
  
 

 
 
 
 
   

4 BUILDING THE 
ENVIRONMENT AND 
TESTBENCH  

A verification environment is an encapsulation of various verification components such as 
drivers, generators, channels, monitors, scoreboards, etc.  While the various verification 
components are independent of each other, it is the environment that brings all of them together 
to accomplish a given verification task.  This chapter introduces the anatomy of a VMM 
environment and then describes the operation of the environment in detail.  Figure 4.0 
demonstrates the relationship of the environment with respect to the testbench.   
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Figure 4.0 Relationship of the Environment with Respect to Testbench 
 
4.1 ANATOMY OF A VMM ENVIRONMENT 

Broadly speaking, a VMM compliant verification environment consists of two major segments:  
• A structural segment that hooks up different verification components, 
• A generalized test flow segment that controls how all of these different components 

interact with each other in both spatial and temporal contexts. 
 
4.1.1 Structural Segment 

This segment of the environment contains instantiation of various verification components such as: 
• Transaction generators (Atomic or Scenario) 
• Functional transactors, if needed for the system to emulate hardware resources not yet 

developed (e.g., mid-level protocol translator, image reformatter, etc).  
• Command level transactors - drivers as well as monitor (a.k.a BFMs) 
• Channels to hook up different transactors 
• Signal layer connections - via SystemVerilog virtual interfaces  
• Any reactive response generators (slave models) 
• Scoreboards 
• Functional coverage unit 
• Logger  

 
Figure 4.1.1-1 represents the structural segment of the environment that consists of transactors 
and channels to transmit transactions from the generator to the BFMs; responses form the BFMs 
to the generator for transfer status information, e.g., success/failure/retry; and monitors for the 
gathering of data off the DUT interfaces for transfer to a  scoreboard for verification.   
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class fifo_env extends vmm_env; 
// Fifo transaction class declaration  
  Fifo_xactn fifo_xactn;  
// command-layer declaration 
  Fifo_cmd_xactor fifo_cmd_xactor_0;   
// channel declaration 
  Fifo_xactn_channel fifo_channel_0, fifo_mon_chan_0; 
// response channel cmd transactor -> generator 
  Fifo_response_channel fifo_response_chan0;  
// Configuration declaration 
  Test_cfg test_cfg_0;   
// atomic generator declaration 
  Fifo_xactn_atomic_gen fifo_xactn_gen_0; 
// monitor declaration   
  Fifo_mon_xactor mon_0;   
// format control declaration 
  Fifo_log_fmt log_fmt_cntl;   
 
   .. 
endclass : fifo_env  

 
Figure 4.1.1-1 Structural Segment of the Environment (ch4_fifo/ fifo_env.sv) 

The command transactor needs virtual interfaces to communicate (e.g., read and write) to the 
signals of DUT.  The virtual interfaces enable the reuse of the transactor for interconnection to 
multiple instances of the actual interfaces.  The vmm_env hookups such virtual interfaces to 
actual, design interface.  This is done in the test flow segment during the build() phase, addressed 
in section 4.1.2.2.  

The constructor (the function new() ) of the fifo_env is shown in Figure 4.1.1-2.  The constructor 
is a good place to perform user preference settings such as: 

• Log format control 
• Time format control etc. 

The construction of the structural components is delayed until the build() phase rather than within 
the constructor because it facilitates maintenance of the environment.  The Log format is done via 
a VMM class named vmm_log_fmt, more on this in Chapter 7.  The time formatting can be easily 
done using Verilog’s $timeformat system task.   

  function new();   // for environment 
 super.new(); 
    $timeformat(-9,2, " ns"); 
    this.test_cfg_0 = new;1 
    log_fmt_cntl = new(); 
    log = new("fifo_env", ""); 
    log.set_format(log_fmt_cntl); 
  endfunction : new 

Figure 4.1.1-2 Constructor of the FIFO Environment (ch4_fifo/ fifo_env.sv) 

Figure 4.1.1-3 provides a UML view of the main elements of the environment.  

                                                      
1 VMM Example 4-18. Randomization of Testcase Configuration Descriptor 

26450.00 ns 
cmd_xactor
[Trace:DEB
UG] | Got a ..
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Fifo_env

+Fifo_cmd_xactor fifo_cmd_xactor_0;
+Fifo_xactn_channel fifo_channel_0;
+Fifo_xactn_channel mon_chan;
+Fifo_response_channel fifo_response_chan0
+Test_cfg test_cfg_0;
+Fifo_xactn_atomic_gen  fifo_xactn_gen_0
+Fifo_mon_xactor mon_0;
+Fifo_log_fmt log_fmt_cntl;

+gen_cfg()
+build()
+reset_dut()
+start()
+wait_for_end()
+report()

vmm_env

+vmm_log log

 
 

Figure 4.1.1-3 UML of Main Elements of the Environment 
 
4.1.2 Test Flow  Section 

As with every other component in VMM, the base class vmm_env captures the best known 
practices formulated from a variety of verification environments.  One of the most interesting 
aspects of VMM is its generalized test flow mechanism.  Almost every functional test that is run 
on a design has several distinct sequences of steps, but often that goes unnoticed.  For example, a 
novice engineer trying to verify the FIFO design may develop a testcase as follows: 

• Generate the clock 
• Reset the DUT 
• Configure the registers (optional step) 
• Start the transactions - PUSH, POP etc. 
• Wait for certain number of clocks 
• Finish the simulation 

To appreciate the need for the generalized test flow, let’s consider a hypothetical networking 
design.2  A simple test will look as follows: 

• Generate the clock 
• Reset the DUT for few clocks 
• Configure the DUT registers (if any) 
• Simulate few transaction/packets/frames 
• Wait for certain number of clocks 
• Finish the simulation 

                                                      
2 We present a sample of such design and a verification environment in Chapter 8. 
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While the above two flows look very similar, we list both examples to demonstrate the 
fundamental fact that across a variety of designs, there is an underlying test flow common in 
skeleton.  

In a simple, non-VMM based testbench, the implementation of the above test flow may likely be 
implemented inside a single (or few) Verilog initial block, where the concept of a “sequence of 
steps” is often implicitly present.  VMM standardizes this test flow and recommends a 9-step 
flow.  This flow is not duplicated in every test. It is captured once. These steps are implemented 
using SystemVerilog virtual methods (tasks or functions inside a class).  The use of virtual 
methods allows you to easily annotate and customize a given step for your design.  Such a 
standard flow provides several advantages, including:  

1. Consistency in structure across all designs  
This is important because in the lifecycle of a design, the verification task undergoes 
several iterations, and may often be handled by different verification engineers.   Thus, as 
new engineers inherit or review a verification testbench, they carry with them a common 
understanding of the verification flow standardized by the VMM framework.   

2. Customizable flow plan 
The steps involved in the verification flow are well outlined and customizable by you, if 
that customization is necessary.  These well thought-out steps do serve as a reminder to 
you, the verification engineer, and to the code reviewers as to the needed and possibly 
missed steps in this flow.  In essence, “it makes you think”.  For example, in a 
conventional, non-VMM flow, a testcase could have forgotten to configure the PCI 
properly and have instead started the transactions.  This could lead to all transactions 
being aborted by the PCI interface, and a debug engineer might spend several hours 
looking at the simulation results only to realize that the configuration of the DUT was not 
done before sending the transactions 

3. Reusability and maintainability 
With a standard flow, building the environment is relatively easy.  Maintaining it and 
upgrading it is even easier.  For example, in our FIFO model we demonstrated various 
concepts in the different chapters, including the use of different transactions, generators, 
factories, and callbacks.  However, making the necessary changes to build a new 
environment out of those various components and patterns was very easy 

4. Enhanced debugability 
With a standard test flow the debugging becomes simpler.  For example, if there is a 
problem in configuring a register, you can quickly look at the cfg_dut() method extension 
and isolate the problem.   

5. Flow control 
There are two aspects to flow control: User-control and framework control. As a user, 
you can control and modify the configuration of the environment and DUT.  You can also 
control the start/stop/restart of various transactors.  The VMM framework automatically 
controls the sequencing of the various steps needed to create the verification of the DUT.  
That framework relieves you from the task to create this flow control.  

The generalized test flow is illustrated through a flowchart in Figure 4.1.2 along with the actual 
method names being used in VMM.  The individual steps are further elaborated in the subsequent 
sections. 
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Figure 4.1.2 Test Flow of the Environment 
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4.1.2.1. gen_cfg() 

This generate configuration method creates a configuration of the test environment used by the 
DUT.  The random configuration is encouraged; however, the configuration could also be 
determined from command-line arguments or an external file or be hard-coded.  Typical items 
that get randomized at this step are: 

• Number of input/output ports, and their speed, mode etc. in a configurable IP. 
• Number of masters and slaves in a shared bus env. such as OCP. 
• Number of transactions, percentage errors etc. 

 
 For example, in our FIFO model, we can determine the random values for the various CSRs 
(Configuration and Status Registers).   The goal of this step is that over many random runs, one 
will test every possible configuration, instead of the limited number chosen by directed test 
writers.  The actual configurations are placed under a custom SystemVerilog class known as a 
“test configuration descriptor”.  In our FIFO example we used the Test_cfg class.  An example of 
a gen_cfg that randomizes properties used by the environment and the DUT is shown in Figure 
4.1.2.1. 
 

class Test_cfg; 
  rand bit [7:0] no_of_xactions; 
endclass : Test_cfg 
 
class Fifo_env extends vmm_env; 
  Test_cfg test_cfg_0; // Test Configuration Descriptor 
    … 
  extern function void gen_cfg();   
endclass : Fifo_env 

function void Fifo_env::gen_cfg(); 
    super.gen_cfg(); 
    this.test_cfg_0.randomize(); 
endfunction : gen_cfg 

Figure 4.1.2.1 Sample configuration generation in vmm_env (ch4_fifo/ fifo_env.sv) 

Essentially this step provides one central place for all random configurations for the environment 
of the DUT.  This centralized location helps in the control and maintenance of that environment.  
The created configuration of the environment is set in the build(), while the DUT detailed 
configuration is later downloaded during cfg_dut() step,  

4.1.2.2. build() 

 This method builds the verification environment per the configuration generated in the previous 
step. This includes generators, checkers, drivers, monitors etc.  In SystemVerilog, this method 
essentially calls the constructors of various component classes.  One question that often arises is 
“Why not construct these elements as part of the constructor of the env itself (i.e., the new of the 
environment)?” - Remember that the verification environment is also a SystemVerilog class.  
There are two main reasons as to why you want to construct the instantiated components in the 
build method:  

1. The random configurations are not yet available during the construction   
2. This architecture allows for dynamic re-configurability, thus after a specific number of 

transactions, you may choose to re-configure the environment and re-build it.   

Figure 4.1.2.2a represents our build for the FIFO.  
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  function void Fifo_env::build(); 
  string msg; 
    super.build(); 
    // Instantiation of channels   
    this.fifo_channel_0 = new("fifo_chan","channel"); 
    this.fifo_response_chan0= 
         new("fifo_response_channel", "channel");3 
    // Instantiation of command-layer transactor  
    this.fifo_cmd_xactor_0 = new("cmd_xactor", 
                        0, 
                        `TOP.f_if,  
                        fifo_channel_0, 
                        fifo_response_chan0 
                        ); 
    // Instantiation of transaction generator  
    this.fifo_xactn_gen_0 =  
           new ("fifo_gen", 0, fifo_channel_0); 
     
  // Setting up the number of transactions 
    this.fifo_xactn_gen_0.stop_after_n_insts =  
                    this.test_cfg_0.no_of_xactions; 
  // Setting up a message, then issue it 
    $sformat(msg, "Sim shall run for no_of_xactions %0d ",  
    this.fifo_xactn_gen_0.stop_after_n_insts); 
    `vmm_note(log, msg); 
    // Instantiation of monitor channel 
    this.fifo_mon_chan_0 =  
              new("Fifo_mon_chan_0","channel"); 
    // Instantiation of monitor 
    this.mon_0 = new("FIFO Mon", 0, `TOP.f_if, 
                   this.fifo_mon_chan_0); 
     
endfunction : build 

Figure 4.1.2.2a FIFO Build  (ch4_fifo/ fifo_env.sv) 

An important aspect of build() is the hookup of the command-level transactor virtual interface to 
corresponding DUT interface.  The virtual interface is used by command transactors in VMM to 
drive the transactions to the DUT.  By maintaining this virtual interface the transactor can be 
connected to different actual interfaces of the same type.   At the top level testbench, each of 
these interfaces will be instantiated along with DUT (Refer to Section 4.2 later in this chapter), 
and that complete hierarchical path to the interface instance is provided to the command level 
transactor as shown in Figure 4.1.2.2b (e.g., `TOP.fifo_if_0).  The macro TOP is defined in the 
FIFO package with a `define construct that refers to the top level testbench.4  

                                                      
3 The Fifo_response represents a transaction for the transfer of status or data back to the generator.  This 
information is useful because a RETRY feedback to the generator should cause a retry of the last issued 
transaction.  This response model is used here for demonstration purposes and could be ignored for simple 
testbench environments.   
4 A direct path can be used instead of the macro TOP since there is only one top-level.  
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4.1.2.3. reset_dut() 

This step takes care of resetting the DUT.  In simple designs this simply means toggling the reset 
signal and waiting for few clocks.  However, complex ASICs may have a well defined reset 
sequence and may take several hundred clocks to get the proper reset. Some designs get reset 
when specific values written to configuration registers and/or memory blocks.  The reset_dut 
method has the following functionalities: 

• Initiate the reset condition  
• Wait for the reset sequence to be completed. 
• Verify the status of DUT after reset. 

Complex SoCs have one or more processors and their boot sequence can also be considered as 
part of this reset_dut() method.  On-chip PLLs is another candidate where reset holds the key for 
the entire chip’s operation in normal mode.  In PLLs, the time it takes to get to a locked state is 
usually long in terms of simulation cycles.  As seen from the previous examples, the reset process 
can consume many clock cycles.  To speed this process, one could use a FAST_MODE 
configuration technique to initialize the design via backdoor access, such as the direct load of the 
memory elements via the direct path.    

Figure 4.1.2.3 represents the simple reset for our FIFO model  
 
task Fifo_env:: reset_dut(); 
    super.reset_dut(); 
    `TOP.reset_n <= 1'b0; // in fifo_pkg.sv:   `define TOP fifo_tb 
    `TOP.f_if.pop   <= 1'b0; 
    `TOP.f_if.push  <= 1'b0;  
    repeat (10) @(`TOP.f_if.driver_cb); 
    `TOP.reset_n  <= 1'b1; 
    repeat (10) @(`TOP.f_if.driver_cb); 
  endtask : reset_dut 

Figure 4.1.2.3 FIFO Reset Task (ch4_fifo/ fifo_env.sv) 

4.1.2.4. cfg_dut () 

Once the DUT is reset, the next step is to configure the DUT as per the random configuration 
generated in gen_cfg() step.  This is a very important step in real design.  Some verification teams 
tend to combine this step with the reset_dut() step.  This is not recommended because keeping the 
two steps separate allows a simulation to run in one configuration for some transactions and then 
in a different configuration for other transactions.   

For example, consider a networking chip with a large address table.  The address table is 
architected to be configured as a linked list for faster search operations.  The configuration 
process is considered done only after the entire table is initialized properly to form a linked list, a 
process that can take several hundred clock cycles.  Once this is done, a specific value is written 
by the ASIC to a status register.  In this case, the address table should be verified for link list 
consistency (such as all entries being linked, no loops, etc.). 

In complex systems such as an Ethernet device, the number of registers to be configured can be 
large and can take a long simulation time.  It is recommended that you provide backdoor accesses 
for such designs to speed up simulations, using $readmemh/b or a hierarchical reference to 
configuration registers (e.g., top.chip.pci_blk.cfg_0 = 10).  Some design teams also prefer using 
C-code for this step as the C-code can be reused across software and hardware validation. 
SystemVerilog allows direct C-function calls across C and SystemVerilog language.  This is a 
greatly simplified method over the PLI route of integrating C with Verilog. 
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4.1.2.5. start() 

This method starts the test components.  Note that some components may need to be started in 
cfg_dut() to be able to do read/write cycles.  At this stage in the test flow, both the design and 
testbench are configured with the chosen configurations and the design is ready to be simulated 
with traffic.  In a TLM based environment such as VMM, this is usually done by starting the 
transactors such as generators, driver, monitor etc.  VMM provides such a task in the vmm_xactor 
base class named vmm_xactor::start_xactor().  It is very important that transactors do not start on 
their own immediately after construction.  Starting may need to be phased in a particular order, 
depending on the relationships of components.  For example, a transactor that emulates a 
pyrotechnic controller may need to be started after a BFM transactor that drives it.  It is very 
important not to forget to start of a transactor because without a start, it will not be active and will 
have no effect in the verification process.   For example, if you leave out the driver transactor 
(command transactor, or BFM) from starting, the generator will simply generate transactions, but 
there will be no consumer or drivers for those transactions.  Moreover, since the channel is 
blocking after the channel level is reached, the generator will wait and the simulation will be 
running with no useful traffic being simulated.  In our FIFO example, the start() task in class 
fifo_env calls the start_xactor() of individual components/transactors.  The start_xactor method 
internally starts the main method of its corresponding transactor.   Figure 4.1.2.5 demonstrates a 
snippet of code for start task in FIFO model.  

  task Fifo_env:: start(); 
    super.start(); 
    this.fifo_xactn_gen_0.start_xactor(); 
    this.fifo_cmd_xactor_0.start_xactor(); 
    this.mon_0.start_xactor(); 

    this.fifo_mon_chan_0.sink(); // flush content of channel 5 
  endtask : start 

Figure 4.1.2.5 Snippet of start Task for FIFO model (ch4_fifo/ fifo_env.sv) 

4.1.2.6. wait_for_end() 

This step is where the “core” of verification occurs until the end of test.  Thus, this is where 
transactions are generated and driven to the DUT, and where responses are monitored, covered, 
and verified for correctness.   This could also mean that when a simulation fails, the actual 
analysis of the failure can generally be traced from this step.  However, this is only a guideline as 
errors can be traced back to the configuration or initialization process.   

This method waits for the end of the test, and is usually done by waiting for a certain number of 
transactions or a maximum time limit, or a predefined number of errors to occur.  A sample code 
from our FIFO example is shown in Figure 4.2.2.6-1.  In our example, the environment waits for 
a DONE notification generated by the atomic generator.6   

                                                      
5 May also want to flush response channel  with “this.fifo_response_chan0.sink();” 
6 See Chapter 7 for more information on notification.  
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task Fifo_env:: wait_for_end(); 
    super.wait_for_end();  
    this.fifo_xactn_gen_0.notify.wait_for( 
                          Fifo_xactn_atomic_gen::DONE); 
   // this. mon_0.notify.wait_for(fifo_pkg.MON_DONE); 
   // Not yet implemented, but shown here for documentation 
  endtask : wait_for_end 

Figure 4.1.2.6-1 wait_for_end Task (ch4_fifo/fifo_env) 

Determining the end of test is sometimes an overlooked step, but as per the authors’ experience, 
this is a very important step - more so with constrained random tests because you cannot simply 
“wait for 1000 clocks and exit”.  Depending on the random number of transactions being 
generated, that number 1000 maybe insufficient to run all the transactions.  EOT (End Of Test) 
detection is quite system/design dependent, and it is recommended that the verification architects 
bring this process upfront, and provide the necessary hooks in the environment to determine the 
EOT (e.g., notification, watchdog, number of transactions, coverage value, etc).  A simplified 
flow for EOT detection is provided in Figure 4.1.2.6. 
 

  
Figure 4.1.2.6 End Of Test Recommended Flow 

Note that the above flow chart does not cover many other issues, such as watchdog for inactivity 
in the DUT, dropped transactions, internal FSM states etc.  These are highly system/design 
dependent.  We provide another example that addresses those issues as part of advanced topics in 
Chapter 7.   

Once the EOT condition is detected, you could abruptly end the simulation.  However, such an 
abrupt end might lead to false failures as some of the transactions might still be in progress, and 
the data checking has not yet completed etc.  To be VMM compliant, the recommended approach 
is to stop all the active elements in the verification environment, clean up the design/environment 
and then finish.  The next three steps in the VMM test flow address the termination of simulation. 

 

Wait for generator to flag DONE 

Wait for driver to indicate that all 
generated transactions are 
consumed 

Wait for monitor to indicate that 
all transactions are accounted for 
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4.1.2.7. stop() 

This method is used to stop all the components of the verification environment to terminate the 
simulation cleanly in preparation for the next step.  If this method has not been explicitly invoked 
in the test program, it will be by default invoked by the vmm_env::cleanup() method.    

4.1.2.8. cleanup() 

This method is intended to be a place where the design and testbench is cleaned up before finish.  
Cleanup of testbench may involve emptying the VMM channels, SystemVerilog Qs (declared in a 
scoreboard for example) etc.  On the design side, this could involve reading interrupt status 
registers, statistics counters etc.   
 
For example in a networking ASIC with 16 ports, some of the output ports may be configured to 
be in blocking state during the simulation.  The intended test functionality should be tested in 
such a mode untill wait_for_end is reached.  However, once the intended functionality has been 
tested, you may want to re-enable the previously blocked output ports so that all packets inside 
the DUT can be emptied out cleanly.  This step will also be beneficial if you want to run several 
tests in chain without a HARD RESET in between.  Usually this is not required, but once a design 
is mature enough, some design teams like to run several tests in a chain without applying reset in 
between.  In a sophisticated environment with self-checkers,   such a run might raise false alarms 
if the previous test did not clean up the expected queues.  VMM channel provides a method to 
empty the channel as vmm_channel::flush(), as shown in Figure 4.1.2.8. 
 

task Fifo_env::cleanup(); 
    super. cleanup (); 
    this.mon_0.out_chan.flush(); 
    ... 
 endtask : cleanup 

Figure 4.1.2.8 Application of vmm_channel::flush() 

vmm_env::cleanup() is also an ideal place to do a memory profiling of a simulation run.  Typical 
memory profile statistics indicate areas prone to memory leaks, excessive storage in the system 
etc.  Usually the memory consumption is largest towards the end of simulation7.    Synopsys’ vcs 
provides techniques to analyze/profile memory consumption during a simulation run.  For 
example,  vcs provides a system task $vcsmemprof() that can be called from testbench code at an 
appropriate point in simulation time to dump out memory profile data.  Adding that to 
vmm_env::cleanup() is recommended to check for unusually large  memory consumption.  For 
example, in an environment with several SystemVerilog Qs and VMM Channels (with some of 
them not being consumed because higher layers do not need those transactions), the number of 
transactions stored in these Queues and channels might be a primary contributor to excessive 
memory consumption.  A memory profile will reveal such code level bottlenecks. 
 

                                                      
7 This is however not always true, some times the peak consumption can be in the early simulation cycles. 
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4.1.2.9. report() 

This is the last step in VMM test flow.  This method is responsible to declare the test run as a 
PASS or a FAIL.  You may also want to include a final statistics of what the test has achieved to 
provide a quick summary of the achieved goals.  For example, in our FIFO model we provided 
two text messages, as shown in Figure 4.1.2.9-1..  
 
task Fifo_env:: report(); 
    super.report(); 
    `vmm_trace(log,  
               "This is where additional model info is displayed"); 
 `vmm_note(log, "**** REPORT ***"); 
 endtask : report 

Figure 4.1.2.9-1 Report Task 

 
4.2 TOP LEVEL TESTBENCH/SYSTEM WITH VMM 

Once an environment is created using vmm_env, the last phase is to instantiate that environment 
in a SystemVerilog program.  Hence the top level testbench has essentially three components, as 
shown in Figure 4.2-1: 

1. The SystemVerilog program that wraps the VMM environment 
2. The DUT instantiation 
3. The Clock generators 

 
Figure 4.2 demonstrates an overview of the testbench. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 Testbench Overview 
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4.2.1 The Test program 

As mentioned briefly in Chapter 1, SystemVerilog provides a new construct for testbench entry 
point - the program.  For over a decade, design teams have been using Verilog’s module construct 
to model both designs and testbenches.  While it certainly works, a clear separation from the two, 
from a language semantic viewpoint, makes a lot of sense - especially because of the infamous 
race conditions that are inherent in Verilog (and SystemVerilog as it inherits basic Verilog).   
 
The reset_n signal can be viewed as either part of the interface or part of a signal at the top level.  
If the reset signal is handled as part of the interface, then a system with multiple instantiations of 
that interface will have several reset signals, one for each of the separate interfaces.  Since our 
FIFO model has a single reset signal defined at the top level, we access the reset signal through 
hierarchical cross module reference.  Depending upon your requirements, you need to decide how 
your reset signal will be handled.  
 
The program for our FIFO model is shown in Figure 4.2.1-1.  A common mistake is to forget to 
include the vmm.sv file in the program file.  This is necessary to have access to VMM.  Having 
the include file within the program instead of in the compilation script also provides 
documentation for the need of the base VMM classes.  
 

program fifo_test_pgm (); 
  timeunit 1ns; 
  timeprecision 100ps; 
  //the include files + log + fifo_env_0 instantiation 
  `include "test.svh" 
  initial 
  begin 
    // Build all components of an environment - testbench 
    `vmm_note(log,"Start of Test"); 
 fifo_env_0.build(); 
 begin 
   Fifo_xactn fifo_xactn; // fifo transaction class declaration 
   // Instantiation of transaction class  
      fifo_xactn = new(); 
     // Setting the factory for the transaction on the generator (see Ch 5 for factory) 
     // ** NOTE: If next line is commented out, then transaction generator  
     //          will use its internally instantiated copy of randomized_obj 
      fifo_env_0.fifo_xactn_gen_0.randomized_obj =  
                                           fifo_xactn;   
     // Setting up the factory fifo_xactn for the monitor 
     fifo_env_0.mon_0.factory_xactn=fifo_xactn;  
 end  
    fifo_env_0.run(); 
    `vmm_note(log, "End of Test"); 
  end 
endprogram : fifo_test_pgm 

Figure 4.2.1-1  program Structure for FIFO Model (ch4_fifo/fifo_pgm.sv) 

 

Figure 4.2.1-2 shows the contents of test.svh file. 
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`include "vmm.sv" 
`include "fifo_xactn.sv" 
`include "fifo_response.sv" 
`include "fifo_log_fmt.sv" 
`include "fifo_cmd_xactor.sv" 
`include "fifo_gen_xactor.sv"   
`include "fifo_mon_xactor.sv"  
`include "fifo_env.sv" 
 vmm_log log = new("test", "main"); 
 Fifo_env fifo_env_0=new(); 

Figure 4.2.1-2 Contents of test.svh File ((ch4_fifo/test.svh). 

As per SystemVerilog LRM, a program can contain everything that a module can, except the 
always block and module instantiations.  Thus, an initial block is used to construct the 
environment and start the test flow.   

In SystemVerilog, a simulation is considered finished once the program block’s execution is 
completed.  This is quite different and new to Verilog users who are accustomed to adding a 
$finish or $stop to stop the simulation at the desired point.  So in the above example, if the 
vmm_env::wait_for_end() is not properly implemented, you may experience an early simulation 
termination even without an explicit call to $stop or $finish.  If an unexpected early or late 
termination occurs, take a close look at the conditions that caused the wait_for_end to occur (or 
never occur). 

4.1.3 Clock generation 

As a good methodology, clock generation should be done in a module and not inside a program.  
To appreciate this guideline, you need to understand the SystemVerilog’s event scheduling 
mechanism.  Though there are many regions within the same time step, the ones that are relevant 
to this discussion are the active, nonblocking assignment (NBA), and reactive regions.  While the 
classical Verilog module assignments get evaluated in the active/NBA regions, the newly added 
program block gets executed in the reactive region.  This scheduling mechanism was designed in 
SystemVerilog to prevent race conditions originating between the design and testbench.  Hence 
any assignment within the program will be visible to the design (module) only after the reactive 
region execution.  This would mean that the design will go wrong on the combinatorial signal 
computation.  This is obviously not desired.  Also, fundamentally a clock is more closely 
associated with the hardware design than to a high level software-oriented testbench model.  
Usually the testbench’s view of clock is more an abstract view - it is only concerned with the 
clock edges.  Hence it makes lot of sense to retain the clock generation in a module.  In our FIFO 
model, we have added that as code at the top testbench.   

A question may arise as to how to randomize some of the clock generation parameters, such as 
clock period, duty cycle etc.  This can be achieved at the top level with randomized variables 
used in the clock generation model.  Those variables can be defined in classes.  

4.1.4 DUT Instantiation and hook up 

The top level module instantiates and connects the following blocks: 
• program block 
• Needed interfaces 
• DUT 
• Clock generator 
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This is very much similar to any classical Verilog structural model, and hence is not elaborated 
further here.  Please refer to file ch4_fifo/ top_tb.sv for details.  

4.3 DEVELOPING TESTCASES WITH VMM 

In a VMM framework, a testcase is implemented inside a SystemVerilog program block.  In this 
section, we will show how you can progressively develop testcases starting from a simple, 
constrained random test to an advanced test case.  One of the benefits of using the vmm_env base 
class to build a verification environment is that the sequencing of these individual steps is 
maintained under the hood.  The user needs to only call the vmm_env::run() method and the test 
sequencing will be automatically taken care of.   

4.3.1 Simplest Testcase in VMM framework 

The simplest test for our FIFO model looks as shown in Figure 4.3.1-2  It basically instantiates 
the fifo_env, constructs the instance of fifo_env as fifo_env_0, and simply calls the run() method.  
The run method then performs the steps explained in section 4.1.2.  The simplest testcase does 
not include any customization, which is explained in Chapter 5.  

4.3.2 Trivial Testcase with just one transaction in VMM framework 

While the simplest test looks good for a stable DUT, when the very first test is being run, you 
may prefer to have a fairly simple, directed-like test case with only one transaction. This is easily 
achievable in the VMM framework by redefining the number of transactions from within the 
program, as shown in Figure 4.3.2. 
 

program first_test(); 
   //the include files + log fifo_env_0 instantiations 
  `include "test.svh" 
   
  initial begin : b1 
   fifo_env_0.gen_cfg();  // from vmm_env::gen_cfg   
   // Override the number of xactions field 
   fifo_env_0.test_cfg_0.no_of_xactions = 1; 
   // Do the rest of the flow as usual 
   fifo_env_0.run(); 
  end : b1 
endprogram : first_test 

Figure 4.3.2  Redefining the number of transactions for simulation  

Here, the fifo_env::gen_cfg() is called first to generate random test configurations.  But since we 
wanted to override the number of transactions property inside the test configuration descriptor, 
the value is simply assigned a new value after generation.  Once the number of transactions is 
changed, we want to follow the rest of the test flow as usual.  This is done by calling 
fifo_env::run().  Note that since the test case has explicitly called the fifo_env::gen_cfg(), the 
fifo_env::run() continues the flow from where it left off (i.e., it shall not re-invoke that 
fifo_env::gen_cfg()) and proceed from the step that follows it - i.e., fifo_env::build().8  This is 
very important because otherwise the number of transactions will again get randomly generated.   

                                                      
8 This flow is also addressed in section 5.2. 
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4.4 FILE STRUCTURE AND COMPILATION  

Table 4.4.demonstrates the file structure and the purpose of each file.   Figure 4.4-1 is a graphical 
representation of the relationship between the files.   
 
The compilation and simulation of the model with Synopsys VCS simulator can make use of the 
Makefile in the vcs subdirectory, as shown in Figure 4.4-2.  The file flist is shown in Figure 4.4-3.  
 
env: 
 vcs -debug_all -sverilog -f flist +incdir+../ -ntb_opts rvm -R -l ch4_fifo.log 
// with trace: 
             vcs -debug_all -sverilog -f flist +incdir+../ -ntb_opts rvm -R -l ch4_fifo.log 
+rvm_log_default=trace +plusargs_save 
 
run: 
 ./simv -gui & 
clean: 
 \rm -fr csrc* simv* scsim* *vpd ag* session* work/* WORK/* *.so *.log test* cm* ucli* 
worklib/* DVE* *.h 
 
pp: 
 dve -vpd vcdplus.vpd &  

Figure 4.4-1.  Makefile for Compilation with Synopsys VCS Simulator  
(ch4_fifo/vcs/Makefile) 

 
../fifo_pkg.sv 
../fifo_props.sv 
../fifo_if.sv 
../fifo_csr_if.sv 
../fifo_rtl.sv 
../fifo_pgm.sv 
../top_tb.sv  

Figure 4.4-2.  File list used for Compilation (file vsc/flist) 

Note that the compilation list does not include all the files used by the testbench.  This is because 
the program file (test.svh) included in the program file includes the following:  

`include "vmm.sv" 
`include "fifo_xactn.sv" 
`include "fifo_response.sv" 
`include "fifo_log_fmt.sv" 
`include "fifo_cmd_xactor.sv" 
`include "fifo_gen_xactor.sv"   
`include "fifo_mon_xactor.sv"  
`include "fifo_env.sv"  

    vmm_log log = new("test", "main"); 
    Fifo_env fifo_env_0=new(); 
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Table 4.4.  File Structure and Functions 
File Function Used by 

fifo_pkg.sv Defines types and parameters      ALL 
fifo_if.sv Defines the FIFO interface   RTL, property models, 

and by program, 
testbench, transaction 
and transactors 

fifo_csr_if.sv 
 

Defines the FIFO configuration interface  RTL, property models, 
and by program, 
testbench, transaction 
and transactors 

fifo_xactn.sv Defines the transaction class with the constraints 
Also used for the channel generation with: 
  `vmm_channel (fifo_xactn) 

`vmm_channel macro for 
generation of channel, 
`vmm_atomic_gen 
macro for generation of 
atomic generator, 
monitor transactor for 
creation of transaction 
from observed values on 
bus interface 

fifo_gen_xactor.sv Uses the macro `vmm_atomic_gen for generation of 
atomic generator, defines the constraints for the 
number of transactions  

 Environment for 
creation of the build 
model 

fifo_cmd_xactor.sv Provides the transactor definition to drive the FIFO 
model.  

FIFO environment  

fifo_log_fmt.sv Defines formatting information for display.  FIFO environment 
fifo_mon_xactor.sv Creates a copy of the observed transaction onto a 

transaction channel.  
Scoreboard, top level 

fifo_env.sv Creates the build and start for simulation  program 
fifo_pgm.sv Creates the modeling for simulation and initiates the 

run in the environment  
Top level 

fifo_props.sv Defines the properties for assertions Top level for bind 
fifo_rtl.sv Represents the FIFO RTL DUT  Top level  
top_tb.sv Represents the top level and instantiates the RTL, 

the bind, the monitor, etc  
none 

test.svh Include files needed for compilation In program 
fifo_response.sv The response transaction from the command 

transactor to another transactor, such as a generator 
Environment 
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                              Figure  4.4-3. File Structure and Relationships 
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Chapter 4 Questions and LAB 
 
Q1. Why is it necessary to build the verification environment in a separate class?  

  
 
Q2. Why is the environment in a program rather than in a module?  
  
 
Q3. How is the testflow of the environment initiated?   What is the importance of this 
testflow?   
  
 
LAB04, Build a verification environment for the counter. 
Follow instructions in subdirectory lab/la04/todo/readme.txt  
  
 


