

7 CUSTOM GENERATOR AND
NOTIFICATIONS

In the previous chapters we addressed the use of predefined atomic transaction generators with
the `vmm_atomic_gen macro. However, in some cases, you may want to write your own
transaction generator to apply transactions to your specific requirements, such as the transactions
with video data. This chapter explains the creation of a custom generator to create directed and
random tests. The generator uses a factory pattern to allow the environment to select which
transaction class to use for the selection of constraints. Chapter 8 has examples of the
`vmm_scenario_gen macro that demonstrates the scenario definitions through the use of iterative
constraints.

.

108 A Pragmatic Approach to Adopting VMM

7.1 CUSTOM GENERATOR ARCHITECTURE

The `vmm_atomic_gen macro automatically creates the generator from the transaction class while
the custom generator requires the user to create the code. The custom generator is a transactor
that creates transactions. It puts those transactions into an output channel for use by another
transactor. There are three important aspects of a transaction generator: the transaction, the
channel, and the notification of completion. The transaction object is needed to create new
transactions for transmission into the channel. For consistency with the VMM atomic generator,
this custom generator uses a factory pattern to determine the transaction object of choice. The
channel is local to the transactor, and is called out_chan. In the constructor, that channel is
associated with the environment channel, which is passed as an argument during the build step.
The command transactor (i.e., BFM) triggers a notification at the completion of a transaction to
inform the generator of its status in the event the generator needs to take an action other than
normal.1 For example, a CRC error detected by the command transactor may cause the generator
to send a retry of the last issued transaction. The generator triggers a notification of completion at
the end of simulation to enable the environment to continue through its stepping cycles. Figure
7.1 represents the UML for the custom generator.

vmm_xactor

+vmm_log log

* Generator initiates the notification for end of generation
* The DONE_GEN flag is in the fifo_pkg
* The gen task makes calls to the push/pop/idle/reset tasks
 Those tasks fill in the fifo_xactn transaction and
 put a copy of it into the out_chan

Fifo_custom_gen

+Fifo_xactn_channel out_chan
+Fifo_xactn randomized_obj

+new()
+main()
+gen()
+push_task()
+pop_task()
+push_pop_task()
+idle_task()
+reset_task()
+put_in_channel()

* Generator waits for response
(of vmm_data type) in
response_channel from
command transactor.

* Acts upon response if needed.

* Reset notification indication

Figure 7.1 UML for Custom Generator

1 For demonstration purposes, we limited the BFM completion notification to only the PUSH transactions
when the push() task is called, and not all other transactions.

Custom Generator and notifications 109

The goals of our model are to demonstrate the features of a custom generator; the completion
notification of transaction generation; the response transaction from the command generator via a
response channel or via a notification; and the use of a factory to identify a different transaction
class.

7.1.1 Notification of Completion

 Verilog has the event data type for process synchronization. Differences and issues related to
events as compared to the vmm_notify methods are:

• Events are named in Verilog. A notification indication can use a notification
identification of integer value. This is typically defined in an enumeration type, such as

 typedef enum {DONE_GEN, DONE_BFM} notification_e;

A trigger of a notification is performed with the vmm_notify::indicate method and the
notification ID passed as an argument. For example,

 this.notify.indicate(fifo_pkg::DONE_GEN);

• With event one cannot pass any associated status/data/information to another transactor.
Such ability is useful to transfer status and data back to a transactor, such as a generator
or scoreboard. That feedback information is an object derived from vmm_data. For
example,

 fifo_xactn_0.notify.indicate(vmm_data::ENDED,
 fifo_response);

• Events are active only during the time slot in which they are triggered. This provides
limited capabilities, as compared to the VMM notification that provides several
synchronization modes to prevent a notification from being misused by the triggering or
waiting threads. The notification synchronization modes include:2

o ON_OFF: This is level-sensitive and requires resetting after activation. Threads
waiting for a notification that is already notified will not wait. This is similar to a
green light notification, and all cars waiting for the green light or arriving at the
intersection when the light is green do not wait. The light remains green until
reset to amber and then red.

o ONE_SHOT: Only threads currently waiting for the notification to be indicated
are notified. This is similar to a crossing guard who lets children currently
waiting at the curb cross the street. Any child not at the curb “missed the boat”
and will have to wait for the next notification.

o BLAST: All threads waiting for the notification to be indicated in the same
timestep as the indication are notified. This is similar to a crossing guard who
allows the crossing of the street to only those children who just arrived at the
curb and in same timestep he decides to allow such crossing (i.e., the indication).
Thus, he “blasts” the new arrivals through the intersection.

Those issues with events create code that is less reusable and harder to maintain. To create
reusable code with notification that can be configured in the environment, VMM provides the
vmm_notify class that implements a generic, yet sophisticated, notification service. The
notification mode is defined when the notification is configured, not when it is triggered or waited
upon. In the FIFO custom generator, we used the vmm_notify::ON_OFF notification. So what is
involved in notification? In any notification system, even for humans, you have the following:

2 VMM vmm_notify Appendix A, Table A-7. Notification Synchronization Mode Enumerated Values

110 A Pragmatic Approach to Adopting VMM

1. A notification flag. For example, in a raffle, the flag is a winning number. In the model,
we use the enumeration constants defined in fifo_pkg.

 typedef enum {DONE_GEN, DONE_BFM} notification_e;
 DONE_GEN has the value 0, DONE_BFM has the value1, per SystemVerilog LRM.

2. A notification configuration. For example, in a raffle you are told that the winner needs
(or does not need) to be present. For the FIFO model, the environment initialized the
configuration for the xactn_gen_0 object as shown below

this.xactn_gen_0.notify.configure(fifo_pkg::DONE_GEN,
 vmm_notify::ON_OFF);

3. An indication that the notification flag is raised. In a raffle, the organizer gets on the
microphone, and calls out that number. In the model, the custom generator uses
vmm_notify.indicate method to raise this announcement. This statement: is written as
follows in the custom generator

 this.notify.indicate(fifo_pkg::DONE_GEN);

4. A listener to this indication. In a raffle where the winner needs to be present, the lucky

person thankfully accepts his gift.3 In the FIFO example, we have two users of
indications. The environment needs a completion of transaction generation from the
generator to know when the generator is all done. The command transactor informs the
generator of its progress in processing a transaction in the event the generator needs to
retry the same transaction. These statements are written as follows in the model

 In the environment (file ch7_custom_generator/fifo_env.sv)

 task wait_for_end();
 this.xactn_gen_0.notify.wait_for(fifo_pkg::DONE_GEN);

In the command transactor (file ch7_custom_generator/fifo_cmd_xactor.sv). Two
techniques to transfer response information back to command transactor are demonstrated:
1) through a channel, 2) through the notification itself. You do not need both.
begin : main_loop
 …
 fifo_response=new();
 fifo_response.kind=fifo_xactn_0.kind;
 fifo_response.status= PASSED;
 // Technique 1: Through the channel
 this.resp_chan.sneak(fifo_response);

 // Technique 2: Through notification
 fifo_xactn_0.notify.indicate(vmm_data::ENDED,
 fifo_response);
 this.in_chan.get(fifo_xactn_0);
end : main_loop

 In the generator (file ch7_custom_generator/fifo_env.sv)

randomized_obj.notify.wait_for(vmm_data::ENDED);

3 At DVCon’06 on his way to listen to the indication of the winning number of a raffle by Synopsys, Ben
was held up by a friend, far away from the raffle. At the booth, the indication of the lucky winner of the
iPod was Ben! But Ben failed to listen to this indication! Since the configuration of this notification
required the winner to be present (i.e., ONE_SHOT versus ON_OFF), Ben did not win the iPod. Poor Ben!

Feedback
through channel

Feedback through
notification

Waiting for
notification

Custom Generator and notifications 111

The use of the status method to read the attached response is explained further down.
Figure 7.1.1 demonstrates through UML the relationships needed for the notification of end of
test used in the FIFO model.

Figure 7.1.1 UML Notification of DONE_GEN for FIFO Model

pa
ck

ag
e

fif
o_

pk
g;

 i
nt

 D
O

N
E_

GE
N=

1;

vm
m
_x
ac
to
r

+v
m

m
_n

ot
ify

 n
ot

ify
;

Fi
fo
_c
us
to
m
_g
en

+
ne

w
()

+
m

ai
n(

)
+
ge

n(
)

fu
nc

tio
n

vo
id

 b
ui

ld
()

;
.. th

is
.x

ac
tn

_g
en

_0
 =

 n
ew

 (
"C

us
to

m
 X

ac
tio

n
ge

ne
ra

to
r"

, 0
);

th
is

.x
ac

tn
_g

en
_0

.n
ot

ify
.c

on
fig

ur
e(

fif
o_

pk
g:

:D
O

N
E_

GE
N,

vm
m

_n
ot

ify
::

O
N
_O

FF
);

.. ta
sk

 w
ai

t_
fo

r_
en

d(
);

 …

 th

is
.x

ac
tn

_g
en

_0
.n

ot
ify

.w
ai

t_
fo

r(
fif

o_
pk

g:
:D

O
NE

_G
EN

);

ta
sk

 m
ai

n(
);

 ..

.

 t

hi
s.

ge
n(

);

 `

vm
m

_n
ot

e
(t

hi
s.

lo
g,

 "
Ge

n
is

 d
on

e"
);

 t

hi
s.

no
tif

y.
in

di
ca

te
(f

ifo
_p

kg
::

D
O

NE
_G

EN
);

 e

nd
ta

sk
 :

 m
ai

n

vm
m
_e
nv

+v
m

m
_n

ot
ify

 n
ot

ify
;

Fi
fo
_e
nv

+
Fi

fo
_c

us
to

m
_g

en
 x

ac
tn

_g
en

_0
;

+
w

ai
t_

fo
r_

en
d(

)

112 A Pragmatic Approach to Adopting VMM

7.1.2 Generator Design

Figure 7.1.2 represents the model for the custom generator.

class Fifo_custom_gen extends vmm_xactor;
 import fifo_pkg::*;
 Fifo_xactn_channel out_chan;
 Fifo_xactn randomized_obj;

 Fifo_response_channel resp_chan; // response from cmd xactor
 int unsigned stream_id = -1;
 function new(string inst,
 int unsigned stream_id = -1,
 Fifo_xactn_channel out_chan=null,
 Fifo_response_channel fifo_response_channel=null);
 super.new("Custom Fifo COMMAND Layer Xactor",
 inst, stream_id);
 if (out_chan==null)
 out_chan=new("fifo_chanel", "channel");
 else this.out_chan=out_chan;

 if (fifo_response_channel==null)
 this.resp_chan=new("fifo_response_chan", "channel");
 else this.resp_chan=fifo_response_channel;
 // setting up the configuration for end of simulation notification
 this.notify.configure(fifo_pkg::DONE_GEN,
 vmm_notify::ON_OFF);
 this.stream_id=stream_id;
 endfunction : new

 task main();
 `vmm_trace(log, "Inside Generator");
 fork
 super.main();
 join_none
 if (randomized_obj==null) randomized_obj=new();
 this.gen();
 `vmm_note (log, "Gen is done");
 this.notify.indicate(fifo_pkg::DONE_GEN);
 endtask : main

 extern task gen(); // generation of transactions
 extern task push(word_t data);
 extern task pop();
 extern task push_pop(word_t data);
 extern task idle(int idle);
 extern task reset();
 extern task put_in_channel(Fifo_xactn obj);
endclass : Fifo_custom_gen

Response channel transfers
information back to generator

Notification after
generator is done
with the gen task

Can be updated with handle
of new instance in program
block.

Custom Generator and notifications 113

task Fifo_custom_gen::gen();
 word_t v_data=0; // not used, shown for potential use.
 string msg;
 `vmm_trace(log,
 "Generator creating directed tests: Reset, 4 push, 4 pop");
 this.reset();
 // Do 4 consecutive push with directed data
 for (int i=0; i<4; i++) this.push(i);
 // do 4 pop
 repeat(4) this.pop();
 // do rand streams
 `vmm_trace(log,
 "Generator creating stream randsequence tests");
 for (int i=0; i<100; i++)
 randsequence (stream)
 stream : first second third; // := 10 | second := 20 | third :=1;
 first : s_push | s_pop;
 second : s_idle :=2 | s_push_pop := 7 | s_reset:= 1;
 third : s_idle:=8 | s_pop :=2;
 s_push : {this.push(i*4);};
 s_pop : {this.pop();};
 s_idle : {this.idle(1);};
 s_push_pop : {this.push_pop(i*2);};
 s_reset : {this.reset();};
 endsequence
 idle(1);
 //do random tests
 `vmm_trace(log,
 "Generator creating random tests per transaction class constraints");
 repeat(100) begin : for_random_tests
 randomized_obj.randomize();
 this.put_in_channel(randomized_obj);
 end : for_random_tests
 `vmm_note(log, "done tests");
endtask : gen

114 A Pragmatic Approach to Adopting VMM

// Push task with code for waiting for notification from command transactor
task Fifo_custom_gen::push(word_t data);
 Fifo_response bfm_response;
 `vmm_note(log, "PUSH");
 randomized_obj.data=data;
 randomized_obj.kind=PUSH;

 this.put_in_channel(randomized_obj);

 randomized_obj.notify.wait_for(vmm_data::ENDED);
 // get the BFM response from the notification
 $cast(bfm_response,
 randomized_obj.notify.status(vmm_data::ENDED));

 // Check response from notification
 if (bfm_response.fifo_status==fifo_pkg::PASSED)
 `vmm_trace(log, "Cmd Xactor Ended the PUSH");
 else `vmm_note(log,
 "Cmd Xactor FAILED in completing the PUSH");

 // must reset the notification
 // A vmm_notify::SOFT reset clears the specified
 // ON_OFF notification and
 // restarts the vmm_notification::indicate() and
 // vmm_notification::reset()
 // methods on any attached notification descriptor.
 randomized_obj.notify.reset(vmm_data::ENDED,
 vmm_notify::SOFT);
endtask : push

task Fifo_custom_gen::pop();
 // notification not used
 `vmm_note(log, "POP");
 randomized_obj.data=32'hX;
 randomized_obj.kind=POP;
 this.put_in_channel(randomized_obj);
endtask : pop

task Fifo_custom_gen::push_pop(word_t data);
 `vmm_note(log, "PUSH_POP");
 randomized_obj.data=data;
 randomized_obj.kind=PUSH_POP;
 this.put_in_channel(randomized_obj);
endtask : push_pop

1. Setup the transaction
2. Put in channel
3. Wait from BFM to finish
4. Get response
5. Check for PASSED
6. Reset notification

Feedback through channel
could be used here.

Feedback through notification

1

2

3

4

5

6

Custom Generator and notifications 115

task Fifo_custom_gen::idle(int idle);
 $display("idle");
 randomized_obj.kind=IDLE;
 randomized_obj.idle_cycles=idle;
 this.put_in_channel(randomized_obj);
endtask : idle

task Fifo_custom_gen::reset();
 `vmm_note(log, "RESET");
 randomized_obj.data=32'hX;
 randomized_obj.kind=RESET;
 this.put_in_channel(randomized_obj);
endtask : reset

task Fifo_custom_gen::put_in_channel(Fifo_xactn obj);
 Fifo_xactn fifo_inst;
 obj.data_id++; // ID maintenance is custom
 $cast(fifo_inst, obj.copy(obj));
 this.out_chan.put(fifo_inst);
endtask : put_in_channel

Figure 7.1.2 represents the model for the custom generator.
/ch7_custom_generator/fifo_custom_gen.sv

7.1.3 Simulation of Custom Generator

The full code for the FIFO is available in file /ch7_custom_generator. Figure 7.1.3 represents
snippets of the simulation results.

0.00 ns test [Normal:NOTE] | Start of Test
0.00 ns Verif Env [Trace:INTERNAL] | Generating test configuration...
0.00 ns Verif Env [Trace:INTERNAL] | Building verification environment...
0.00 ns Verif Env [Trace:INTERNAL] | Reseting DUT...
1950.00 ns Verif Env [Trace:INTERNAL] | Configuring...
1950.00 ns Verif Env [Trace:INTERNAL] | Saving RNG state information...
1950.00 ns Verif Env [Trace:INTERNAL] | Starting verification environment...
1950.00 ns Verif Env [Trace:INTERNAL] | Restoring RNG state information...
1950.00 ns Verif Env [Trace:INTERNAL] | Waiting for end of test...
1950.00 ns FIFO_GEN_CUSTOM [Trace:INTERNAL] | Started
1950.00 ns FIFO_GEN_CUSTOM [Trace:DEBUG] | Inside Generator
1950.00 ns FIFO_GEN_CUSTOM [Trace:DEBUG] | Generator creating directed tests: Reset, 4 push, 4
pop
1950.00 ns FIFO_GEN_CUSTOM [Normal:NOTE] | RESET
1950.00 ns cmd_xactor [Trace:INTERNAL] | Started
1950.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.1 Fifo Xaction
RESET Cycles 0
1950.00 ns Fifo Monitor Xactor [Trace:INTERNAL] | Started
2250.00 ns FIFO_GEN_CUSTOM [Normal:NOTE] | PUSH
2250.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.2 Fifo Xaction PUSH
2350.00 ns Fifo Monitor Xactor [Trace:DEBUG] | Found a PUSH Xactn at time 2350.00 ns data 0
2350.00 ns FIFO_GEN_CUSTOM [Trace:DEBUG] | Cmd Xactor Ended the PUSH
2350.00 ns FIFO_GEN_CUSTOM [Normal:NOTE] | PUSH

data_id

116 A Pragmatic Approach to Adopting VMM

2350.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.3 Fifo Xaction PUSH
2450.00 ns Fifo Monitor Xactor [Trace:DEBUG] | Found a PUSH Xactn at time 2450.00 ns data 1
2450.00 ns FIFO_GEN_CUSTOM [Trace:DEBUG] | Cmd Xactor Ended the PUSH
2450.00 ns FIFO_GEN_CUSTOM [Normal:NOTE] | PUSH
…
2950.00 ns FIFO_GEN_CUSTOM [Normal:NOTE] | POP
2950.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.9 Fifo Xaction POP
3050.00 ns FIFO_GEN_CUSTOM [Trace:DEBUG] | Generator creating stream randsequence tests
3050.00 ns FIFO_GEN_CUSTOM [Normal:NOTE] | PUSH
..
3150.00 ns FIFO_GEN_CUSTOM [Normal:NOTE] | PUSH_POP
..
3250.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.12 Fifo Xaction IDLE
Cycles 1
..
70650.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.309 Fifo Xaction
POP
idle
70750.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.310 Fifo Xaction
IDLE Cycles 1
70850.00 ns FIFO_GEN_CUSTOM [Trace:DEBUG] | Generator creating random tests per transaction
class constraints
70850.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.311 Fifo Xaction
PUSH
70950.00 ns Fifo Monitor Xactor [Trace:DEBUG] | Found a PUSH Xactn at time 70950.00 ns data 12d
70950.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.312 Fifo Xaction
..
81550.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.409 Fifo Xaction
PUSH_POP
81650.00 ns Fifo Monitor Xactor [Trace:DEBUG] | Found a PUSH Xactn at time 81650.00 ns data 229
81650.00 ns cmd_xactor [Trace:DEBUG] | Got a new fifo xaction from in_channel #0.0.410 Fifo Xaction
POP
81750.00 ns FIFO_GEN_CUSTOM [Normal:NOTE] | done tests
81750.00 ns FIFO_GEN_CUSTOM [Normal:NOTE] | Gen is done
81750.00 ns FIFO Env Logger [Normal:NOTE] | *** Completed transactions
81750.00 ns Verif Env [Trace:INTERNAL] | Stopping verification environment...
81750.00 ns Verif Env [Trace:INTERNAL] | Cleaning up...
Simulation PASSED on /./ (/./) at 81750.00 ns (1 warnings, 0 demoted errors & 0 demoted warnings)
81750.00 ns FIFO Env Logger [Trace:DEBUG] | This is where additional model info is displayed
81750.00 ns FIFO Env Logger [Normal:NOTE] | **** REPORT ***
81750.00 ns test [Normal:NOTE] | End of Test
$finish at simulation time 81750.00 ns
..

Figure 7.1.3 Simulation of Custom Generator

Custom Generator and notifications 117

7.2 FILE STRUCTURE

Table 7.2 demonstrates the file Structure and the purpose of each file.

Table 7.2. File Structure and Functions

/ch6/ch6_callback and /ch5/ch5_fct_inject_err directories

File Function Used by
fifo_pkg.sv Defines types and initialized variables ALL
fifo_if.sv Defines the FIFO interface RTL and by program,

testbench, transaction
and transactors

fifo_csr_if.sv Defines the FIFO configuration interface RTL, property models,
and by environment, and
possibly transactors

fifo_xactn.sv Defines the transaction class with the constraints
Also used for the channel generation with:
 `vmm_channel (Fifo_xactn)

`vmm_channel macro for
generation of channel

fifo_rtl.sv Represents the FIFO RTL DUT Top level
fifo_props.sv Defines the properties for assertions Top level for bind
fifo_log_fmt.sv Defines formatting information for display FIFO environment
fifo_pgm.sv Creates the modeling for simulation and initiates the

run in the environment
Top level

fifo_env.sv Creates the build and start for simulation program
fifo_mon_xactor.sv Creates a copy of the observed transaction onto a

transaction channel.
Scoreboard, top level

top_tb.sv Represents the top level and instantiates the RTL,
the bind, the monitor, etc

none

test.svh Common include files Program block
fifo_response.sv Class derived from vmm_data to provide a response

to a transactor (e.g., generator) through a channel
command transactor and
environment

fifo_custom_gen.sv Custom generator Environment

118 A Pragmatic Approach to Adopting VMM

Chapter 7 Questions and LAB

Q1. When is a custom generator needed?

Q2. When should notification via the vmm_notify be used?

Lab07
Create a custom generator for the counter. See instructions in subdirectory
lab/lab07/todo/readme.txt.

