle. Transactions
are implemented with a class extended from the vmm_data base class. For example, a
transaction may consist of the following:

1. Instruction. This represents the high-level tasks to be executed, such as a READ,
WRITE, NO-OP, LOAD, etc.

2. Data. This represents information such as address, data, number of cycles, etc.
3. Parameters. This can represent a mode, a size, path, etc.

In VMM, a transactor is a generic name, and there are several kinds of transactors such as
generators, drivers, monitors, scoreboards, etc. A direct equivalent of a typical VMM transactor
is what’s conventionally known as a BFM (Bus Functional Model) at the lower level. In this book
we refer to a BFM type of transactor as a “command transactor” that accepts transactions and
sends then to the DUT according to the underlying protocol.

Transactors are the workhorses of a transaction-based verification (TBV) environment; they
perform the actual job of transferring the data (transaction) to other units to perform a task, such
as driving the DUT pins or driving the verification scoreboard.

This concept is represented in Figure 1.4 where, in constrained-random testing, the transactions
defined in a transaction class are randomized with a generator and are sent to a transactor via a
channel for the execution of those transactions. A channel is an object that holds handles (i.e.,
links) to transaction objects, and behaves like a queue of handles to those objects. A channel
supports methods to put and get transactions form the queue. The put method blocks if there is
no room in the channel to insert another transaction. When the transactor is ready to process
another transaction, it extracts the next transaction from the channel via the get method. The
transactor then proceeds to execute the retrieved transaction. Transactions and transactors are
addressed in Chapters 2, 3, and 5.

Note that the use of a channel provides several advantages, including the buffering and separation
between the generation and the consumption of the transactions. A second advantage is the
simplicity in clock synchronization between the generation and consumption side of the
transactions. Specifically, they do not need to be synchronized to a common clock because the
insertion and extraction of transactions is separate. A third advantage is the capability to easily
modify the transactions through callbacks to provide changes, such as error injection. A fourth

10 Note: the layers in the environment and testbench are conceptual more than structural. Everything is still
instantiated in a flat manner.

8 A Pragmatic Approach to Adopting VMM

advantage is the ability to generate (and even consume) the transactions with different
agents/transactors. This is useful for reusability.

Channels maybe implemented with queues, or mailboxes, or some other data structure, but from a
user standpoint they are superior to raw SystemVerilog queues or mailboxes. This is because
channels are well supported by a rich variety of methods and classes to create needed verification
testcases and environments. For example, vmm_channel supports complex requirements in
handling transactions in channels (e.g., out-of-order execution model) with methods that let
transactors query the execution progress of a transaction directly from the channel itself.
vmm_broadcast allows multiple consumers to extracting transaction descriptors from a channel,
while vmm_scheduler lets multiple sources add descriptors to a single channel.11

Figure 1.4 High-level View of the Testbench

1.4.1 Layered testbench architecture

One of the key aspects of reusable design is a layered architecture, as shown in Figure 1.4.1. It
provides:

• Abstraction at different levels in the verification infrastructure.
• Easy plug-and-play with different levels of DUT abstraction.
• Concurrent development of various Verification environment pieces.

11 Chapter 2 addresses channels, while channel 7 covers advanced topics in the use of channels.

Environment

Testbench

DUTDUT

Clock
generators

DUT
Interfaces Transactions

Command
Transactor

Monitor
transactors

scoreboard

Program

Generator Channel

Channel

VMM Framework 9

Figure 1.4.1 Layered Verification Environment Architecture

1.4.1.1 Command Layer

The command layer (a.k.a. Bus-Functional Model (BFM) layer) is the lowest layer where
bit-wiggling per the bus interface protocol is defined. This layer is the least reusable (except for
some standard protocols like PCI, AHB etc.). Examples: signal-level details of tasks such as
read, write, drive a packet, etc.

1.4.1.2 Functional layer

This is an optional layer above the BFM layer that models the “functionality” of the system, and
has no knowledge of the bus interface protocol. For example:

• Perform a DMA transfer.
• Store an image to memory (e.g., that is processed through PCI or AHB in the BFM).

1.4.1.3 Generation/Scenario layer

This layer is responsible for the generation of meaningful, interesting scenarios, which are
sequences of transactions. For example, considering a SoC with multiple peripherals, a scenario
can be a USB transfer of an image from an external memory card followed by the storage of that
image onto a CD. To simulate this kind of scenario, one needs to generate first a write-to-mem
via USB, then a read-from-memory via a CD-Interface. However, the requirement is that the
address in the second transfer should be the same as the previous transfer (to put that same image
onto the CD). Note that in a directed test, this layer is temporarily bypassed or altogether absent.

1.4.1.4 Interaction between the different layers

One of the challenges in building a layered environment is to decide how the layers communicate.
A direct reference to the other layer will break the rules of reuse, maintenance, concurrent
development etc. One way to prevent this is to have a generic medium of interlayer
communication that provides isolation between the producers of transactions and the consumers

10 A Pragmatic Approach to Adopting VMM

of those transactions. VMM channels are excellent candidates for such a requirement. At every
layer, the producer can put transactions into a channel while the consumer can extract
transactions from this channel. These channels are local to individual layers and hence
completely independent of each other. These can be initialized through a constructor (e.g., the
new() function in SV). A final environment layer can hook up individual layers and connect their
channels accordingly.

1.4.2 Testbench Outline

Figure 1.4.2 represents a structural view of the testbench. The testbench includes the following
objects:

1. Interface instantiations: These are the DUT interfaces to provide the connection
between the stimulus drivers/monitors and the DUT.

2. Program instantiations: The program provides the control for testing the DUT. A
testbench may contain more than one program.

3. DUT instantiations: These are the devices under test.

4. Binding of property modules to DUT instances: Property modules typically include
assertions and coverage requirements.

5. Clock generators: These generators emulate the clocks in the system.

 Figure 1.4.2 Testbench Structure

Chapter 4 provides details about the modeling of the environment and the testbench.

bind RTL
to property

module

DUT
RTL

Clock
generator

 Interfaces

Test
Program

CLASSES
* support
* transaction
* transactor
* libraries

Property
module

TESTBENCH

VMM Framework 11

Chapter 1 Questions12

Q1. Why does VMM, based on SystemVerilog, use an object-oriented (OO) approach? Why
are classes used instead of modules?

Q2. Why is SystemVerilog a suitable language to create a verification framework?

Q3. Why is a framework such as VMM useful for the design of testbenches?

12 See Appendix A for answers to questions

12 A Pragmatic Approach to Adopting VMM

