

2 VMM TRANSACTIONS AND
CHANNELS

This chapter addresses the definition of transactions and channels. Since we use a FIFO as the
DUT model, a description of the FIFO controller model and interface is first.

14 A Pragmatic Approach to Adopting VMM

2.1 THE DUT

The design under test (DUT) used throughout the book is a synchronous first-in first-out (FIFO)
model as shown in Figure 2.1-1. The model consists of two blocks: the FIFO block and the
configuration block. The FIFO block is a simple synchronous FIFO controller with PUSH, POP,
and RESET commands. Upon a PUSH, the data_in is stored into the FIFO internal memory.
Upon a POP, data_out provides in the same cycle the data off the stack. Five flags are provided:
full, empty, almost_full and almost_empty flags to identify the status of the FIFO, and an error
flag to identify an erroneous PUSH on full or POP on empty. The active low reset_n resets the
FIFO to the empty state. The configuration block can be used by an external controller to
configure the levels of the almost_full and almost_empty flags. However, this design can work
without such external controls because a hard reset configures those levels to a default mid-level
value.

In the design of the DUT we have a choice in port style for the definition of the interconnections:
SystemVerilog interfaces or ports-only a la Verilog’95. This decision is irrelevant to the
testbench design because the top-level connections of a SystemVerilog interface instance to the
DUT instance can accommodate either style. Thus, the ports of a DUT can be specified as either
ports-only a la Verilog style, or with interfaces a la SystemVerilog style as shown in Figure 2.1-2.
Some designers use the SystemVerilog interface definition in the RTL design. Others restrict the
design to the Verilog style with individual port signals, instead of grouping the signals with
SystemVerilog interfaces. If SystemVerilog interfaces are not defined, it is necessary for the
verification engineer to define such interfaces at the top-level block. This is because VMM
requires that SystemVerilog interfaces representing the DUT port interconnections be made
available to the testbench. This facilitates the connections to the verification environment defined
in classes through the use of virtual interfaces. We selected for our DUT FIFO the use of
SystemVerilog interfaces because the SystemVerilog interface abstracts the communication
across several modules, but a port-only style would have been acceptable since the port style has
no significant impact on the testbench – the changes are only at the top level interconnection of
the DUT instance to the SystemVerilog interface instance.

The SystemVerilog LRM states “The interface construct in SystemVerilog was specifically
created to encapsulate the communication between blocks. By encapsulating the communication
between blocks, the interface construct also facilitates design reuse. Note that other items can be
specified within interfaces include clocking blocks, modports, assertions, and covergroups. An
interface may also have tasks and assertions associated with the operation of the signals of the
interface. VMM (rule 4-9) recommends that the definition of tasks associated with the interface
be located in classes and subclasses (typically in command transactors), not defined in the
interface. This is because interfaces are not object-oriented, and functions and tasks cannot be
defined as virtual. Thus, they cannot be redefined to behave differently, such as inject errors or
adapt to a new algorithm. Examples of tasks include a push_task, a pop_task. Interface
assertions relate to the properties or timing relationships of those signals. As a methodology, an
interface *should* capture assertions related to its signals. 1

Figure 2.1a demonstrates that the FIFO model includes the two separate blocks, each with its own
SystemVerilog interface: the FIFO block with the the fifo_if interface for the normal operation of
the FIFO device, and the configuration block with the fifo_csr_if interface for the configuration

1 From VMM Chapter 3 on assertions “Applying assertions to external interfaces treats the DUT as a black
box. It is concerned with the correct function of the design, regardless of its implementation. “

VMM Transactions and Channels 15

of FIFO levels. The configuration block includes configuration registers to be setup by the
environment during DUT initialization.

clk
reset_n

data_in
push
pop

full
data_out

empty
error

csr_rd,
csr_wr,
csr_addr

csr_data

almost_empty

almost_full

Configuration
Block

FIFO
Block

FIFO
fifo_csr_if

fifo_if

Figure 2.1-1 FIFO Interfaces (fifo_if and fifo_csr_if)

Figure 2.1-2 Port Styles of DUT Ports

Various type definitions are used throughout the design and the testbench, and are specified in the
fifo_pkg.sv package as shown in Figure 2.1-3.

DUT

Interfaces
clocks
resets

DUT

Interfaces
clocks
resets

DUT

Ports
clocks
resets

Interfaces

Interfaces and Ports
SystemVerilog Style

Ports only
Verilog Style

16 A Pragmatic Approach to Adopting VMM

package fifo_pkg;
 timeunit 1ns;
 timeprecision 100ps;
 `define TOP fifo_tb
 typedef enum {PUSH, POP, PUSH_POP, IDLE, RESET} fifo_scen_e;
 typedef enum {PUSH_MODE, POP_MODE} mode_e;
 typedef enum {PASSED, FAILED} fifo_status_e;
 typedef enum {DONE_GEN, DONE_BFM} notification_e;
 parameter BIT_DEPTH = 4;
 parameter FULL = 16;
 parameter WIDTH = 32;
 typedef logic [WIDTH-1 : 0] word_t;
 typedef logic[31:0] wword_t;
 typedef logic [WIDTH-1 : 0] wire_word_t;
 typedef word_t [0 : (2**BIT_DEPTH-1)] buffer_t;
 parameter ALM_EMPTY_REG = 2'b00;
 parameter ALM_FULL_REG = 2'b01;
endpackage : fifo_pkg

Figure 2.1-3 Common Type and Parameter Definitions (ch4_fifo/fifp_pkg.sv)

Figure 2.1-4 demonstrates the FIFO interface with the modports and clocking blocks used
throughout the design and the testbench.2

interface fifo_if(input wire clk,
 input wire reset_n);
 timeunit 1ns;
 timeprecision 100ps;
 import fifo_pkg::*;
 logic push; // push data into the fifo
 logic pop; // pop data from the fifo
 wire full; // fifo is at maximum level
 wire empty; // fifo is at the zero level (no data)
 logic almost_empty, almost_full;

 logic error; // fifo push or pop error
 word_t data_in;
 wire_word_t data_out;
 parameter HOLD_TIME=3;
 parameter SETUP_TIME = 5;

 clocking slave_cb @ (posedge clk);
 default input #5ns output #HOLD_TIME;
 output empty, full, data_out, error;
 input data_in, push, pop;
 endclocking : slave_cb

2 VMM recommendations in the use modport and clocking block are defined in VMM Rule 4-8, Rule 4-9,
Rule 4-11, Rule 4-12

VMM Transactions and Channels 17

clocking driver_cb @ (posedge clk);
 default input #SETUP_TIME output #HOLD_TIME;
 input empty, full, data_out, error;
 output data_in, push, pop;
 endclocking : driver_cb

 // FIFO DUT view of the interface
 modport fslave_if_mp (clocking slave_cb,
 output empty,
 output full,
 output data_out,
 output error,
 output almost_empty,
 output almost_full,
 input data_in,
 input push,
 input pop);

 // FIFO driver view of the interface
 modport fdrvr_if_mp (clocking driver_cb);

// FIFO Monitor view of the interface.
 clocking mon_cb @ (posedge clk);
 default input #SETUP_TIME output #HOLD_TIME;
 input empty, full, data_out, error;
 input data_in, push, pop;
 endclocking : mon_cb

 modport fifo_mon_if_mp (clocking mon_cb);

endinterface : fifo_if

Figure 2.1-4 FIFO Interface (file ch4_fifo/fifo_if.sv)

Figure 2.1-5 represents the FIFO configuration register interface.

interface fifo_csr_if (input clk, reset_n);
 timeunit 1ns;
 timeprecision 100ps;
 logic csr_rd, csr_wr; // configuration read, write
 logic [1:0] csr_addr; // configuration reg address
 logic [4:0] csr_data; // configuration reg data

modport fifo_ctl_mp (input csr_rd, csr_wr, csr_addr,
 inout csr_data);

endinterface : fifo_csr_if

Figure 2.1-5 FIFO Configuration Register Interface (file ch4_fifo/fifo_csr_if.sv)

18 A Pragmatic Approach to Adopting VMM

Partial code for the FIFO DUT is shown in Figure 2.1-6, with the full code available in the
download. The FIFO port connections include the clock, the reset, and the FIFO interface with
the slave modport fifo_if.fslave, and the configuration interface with the control modport.
fifo_csr_if.fifo_ctl_mp

module fifo (input clk,

 input reset_n,
 fifo_if.fslave_if_mp f_if,
 fifo_csr_if.fifo_ctl_mp f_csr_if
);
// Note: We’re using a modport in the DUT instead of
// an interface to avoid any accidental RTL writes to an input
// This is a good coding guideline.
 timeunit 1ns;
 timeprecision 100ps;
 import fifo_pkg::*;
 logic [4 : 0] wr_addr;
 logic [4 : 0] rd_addr; // read fifo address
 typedef enum {NONE, PUSH, POP, PSPP} push_pop_e;
 buffer_t buffer; // fifo storage
 parameter shiftVal = int'(2**BIT_DEPTH);

 logic [4:0] fifo_level, csr_almost_empty, csr_almost_full;
 // Push on full with no pop error
 property p_push_error;
 @ (posedge clk)
 not (f_if.push && f_if.full && !f_if.pop);
 endproperty : p_push_error
 ap_push_error_1 : assert property (p_push_error);

 // *** SEE DOWNLOAD FILE FOR FULL CONTENT ***
 …
endmodule : fifo

Figure 2.2b FIFO at RTL Level (ch4_fifo/fifo_rtl.sv)

2.2 TRANSACTION

VMM defines a transaction as an operation on an interface. A transaction can be abstract and
high-level, such as the reliable transmission of a TCP packet, or physical, such as a write cycle
on a APB. Interconnect. Thus, a transaction represents the job to be performed, such as Read /
Write / Idle. Figure 2.2-1 is a review of the testbench architecture to demonstrate the emphasis of
where in the environment the transactions and the channel reside. Transactions are typically
randomized and put into a channel by the generator. The transactions are then extracted (via the
get method) by the command transactor for processing (more on this in Chapter 3).

Transactions are implemented with a class extended from vmm_data base class.

VMM Transactions and Channels 19

Figure 2.2-1 Testbench Architecture with Emphasis on Transactions and Channels

What’s in a transaction class? The UML diagram, shown in Figure 2.2-2, summarizes the
important (but not all) elements of the class. Basically, a transaction class is an extension to base
class vmm_data, and includes:

1. A set of properties, also known as class variables. The properties characterized with the
rand qualifier can be randomized with the randomize function of the class instance.

2. A set of methods to support the class. The copy function is very important, and is
discussed further down.

vmm_data

+int stream_id
+int scenario_id
+int data_id

Fifo_xactn

+rand fifo_scen_t kind
+rand int data
+ rand int idle_cycles
+static vmm_log log

+new()
+copy()
+psdisplay(string prefix)
+allocate()
+is_valid()
+compare()

Properties
(variables)

Methods
(operations)

Base class

Figure 2.2-2 UMLdiagram for a Transaction

Environment

Testbench

DUTDUT

Clock
generators

DUT
Interfaces Transactions

Command
Transactor

Monitor
transactors

scoreboard

Program

Generator

20 A Pragmatic Approach to Adopting VMM

2.2.1 Extension to vmm_data

Using the FIFO example, the first line of the transaction class definition is:
class Fifo_xactn extends vmm_data;

vmm_data is the base class type used to build data models that flow from transactors to
transactors over time, such as a transaction model that flows from a generator to a transactor
through a channel.3 In contrast, configuration descriptors are example of classes that should not
be derived from vmm_data. A multi-dimensional look-up table in a scoreboard is another
example. Why is transaction class extended from vmm_data? Because vmm_data is part of the
VMM framework and it provides several support methods that operate on objects of that class. In
addition, transactions are usually passed across the environment through VMM Channels, and a
vmm_channel is a strongly typed SystemVerilog queue that can only carry vmm_data and its
derivatives.

2.2.2 Properties and Constraints

Following the class declaration line you define the properties or variables that describe the
transactions. Variables that need to be class randomized (e.g., class_instance.randomize()) must
be qualified with the rand attribute.4 Properties qualified with the rand will be randomized with
the automatically generated atomic or scenario generators via macros, which are discussed in
subsequent chapters. Types of objects to be randomized include address, data, modes, etc.

2.2.2.1 Properties

Figure 2.2.2.1-1 represents the properties and constraints for the FIFO model. The variable kind
identifies the possible instructions to be executed by the transactor. For readability the variable
kind should be of an enumerated data type. In our design, that type is
 typedef enum {PUSH, POP, PUSH_POP, IDLE, RESET} fifo_scen_e;

Ideally, you have to identify the variable kind to represent all possible independent tasks that the
transactor will execute. Because design requirements change, it is often difficult to predict all the
needed enumerations. In the case of the FIFO design, the new requirement is the need to create a
transaction that specifies a PUSH with a data error. As an afterthought, we considered adding to
the original type definition fifo_scen_e the enumeration PUSH_DATA_ERR to handle that case.
However, we wanted to demonstrate real life change in requirements and the capability of adding
changes to the execution of transactions through the use of factories and callbacks. These are
explained in subsequent chapters, but essentially, the approach we took is to substitute an IDLE
instruction with a PUSH instruction (as defined by the transaction) with bit errors. Not all IDLE
instructions will have this substitution, but rather, this is determined on the probability of
randomized variable to inject or not inject this error when the transaction calls for an IDLE
instruction.

In this model, the data represents the data to be stored into the FIFO via the data_in port; the
idle_cycles represents the number of idle cycles to be executed during the IDLE transaction; and
xactn_time is a variable that is intended to be used as a time stamp for debug purposes. An
alternative to the xactn_time is the use the timestamp built-in into the vmm_notify notifications in
vmm-data STARTED and ENDED. Those concepts are addressed in Chapter 7.

3 VMM Rule 4-55: Data and transaction model classes shall be derived from the vmm_data class.
4 VMM Rule 4-59: All class properties corresponding to a protocol property or field shall have the rand
attribute.

VMM Transactions and Channels 21

The log variable is of vmm_log class that implements an interface to the message service. VMM
requires that the log property of a transaction be declared static.5 By default all class properties
are automatic and are created and destroyed on the fly. However, a messaging service for
transactions should be unique to provide consistent messaging and to avoid a potential simulation
performance impact. There will be thousands of object instances created and destroyed
throughout a simulation, and it is needless to create so many of messaging service agents.

class Fifo_xactn extends vmm_data;
 import fifo_pkg::*;
 rand fifo_scen_e kind;
 rand word_t data; // in : data to push
 rand int idle_cycles;
 time xactn_time;
 static vmm_log log = new("Fifo_xactn", //name
 "class");6 // instance
 constraint cst_idle {
 idle_cycles inside {[1:3]};
 }

 constraint cst_xact_kind {
 kind dist {
 PUSH := 400,
 POP := 300,
 PUSH_POP :=200,
 IDLE := 300,
 RESET := 1
 };
 } // cst_xact_kind
…

Figure 2.2.2.1-1 Properties of FIFO Transaction (ch4_fifo/fifo_xactn.sv)

From vmm_log, the format of the function is:

 function vmm_log::new(string name,
 string instance,
 vmm_log under = null);

That creates a new instance of a message service interface, with the specified interface name and
instance name. In our example, we used:
 static vmm_log log = new(“Fifo_xactn”, “class”);

The log is displayed with the application of a messaging macro, such as `vmm_note.7 If we
modify the new function of the fifo_xactn class with the addition of a `vmm_note as shown in
Figure 2.2.2.3, then the note is displayed during the simulation run at every allocation of the
transaction object. For example,

Normal[NOTE] on Fifo_xactn(class) at 0.00 ns:
 New fifo_xactn

5 VMM Rule 4-58 All data classes shall have a public static class property referring to an instance of the
message service interface.
6 VMM Example 4-33. Declaring and Initializing a Message Service Interface
7 VMM Appendix A, vmm_log, Table A-2

22 A Pragmatic Approach to Adopting VMM

VMM is a flexible framework that adapts to users’ requirements. For example, VMM provides
the capability to globally set the message formatter to the specified message formatter instance. 8
With our changes to the log format, the result of the above `vmm_note would yield the following:

0.00 ns Fifo_xactn [Normal:NOTE] | New fifo_xactn9

2.2.2.2 Constraints

The constraints determine the legal (and reasonable) values that can be assigned to the random
variables. In our example we constrained the number of idle cycles and the distributed value of
the variable kind.

2.2.2.3 Methods

There are three groups of pre-defined vmm_data methods that need to be overloaded by the user
in the definition of a class derived from vmm_data.10 These include:

1. Basic methods: new(), allocate(), copy(), compare()
2. Debug method: psdisplay()
3. Physical handling methods: byte_pack(), byte_unpack(), max_byte_size(). Refer to the

VMM book for usage of methods.
Figure 2.2.2.3 demonstrates the methods used for the FIFO transaction class, including the new,
copy, allocate, and psdisplay. Except for the new, all methods in our code have a prototype and
extern definitions to enhance readability. This use of extern is a general software
recommendation. Note that if a method has arguments, then the arguments can have default
values at the prototype class definition level, but not in the external implementation level. We
specified the default values of a method at the prototype level.

class Fifo_xactn extends vmm_data;
…
 function new();
 super.new(this.log);
 `vmm_note(this.log, "New fifo_xactn");
 endfunction : new
 extern virtual function string psdisplay(string prefix = "");
 extern virtual function vmm_data copy(vmm_data to=null);
 extern virtual function vmm_data allocate();
 extern virtual function bit compare(vmm_data to,
 output string diff,
 input int kind = -1
);
endclass:Fifo_xactn

Figure 2.2.2.3 Transaction Methods in the Class (ch4_fifo/fifo_xactn.sv)

8 Throughout this book we modified the default message formatter using the function set_format
(vmm_log_format fmt), VMM Appendix A, vmm_log. Chapter 8 provides an explanation of the changes.
9 VMM page 372, Table A-2. Message Type and Severity for Shorthand Macros defines other macros
include: vmm_fatal(), vmm_error(), vmm_warning(), vmm_note(), vmm_trace(), vmm_debug(),
vmm_verbose(), vmm_report(), vmm_command(), vmm_transaction(), vmm_protocol() and vmm_cycle()
10 VMM Rule 4-76. All classes derived from the vmm_data class shall provide implementations for the
psdisplay(), is_valid(), allocate(), copy() and compare() virtual methods. VMM Appendix A, vmm_data
specifies the base methods.

VMM Transactions and Channels 23

2.2.2.3.1 new()

In the model, the new does not have any argument. The new function must call vmm_data::new
and pass the log object that was statically allocated.11

function new();
 super.new(this.log);
endfunction : new

2.2.2.3.2 allocate()

The allocate function is used for the factory pattern, and is explained in Chapter 5. The format is
as shown in Figure 2.2.2.3.2.

function vmm_data Fifo_xactn::allocate();

 Fifo_xactn fifo_xactn_local=new();
 allocate = fifo_xactn_local;
endfunction : allocate

Figure 2.2.2.3.2 allocate Function

2.2.2.3.3 copy()

The copy function is necessary to create a copy of the source transaction descriptor. The copy
function allows the creation of a duplicate of the transaction to be sent to a channel while
maintaining the original version pristine and ready to be modified by the original transactor that
modifies the transaction. For example, a transaction generator (atomic, scenario, or user-defined)
may need to update a transaction based on its previous value (e.g., increment the address), and
then send a copy of that modified transaction to a channel, thus keeping the versions stored in the
channel separate and distinct form the version being modified by the transaction generator. The
VMM recommends the implementation style shown in Figure 2.3.2.3.3.12

function vmm_data Fifo_xactn::copy(vmm_data to);
 Fifo_xactn cpy;

 if (to !=null) begin
 if (!$cast(cpy, to)) begin
 `vmm_fatal(log,
 "Attempting to copy a non fifo_xactn instance");
 return;
 end
 end else cpy =new;
 super.copy_data(cpy);
 cpy.kind = this.kind;
 cpy.data = this.data;
 cpy.idle_cycles = this.idle_cycles;
 copy = cpy;
endfunction : copy

Figure 2.3.2.3.3 Copy Function

11 VMM Appendix A, vmm_data, function new().
12 VMM Appendix A, vmm_data, Example A-7. Proper Implementation of the vmm_data::copy() Method
 Also, see page 385 for the model.

24 A Pragmatic Approach to Adopting VMM

2.2.2.3.4 compare()

The compare function is used to dynamically compare the predicted response to the observed
response.13 An example of the compare function is shown in Figure 2.2.2.3.4. For our simple
FIFO model, we did not make use of this function.

function bit Fifo_xactn::compare(vmm_data to,

 output string diff,
 input int kind
);
begin
 Fifo_xactn cmp;
 string tmp_str;

 compare = 1; // Assume success by default.
 diff = "";

 // Cast assign the vmm_data handle to an Fifo_xactn handle
 if (!$cast(cmp, to)) begin
 `vmm_fatal(this.log,
 "Attempting to compare to a non Fifo_xactn instance");
 compare = 0;
 diff = "Cannot compare non Fifo_xactn to Fifo_xactn";
 return;
 end

 // Compare the individual data members, and set compare to 0 and
 // the "diff" text string to "xxx field mismatched" on failure.

 if (this.data !== cmp.data) begin
 compare = 0; diff = {diff, "Data Mismatch "}; end
 if (compare == 0)begin
 diff = {"Fifo_xactn objects are not identical. Mismatched
field(s) is(are):\n", diff};
 end
end
endfunction

Figure 2.2.2.3.4 compare Function (/ch4_fifo_fifo_xactn.sv)

2.2.2.3.5 psdisplay(string prefix = "")14, 15

This is a useful function that returns an image of the current value of the transaction or data in a
human-readable string format. We used this function to display a message and the value of the
current transaction kind variable. The prototype of the function is:

 virtual function string psdisplay(string prefix = "");

13 For application example, see VMM Example 5-49. Checking In-Order Response for Multiple Output
Ports
14 VMM Rule 4-45 . All simulation messages shall be sent through the message service.
15 VMM Rule 4-76 . All classes derived from the vmm_data class shall provide implementations for the
psdisplay(), is_valid(), allocate(), copy() and compare() virtual methods.

VMM Transactions and Channels 25

. The body of the function with a user defined message for the FIFO transaction is:
 function string Fifo_xactn::psdisplay(string prefix);
 $sformat(psdisplay,
 "%s Fifo Xaction %s \n",
 prefix, this.kind.name());
 endfunction : psdisplay // ch4_fifo/ fifo_xactn.sv

In a transactor, one can apply this function as shown below:
 `vmm_note(this.log,
 $psprintf("Got a new fifo xaction from in_channel %s ",
 fifo_xactn_0.psdisplay())); // ch4_fifo/ fifo_cmd_xactor.sv

`vmm_note is a macro that provides a shorthand notation for issuing single-line note messages.
During simulation, the following message gets printed to the log file. With the default display
format, the log has the following look in two lines:

Normal[NOTE] on Fifo_cmd_xactor(class) at 1950.00 ns:
 Got a new fifo xaction from in_channel #0.0.0 Fifo Xaction PUSH

With our customized display format, we get the following look in one line:
1950.00 ns cmd_xactor [Normal:NOTE] | Got a new fifo xaction from
in_channel #0.0.0 Fifo Xaction PUSH

2.3 CHANNEL

Per VMM, the channel object is the primary transaction and data interface mechanism used by
transactors. 16 It can be used with any class that is derived from the vmm_data class. In our
example, as shown in Figure 2.3, a channel is used to connect the transaction generator to the
transactor. It can also be used to connect a bus monitor to the scoreboard.

Basically, a channel is a conduit built for a particular type of data object (derived from
vmm_data). A channel is a class that holds handles to transaction objects. It is implemented with
a bounded or unbounded queue of handles to transaction objects. However, channels can be
reconfigured for size.

Figure 2.3 Typical Use of Channels

2.3.1 Creation of channels

In the VMM framework, channels are generated with the macro `vmm_channel
(trasaction_class_name). This macro is typically added in the same file where the specified class
is defined and implemented. In our example, this macro is at the end of the file fifo_xactn.sv.

16 VMM Rule 4-111 A channel shall be used to exchange transactions between two transactors.

DUTDUT

Transactions

Transactors

Generator

26 A Pragmatic Approach to Adopting VMM

The macro creates an external class declaration with name Fifo_xactn_channel. In our example,
we used the following:

// This macro declares new derived class named:
// fifo_xactn_channel from vmm_channel
`vmm_channel (Fifo_xactn)

2.3.2 Access to Elements in a Channel

VMM framework provides a very rich set of methods that support channels, as shown in UML in
Figure 2.3.2. In our FIFO model we made use of the new, put and get methods. A description of
the most commonly used methods is provided below. However, vmm_channel supports
complex requirements in handling transactions in channels (e.g., out-of-order execution model)
with methods that let transactors query the execution progress of a transaction directly from the
channel itself. Refer to the VMM book for a description and application of these methods.

Figure 2.3.2-1 vmm_channel Properties and Methods

Transactions are transferred through a channel using the put and get tasks (provided in the created
channel) and the optional use of an offset (without an offset, the default of the task is used).
Figure 2.3.2-2 demonstrates the offset relationships of a channel queue. Note that the channel
offsets items can be ordered from either end. New transactions are stored by default at the tail of
the queue (i.e., -1), and are extracted by default from the head of the queue (i.e., 0). Also note
that there are two ways to define the offset:

Methods of
base class

VMM Transactions and Channels 27

1. Natural number (e.g., 0, 1, 2, .. n), where “0” is the head of the channel. Thus, an offset
of “1” represents the transaction prior to the one at the head of the queue.

2. Negative number (e.g., -1, -2, …-n) where “-1” is the tail of the channel. Thus, an offset
of -2 represents the transaction prior (or more recent) to the one at the tail of the channel.

 Figure 2.3.2-2 Offset Relationships of a Channel Queue

The created channel class provides several methods to put or get transactions into and out of the
channel. These methods include the put, get, peek, and sneak tasks, as described below. Channels
are blocking with the put and get tasks. If the channel is full, and the consumer is not ready to pull
from a full channel, then the producer will be blocked from adding more transactions. The
prototype for the put method is:

task put(class_name obj,
 int offset = -1); // tail is the default offset

The put inserts the transaction object at the specified offset. The task blocks if the channel is full.

task get(output class_name obj,
 input int offset = 0); // head is the default offset

The get task retrieves the next transaction at the specified offset. The task blocks if the channel is
empty.

Why are the put and get methods blocking when the maximum level of the channel is reached?
Those methods are blocking because this mechanism is a self-regulating control flow mechanism
where no transactor goes faster than the slowest of all transactors in a pipeline. The producer of
transactions may be capable of producing a large number of transactions at a rate much faster
than what can be consumed. However, because the flow control is throttled by the channel,
replacing a transactor with a different generation/consumption speed has no effect in modifying
the channel code. For example, if the default channel level of one is used, consider the following
situations:

0 -n head

1 -n(-1)

2 -(n-2)

n-2 -2

n-1 -1 tail

vmm channel

28 A Pragmatic Approach to Adopting VMM

1. Channel is empty: the consumer is blocked if it attempts to get the transaction. There is
nothing to get, thus the blocking is obviously necessary.

2. Channel is full: The producer is blocked if it attempts to put a transaction. This
mechanism also avoids an unnecessary overload on the simulator resources in filling up
the channel with transactions that are not yet needed by the consumer. For example, if a
transaction occupies 1000 bytes of resource, and the generator is capable of producing
one million transactions, then a nonblocking put would put a load of 1GB just for the
channel. Instead, a blocking put (as implemented in VMM) throttles the production of
channels in synchronism with the consumption of those channels within the set bounds of
the channel size.

A snippet of code that uses the get is demonstrated in Figure 2.3.2-3.

class Fifo_cmd_xactor extends vmm_xactor;
 …
 Fifo_xactn fifo_xactn_0;
 Fifo_xactn_channel in_chan;
 begin : main_loop
 this.in_chan.get(fifo_xactn_0);
 case (fifo_xactn_0.kind)
 PUSH :
 begin
 this.push_task(fifo_xactn_0.data);
 end
 ..

Figure 2.3.2-3 Snippet of Code Using get (ch4_fifo_fifo_cmd_xactor.sv)

The prototype for the sneak method is:
task sneak(class_name obj);
vmm_channel::sneak() is a non-blocking method to add items to the tail of a channel, as
compared to a put(), which is blocking. The sneak() method simply ignores any
pre-configured full level. This can be performed because the channel queue buffer is infinite and
not statically allocated.

A question that often comes up is “why do we need the sneak method, and where should we use
that method”? To answer that question you need to understand how channels handle the storing
of transactions. Channels must be sunk; meaning that some other component in the environment
must perform a get of the transaction to unblock the channel that reached its maximum level (and
to allow a put of another transaction). Without this get of the transactions to lower the channel
full level, the use of put will be blocked when the channel reaches maximum level. This can
cause operational problems when the generator of the put needs to be nonblocking. For example,
a monitor collects words of a packet from an interface and needs to add at every cycle, in a
nonblocking manner, the collected data into the scoreboard channel (otherwise, new words from
the same packet will be missed). The scoreboard is not ready to process that data until the end of
packet signal is received, and many packets words are stored into the channel. The packet size
can vary, and fixing the channel level to a fixed value may not guarantee that the maximum will
not be reached. Thus, the use of the nonblocking sneak to add items into the channel solves that
nonblocking need.

The prototype for the peek method is:

task peek(output class_name obj,input int offset = 0);

VMM Transactions and Channels 29

vmm_channel::peek gets a reference to the next transaction descriptor that will be retrieved from
the channel at the specified offset without actually retrieving it. If the channel is empty, the
function will block until a transaction descriptor is available to be retrieved. Essentially, a peek
allows a functional transactor to see the next transaction in order to make decisions about the
current transaction in progress.

2.3.3 Channel allocation

An instance of a channel is allocated with the predefined function new as shown below:

function new(string name, // specified name

 string instance, // instance name
 int unsigned full = 1, // full level default to 1
 int unsigned empty = 0, // empty level default to 0
 bit fill_as_bytes = 0); // level is transaction

“The new function creates a new instance of a channel with the specified name, instance name
and full and empty levels. If the fill_as_bytes argument is TRUE (i.e., non-zero) the full and
empty levels and the fill level of the channel are interpreted as the number of bytes in the channel
as computed by the sum of vmm_data::byte_size() of all transaction descriptors in the channel,
not the number of objects in the channel. If the value is FALSE (i.e., zero), the full and empty
levels and the fill level of the channel are interpreted as the number of transaction descriptors in
the channel. It is illegal to configure a channel with a full level lower than the empty level.”

Note that the fill_as_bytes ==1 is useful for Transaction-Level (TL) modeling.17 For example,
consider the case of a video CODEC model with data buffering capability. The size of that buffer
is likely limited, but in a TL model, you would not want to model the actual RAM used to
implement that buffer. A VMM channel is just perfect for this application, but the amount of
memory a packet (or video frame) takes depends on its size. By default, a VMM channel simply
counts the number of transaction is has, not how big they are. With this parameter ON, the
channel is "filled" as a function of the size of what it contains. So it can have lots of small packets
or a few large video frames. The fill_as_bytes argument changes how the FULL level of the
channel is computed. It is useful in a transaction-level model of a bandwidth-limited transport
medium or transfer function. However, for most applications, the default value of
fill_as_bytes==0 will work.

An example of the new is in the FIFO environment (see fifo_env.sv) and is shown below:

// channel instantiation
 Fifo_xactn_channel fifo_channel_0;
function void build();
 ..
 this.fifo_ channel_0 = new("fifo_chan","0"); // allocation

17 http://verificationguild.com/modules.php?name=Forums&file=viewtopic&p=5307#5307

30 A Pragmatic Approach to Adopting VMM

2.3.4 Channel reconfiguration

The full level of a channel can be dynamically reconfigured with the reconfigure function. The
prototype of the reconfigure function is:
function void reconfigure(
 int full = -1, // full level,
 int empty = -1, // empty level
 logic fill_as_bytes = 1’bx
);18

For example, to reconfigure the maximum level (referred to as the full level) of the FIFO channel
to 3, you could write:
this.fifo_channel_0.reconfigure(.full(3));

18 VMM Appendix A, vmm_channel reconfigure(). Reconfiguration may cause threads currently blocked
on a vmm_channel::put() call to unblock.

VMM Transactions and Channels 31

2.4 FILE STRUCTURE

Table 2.5 demonstrates the file Structure in the downloaded code for this chapter, and the purpose
of each file. Figure 2.5 is a graphical representation of the relationship between the files.

Table 2.5. File Structure and Functions
File Function Used by

fifo_pkg.sv Defines types and parameters ALL
fifo_if.sv Defines the FIFO interface RTL, property models,

and by program,
testbench, transaction
and transactors

fifo_csr_if.sv Defines the FIFO configuration interface RTL, property models,
and by environment, and
possibly transactors

fifo_xactn.sv Defines the transaction class with the constraints
Also used for the channel generation with:
 `vmm_channel (Fifo_xactn)

`vmm_channel macro for
generation of channel,
`vmm_atomic_gen
macro for generation of
atomic generator,
monitor transactor for
creation of transaction
from observed values on
bus interface.

fifo_rtl.sv Represents the FIFO RTL DUT. Top level
fifo_props.sv Defines the properties for assertions Top level for bind

Figure 2.5 File Structure and Relationships

fifo_pkg.sv

fifo_if.sv

fifo_xactn.sv
fifo_xactn_

channel

`vmm_
channel

fifo_props.sv

fifo_rtl.sv

all

Generated classes

In fifo_env.sv

In fifo_pgm.sv

vmm.sv

fifo_csr_if.sv

32 A Pragmatic Approach to Adopting VMM

Chapter 2 Questions and LAB

Q1. Why are transactions specified in a class instead of a structure within a transactor?

Q2. Why can’t transactions specified in a class be used without the need of a channel?

Q3. How do you build a custom channel?

Q4. If I extend my transaction class (e.g., class Fifo2_xactn extends Fifo_xactn) do I also
need to define and use a new channel?

Lab02. Build a Transaction Class and Channel Class for a loadable counter.
See instructions in subdirectory lab/lab02/todo/readme.txt.

Figure Lab02 represents the model for a loadable counter.

Figure Lab02 Loadable Counter for Labs

