

A Pragmatic Approach

 to VMM Adoption

 … a SystemVerilog Framework
for Testbenches

ii A Pragmatic Approach to Adopting VMM

Preface iii

A Pragmatic Approach to VMM Adoption

 … a SystemVerilog Framework for Testbenches

Ben Cohen

Srinivasan Venkataramanan
Ajeetha Kumari

VhdlCohen Publishing
Los Angeles, California
http://www.systemverilog.us/

iv A Pragmatic Approach to Adopting VMM

A Pragmatic Approach to VMM Adoption

 ... a SystemVerilog Framework for Testbenches

Published by:
VhdlCohen Publishing
P.O. 2362
Palos Verdes Peninsula CA 90274-2362
ben@systemverilog.us
http://www.systemverilog.us

Library of Congress Cataloging-in-Publication Data
A C.I.P. Catalog record for this book is available from the Library of Congress

 A Pragmatic Approach to VMM Adoption
 a SystemVerilog Framework for Testbenches

ISBN 0-9705394-9-5

Copyright © 2006 by VhdlCohen Publishing

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording, or
by any information storage and retrieval system, without the prior written permission
from the author, except for the inclusion of brief quotations in a review.

Printed on acid-free paper

Printed in the United States of America

Preface v

Contents

Foreword .. ix
 Janick Bergeron ... ix
 Stuart Sutherland .. xi
 Scott Sandler... xiii
 Alain Raynaud ... xv

Preface .. xvii

Acknowledgements ... xxi

About the Authors ... xxiii

Disclaimer .. xxv

1 VMM FRAMEWORK ……………………………………. 1
1.1 Framework …………………………………………………………..….. 2
1.2 Why SystemVerilog for Verification …………………………………... 2
1.2.1 SystemVerilog Constructs Supporting Verification ………………….. 3
1.3 Why VMM? …………………………………………………………….. 5
1.4 Testbench architecture with VMM ……………………………………. 7
1.4.1 Layered testbench architecture ..………………………………………. 8
1.4.1.1 Command Layer ………………………………………………………… 9
1.4.1.2 Functional layer ………………………………………………………… 9
1.4.1.3 Generation/Scenario layer ……………………………………………… 9
1.4.1.4 Interaction between the different layers ………………………………. 9
1.4.2 Testbench Outline ………………………………………………………. 10

2 VMM TRANSACTIONS AND CHANNELS ….. 13
2.1 The DUT ………………………………………………………………… 14
2.2 Transaction ……………………………………………………………… 18
2.2.1 Extension to vmm_data ………………………………………………… 20
2.2.2 Properties and Constraints …………………………………………….. 20
2.2.2.1 Properties ………………………………………………………………... 20
2.2.2.2 Constraints ………………………………………………………………. 22
2.2.2.3 Methods ………………………………………………………………….. 22
2.2.2.3.1 new()……………………………………………………………………... 23
2.2.2.3.2 allocate()…………………………………………………………………. 23
2.2.2.3.3 copy()…………………………………..………………………………… 23
2.2.2.3.4 compare()…………………………………..……………………………. 24
2.2.2.3.5 psdisplay() ……………………………………………………………… 24

vi A Pragmatic Approach to Adopting VMM

2.3 Channel …………………………………..……………………………… 25
2.3.1 Creation of channels ………………..………………………………….. 25
2.3.2 Access to Elements in a Channel ………………..……………………... 26
2.3.3 Channel allocation ………………..…………………………………….. 29
2.3.4 Channel reconfiguration ………………..……………………………… 30
2.4 File Structure ………………..………………………………………….. 31

3 TRANSACTION GENERATOR,
 COMMAND TRANSACTOR, AND MONITOR 33
3.1 Transaction Generator ………………..………………………………… 34
3.1.1 Atomic generator ………………..……………………………………… 35
3.1.1.1 Simple atomic generator ………………..……………………………… 35
3.1.1.2 `vmm_atomic_gen ………………..…………………………………….. 36
3.1.1.3 Scenario generator ………………..……………………………………. 39
3.2 Command-Layer Transactor ………………..………………………… 40
3.3 Monitor ………………..………………………………………………… 46

4 BUILDING THE ENVIRONMENT
 AND TESTBENCH ………………..………………………… 53
4.1 Anatomy of a VMM environment ………………..……………………. 54
4.1.1 Structural Segment ………………..……………………………………. 54
4.1.2 Test Flow Section ………………..……………………………………... 56
4.1.2.1. gen_cfg()………………..………………………………………………… 59
4.1.2.2. build()………………..…………………………………………………… 59
4.1.2.3. reset_dut()………………..………………………………………………. 61
4.1.2.4. cfg_dut () ………………..……………………………………………….. 61
4.1.2.5. start()………………..……………………………………………………. 62
4.1.2.6. wait_for_end()………………..………………………………………….. 62
4.1.2.7. stop()………………..…………………………………………………….. 64
4.1.2.8. cleanup() ………………..……………………………………………….. 64
4.1.2.9. report() . ………………..………………………………………………... 65
4.2 Top Level Testbench/System with VMM ……………………………… 65
4.2.1 The Test program ………………..……………………………………… 66
4.1.3 Clock generation ………………..………………………………………. 67
4.1.4 DUT Instantiation and hook up ………………..………………………. 67
4.3 Developing testcases with VMM ………………..……………………… 68
4.3.1 Simplest Testcase in VMM framework ……………………………….. 68
4.3.2 Trivial Testcase with just one transaction in VMM framework …….. 68
4.4 File Structure and Compilation ………………..………………………. 69

Preface vii

5 USING THE FACTORY PATTERN ……………… 73
5.1 Factory Definition ………………..……………………………………... 74
5.2 Factory Example – constraints ………………..……………………….. 74
5.3 factory Example - Error Injection ………………..…………………… 78
5.4 File Structure ………………..………………………………………….. 84

6 CALLBACKS ………………..………………………………….. 87
6.1 Callback overview …………..…………………………..…………………… 88
6.1.1 What is a callback? …………..…………………………..……………....... 88
6.1.2 What is the structure of a callback? …………..………………………….. 89
6.2 Building a callback …………..…………………………..………………….. 89
6.2.1 Callback Design: the Façade …………..…………………………………. 90
6.2.2 Adding the Hook (Using the Callback) …………..………………………. 91
6.2.3 Building the Implementation …………..…………………………………. 92
6.2.4 Registering …………..…………………………..…………………………. 93
6.2.5 Simulation Results …………..…………………………..………………… 96
6.3 Verification with Debug Interface …………..……………………………… 97
6.3.1 Concept …………..…………………………..………………………….. … 97
6.3.2 Model …………..…………………………..……………………………….. 98
6.3.2.1 Debug interface …………..…………………………..…………………... 99
6.3.2.2 Callback Façade …………..…………………………..…………………. 99
6.3.2.3 Using the callback …………..…………………………..……………….. 100
6.3.2.4 Callback implementation …………..………………………………….... 102
6.3.2.5 Registering the callbacks …………..…………………………..……….. 103
6.3.3 Guidelines in using callbacks …………..…………………………………. 103
6.4 File Structure …………..…………………………..………………………… 104

7 CUSTOM GENERATOR AND
 NOTIFICATIONS ………………..…………………………. 107
7.1 Custom Generator Architecture ………………..……………………… 108
7.1.1 Notification of Completion ………………..……………………………. 109
7.1.2 Generator Design ………………..……………………………………… 112
7.1.3 Simulation of Custom Generator ………………..…………………….. 115
7.2 File Structure ………………..………………………………………….. 117

viii A Pragmatic Approach to Adopting VMM

8 ADVANCED TOPICS ………………..…………………….. 119
8.1 Serial-to-Parallel Converter DUT Interface ………………………….. 120
8.2 VMM Scenario Generator ………………..……………………………. 121
8.2.1 Handling multiple scenarios ………………..………………………….. 126
8.2.2 Default scenario_set created by the `vmm_scenario_gen macro ……. 128
8.3 Creating dummy sinks for Channel outputs ………………………….. 130
8.3.1 Using a Nonblocking Channel ………………..………………………… 130
8.3.2 Using vmm_channel::sink() method ………………..…………………. 131
8.3.3 Using an artificial sink transactor ………………..……………………. 132
8.4 VMM Scheduler ………………..……………………………………….. 133
8.5 VMM Broadcast ………………………………………………………… 138
8.6 VMM log ………………………………………………………………… 145
8.7 Customizing VMM message output format ………………..…………. 146
8.8 Functional Coverage ………………..…………………………………... 148
8.8.1 Extracting coverage points ………………..……………………………. 148
8.8.2 Integrating coverage models into the environment …………………... 149
8.9 Seeding the Randomization ………………..…………………………… 150
8.10 Changing error severity dynamically ………………..………………… 150
8.11 File Structure ………………..………………………………………….. 153

Appendix A Q/A ………………..…………………………………….. 157

Afterword ….………………..…………………………………………….. 167

Index ………………..……………………………………..…………………. 169

All code is available for download

 http://www.systemverilog.us/vmm_adoption/
 http://www.noveldv.com/

 Password: vmm_framework4us

Preface ix

FOREWORD, Janick Bergeron

Functional verification has become the most effort-consuming task in bringing a semiconductor
product to market. And it is getting worse. The verification aspect of SystemVerilog was designed to
bring the power and productivity of Hardware Verification Languages to the industry at large, within
the familiar framework of the Verilog language. However, based on my many years of experience
using and teaching HVLs, I knew that it would be a slow and difficult process for new adopters to
realize all of its potential and benefits unless a clear path was provided. With three other experts in
other area of functional verification, we set out to provide that path as the Verification Methodology
Manual for SystemVerilog.

Then there is the question of the form the path should take. Should it be a path that takes users from
simple, purely directed Verilog testbenches to constrained-random testbenches, exploring along the
way how various SystemVerilog constructs are used most effectively? Or should it be a clear
definition of the end goal, a set of minimum practices that must be used to create interoperable and
reusable verification assets? Should it be a training vehicle or a methodology?

As the name of the VMM suggests, we chose the latter form. A methodology is about what should and
should not be done to be as productive as possible. There must be a clear indication of whether or not
a testbench or a transactor is compliant to the methodology. A methodology cannot be a training
vehicle – nor can a training vehicle claim to be a methodology. A methodology and the training it
requires to learn it and apply it effectively are two different things.

If you are not familiar with SystemVerilog – or a Hardware Verification Language – the VMM can be
a large pill to swallow. We fully expected that training and introductory material would appear to help
adopt the methodology described in the VMM – just like there are several introductory books and
training classes on the Verilog language and its usage, despite the fact that it is fully specified in an
IEEE standard document. VMM-related conference papers have also already started to appear.

I am pleased to welcome this book to the cannon of VMM literature. I hope you will find it helpful in
appreciating the power of the VMM methodology and ease your adoption of it.

Janick Bergeron
Synopsys Scientist
http://www.synopsys.com/

x A Pragmatic Approach to Adopting VMM

Preface xi

FOREWORD, Stuart Sutherland

In my garage, I have a roll-around mechanic’s tool chest. It has several drawers, and each drawer has
many tools neatly laid out side-by-side. I also have a repair manual on how to work on the 35 year old
1971 Volkswagen beetle that is parked in my garage; a project car that my son and I are working on.
Unfortunately—especially for the car—having the tools and manuals is not enough to make me a
qualified auto mechanic. The shop manual tells me what to do, but not which tool to use. Even if I
happen to select the correct tool for the repair at hand, I find myself reading and rereading the same
paragraph in the manual in a vain attempt to make the description and pictures in the manual match
what I am looking at when lying underneath the car looking up at the greasy underside of the engine or
transmission. And having all those tools and a manual do not seem to help a bit when I’m trying to
figure out in what order to reassemble the 40 or more pieces that make up the front brake assembly
and wheel bearings.

SystemVerilog gives us, as design and/or verification engineers, a huge set of tools to work with.
SystemVerilog adds to the programming and verification constructs of Verilog many new data types,
new programming statements, dynamic arrays, associative arrays, process synchronization, mailboxes,
direct calls to C, and Object-Oriented programming (an entire tool set, in an of itself). The constructs
and capabilities of SystemVerilog, if they were mechanical tools arranged neatly in a tool chest, would
be the envy of mechanics everywhere.

The Verification Methodology Manual (VMM) is, as its name states, a manual, not unlike the repair
manual on my old car. The VMM is not a simple manual that a novice engineer can just pick up and
make sense of. It shouldn't be. The VMM presents a complex and robust methodology that can handle
any size of design and any type of design, and at the same time, a methodology that can scale and be
re-used for the verification of many future designs.

SystemVerilog gives us the tools, and the VMM gives us the methodology. But, like the tools and
repair manual in my garage, SystemVerilog and the VMM are merely resources. Having the
SystemVerilog tool set and the VMM do not magically make us verification engineers. Somewhere
along the way, we need to figure out how to pick the right tool or tools from the SystemVerilog tool
chest, and use those tools in the way the VMM recommends.

xii A Pragmatic Approach to Adopting VMM

This is where this book, A Pragmatic Approach to Adopting VMM, comes into play. This book teaches
by example how the constructs in SystemVerilog are used to implement the methodology presented in
the VMM. Similar to learning from an experienced mechanic how to use the right tools to repair a car,
this book provides a way to learn from experts the right way to use SystemVerilog for verification.
With the help of these experts, it is much easier to understand how to apply the methodology presented
in the VMM on actual designs.

This book supplements the SystemVerilog language standard and the VMM. This book does not
replace having a copy of the Verilog and SystemVerilog standards (or good books about those
standards). Nor does this book replace having a copy of the VMM. The language reference books, the
VMM and this book should be used together.

Ben Cohen, Srinivasan Venkataramanan, and Ajeetha Kumari have found a way to make it obvious
how to correctly use the complex VMM and the vast number of SystemVerilog Object-Oriented
verification constructs. The book is an invaluable resource to all engineers who need to apply
SystemVerilog in the verification of designs.

Next, I wonder if Ben and his co-authors can write a book to help make it obvious how to make the
text and pictures in my auto repair manual map to the greasy underside of my 1971 VW beetle! ☺

Stuart Sutherland, SystemVerilog instructor and
President of Sutherland HDL, Inc.
(Sutherland HDL provides expert level training on how to
correctly use Verilog and SystemVerilog, with specialized
courses on synthesis, verification, and assertions)

Preface xiii

FOREWORD, Scott Sandler

Verification methodology has always been a perplexing puzzle. Developing semi-structured
approaches has consumed countless years of project and people time, costing the semiconductor
industry billions. The growth of integrated circuit complexity has driven the effort required beyond all
reason. The advent of Hardware Verification Languages brought the promise of more structure and the
potential for great savings. SystemVerilog takes things a couple of steps further by combining design
and verification in a single language while retaining the simple elegance of Verilog and adding the
modern object-oriented programming capabilities that are key to saving time in complex software
projects.

Like any powerful medium, the promise and potential of SystemVerilog comes with the risk of getting
bogged down in even more complexity. The emergence of VMM has helped to organize and structure
the efforts of design and verification teams adopting SystemVerilog to help them avoid that pitfall.
Now once again, Ben Cohen and his co-authors have done the industry a real service by making a
powerful technique even more accessible. "A Pragmatic Approach to Adopting VMM…" is exactly
what the doctor ordered for demystifying the methodology and focusing users on the keys to applying
it efficiently.

Our work at Novas is aimed at making the complex more easily understood. We believe that standards
and standardized methodologies are organizing principles that allow the entire semiconductor industry
to continue moving forward at its remarkable pace. Building support for the whole of SystemVerilog
into our products has been a significant effort, and well worthwhile, as it allows our users to leverage
VMM and this book to find and resolve more bugs faster!

Scott Sandler
President and CEO
Novas Software, Inc..
http://www.novas.com/

xiv A Pragmatic Approach to Adopting VMM

Preface xv

FOREWORD, Alain Raynaud

With the language well supported by the major simulation tool vendors, 2006 will be known as the
year of SystemVerilog. As users start adopting SystemVerilog, they are especially curious of the new
testbench constructs and frameworks offered by the language. The Verification Methodology Manual
(VMM) is a SystemVerilog-based framework that arrived just in time to put some order in a situation
that was about to become chaotic. It remains to be seen if the VMM will become the standard for
verification testbenches, just like RTL became the standard subset for synthesis, but this book will
serve as a stepping stone for all users wanting to learn about the VMM by example.

I cannot emphasize enough how important it is for the EDA industry as a whole to adopt standards and
common practices, so that the limited R&D budgets can be spent where it helps the most, instead of
supporting many different and incompatible coding styles and frameworks. In the area of hardware-
assisted acceleration and emulation especially, off-the-shelf FPGAs have won the battle for speed.
However, accelerating the verification of a design is of no value if its testbench can’t keep up. But
thanks to the work of the Interface Technical Committee (ITC) at Accellera, the technology is ready
today to allow testbenches to exchange data with designs emulating at multiple MHz. What had
limited the usefulness of those hardware transactors until today was the manual effort required to
retrofit them into old, poorly structured testbenches. The VMM in that regard is the missing link to an
efficient verification flow, from well-structured, reusable and easy to maintain testbench in simulation
to accelerated simulation where both design and testbench run at speeds previously unheard of.

This book can also be seen as a long overdue training on best practices for writing SystemVerilog-
based testbenches. Companies should adopt this approach, if only to save cost, as verification
engineers have better things to do than redevelop and learn a new testbench environment every time
they change projects.

Alain Raynaud
Technical Director
EVE USA, inc.
http://www.eve-team.com/

xvi A Pragmatic Approach to Adopting VMM

Preface xvii

PREFACE

The Book
This book is intended to help you come up to speed in the design of SystemVerilog transaction-based
testbenches that comply with the Verification Methodology Manual (VMM).1 The goals of this book
are to help you adopt, with complete, compilable, and executable examples, the VMM methodology in
the creation of comprehensive constrained-random and directed verification environments using a
transaction-level modeling (TLM) approach. All code examples are available for download. This
book is NOT a repeat of the Verification Methodology Manual for SystemVerilog book that defines the
rules and techniques used to create a VMM compliant testbench. Instead, this book makes use of the
most practical rules of VMM to demonstrate and show how to create a VMM-compliant testbench.
Not every feature of the VMM methodology is addressed. However, what is demonstrated are the
features and techniques that support transactions; generators; command transactors (e.g., Bus
Functional Models); logging of messages; and the verification environment. Since SystemVerilog
includes an object-oriented programming language (OOP), we provide applications of OOP design
patterns such as factories and callbacks. In addition, we address advanced topics that relate to different
applications and verification, including the synchronization of events through the notification services;
channel broadcast; channel scheduling; and role of coverage

This book is also NOT an explanation of SystemVerilog, its data types, tasks, assertions, coverage,
constraints, etc. That information is available in the SystemVerilog LRM, and in many books2.
However, we use many of the features of SystemVerilog and provide explanations for some because
they need emphasis. We assume that the reader either understands SystemVerilog, or has access to
material that explains SystemVerilog. Because SystemVerilog is an extension of Verilog-2001,
Verilog users will also be able to benefit from this book to get started with VMM.

We use icons in our text and diagrams to represent key Transaction-Level Modeling (TLM) concepts
(e.g., transactions, channel, and transactor). We also use Unified Modeling Language (UML)
diagrams created with StartUML™ for Windows, or with Umbrello for Linux3 to emphasize the
relationships between classes, properties, methods, and SV interfaces. Although UML is primarily
used as a documentation tool, in some applications it can be used for the creation of software.
However, conversion software from UML to SystemVerilog is not yet available. The UML diagrams
show the key, but not all, properties (i.e., variables) and methods of the classes.

1 Verification Methodology Manual for SystemVerilog, Bergeron, J., Cerny, E., Hunter, A., Nightingale, A.
2005, ISBN: 0-387-25538-9, Springer
2 - IEEE P1800 SystemVerilog: Unified Hardware Design, Specification and Verification Language
- SystemVerilog for Verification A Guide to Learning the Testbench Language Features Spear, Christian B.
2006, ISBN: 0-387-27036-1 Springer
- SystemVerilog for Design · A Guide to Using SystemVerilog for Hardware Design and Modeling, Sutherland,
S., Davidmann, S. (et al.), 2006, ISBN 0-387-33399-1, Springer
- SystemVerilog Assertions Handbook, Ben Cohen, Srinivasan Venkataramanan, Ajeetha Kumari 2005
VhdlCohen Publishing
3 http://www.staruml.com/ StarUML - The Open Source UML/MDA Platform
 http://uml.sourceforge.net/ Umbrello UML Modeller

xviii A Pragmatic Approach to Adopting VMM

To achieve the goals of constructing VMM compliant testbenches, we use two models to represent the
Design Under Test (DUT): a synchronous FIFO controller model with assertions, and a serial to
parallel converter design for the advanced chapter to further explain the capabilities of VMM. For
laboratory exercises we're also using a loadable counter, thus making this book useful for training.
Every chapter ends with a set of questions that touch on the key points covered in that chapter, with
answers provided appendix A. All code presented in the book, including laboratory setups and
solutions, is available for download and was verified with VCS X-2005.06-SP2.

The Intent
One of the reasons that we decided to write A Pragmatic Approach to Adopting VMM is because we
truly believe that VMM is a framework technology that allows you to quickly create a fast, reusable,
and extendable testbenches using SystemVerilog. This book adds some additional explanations and
practical, complete examples to emphasize the features of VMM. This book also presents the results
of real-life experiences applying VMM to various problems, providing useful insight and enabling
faster VMM adoption.

The Outline
Our approach in explaining the adoption of VMM is to first address in Chapter 1 the concept of a
framework and the role of VMM for verification, including the verification layers. We then delve into
key elements of this framework in Chapter 2, including the transactions and channels. In Chapter 3,
we explore two other key elements of VMM, including the transaction generator and the command
transactor, also known as bus functional model (BFM). After these elements are explained, we
address in Chapter 4 the construction of the environment where all the different elements/components
of VMM are joined together. These first four chapters are fundamental in creating a VMM compliant
testbench. Chapter 5 then adds the use of the factory pattern to provide additional flexibility in the
choice of classes to be used by objects. Chapter 6 covers the concept of callbacks to handle
unforeseen functionality through the strategic insertion of callback points, where the implementation
can be postponed, if needed. Next, we concentrate in Chapter 7 on notification services and we apply
them to a custom generator with a factory and notification. Chapter 8 addresses advanced
framework topics including the use of scenario generator, channel broadcasters, schedulers, functional
coverage, VMM log and formatting of message, and the seeding of randomization. Every chapter has
a set of refresher questions and an associated laboratory exercise. Appendix A presents the answers
to the questions in the chapters. The downloadable code represents all the code in this book, include
the laboratory setup and answers to the laboratory exercises. The Afterword reflects our opinions on
VMM, and in the adoption of SystemVerilog and VMM framework by industry.

Preface xix

The Notation

Transaction, a class

Monitor, a class

Channel, a class

Debug Interface,
SystemVerilog
interface

Transaction
Generator, a class

 DUT interface
SystemVerilog
Interface

Command
Transactor, a class

Directed tests

Atomic random tests

Scenario tests

Environment, a class

Factory

Callback, a class

Scoreboard,
a class

1 2 3

xx A Pragmatic Approach to Adopting VMM

UML diagram
* Name of class at top.
 Base class shown in italic
 Non-based class in regular
 font
* properties (e.g., variables) in
 middle of block
* Methods at bottom of block
* Arrow or lines show
relationships

Preface xxi

Acknowledgements

A Pragmatic Approach to Adopting VMM could not have been written without the support of
Synopsys who provided us with SystemVerilog tools including vcs.4

Several SystemVerilog experts participated in the review process of this book. The review is a
necessary step to iron out areas of disagreements, and to provide a piece of work that meets user’s
requirements for the design of a VMM compliant testbench. We especially thank Janick Bergeron,
Synopsys Scientist, for his in-depth review of our book, and for sharing with us many useful and
insightful guidelines for the application of VMM. We also appreciate his time for all these efforts and
for writing a foreword. We thank Vikas Gautam, Synopsys Director of CAE and Chris Spear,
Verification Specialist Synopsys, for making themselves available to provide excellent feedback on
SystemVerilog, content, style, and approaches used in the book. We appreciate all the technical and
editing comments from George Bakewell, Novas Software, Inc, Alain Raynaud, EVE USA, and
Stuart Sutherland, Sutherland HDL. We also are grateful for the forewords from Scott Sandler,
Novas Software, Inc, Alain Raynaud, EVE USA, and Stuart Sutherland, Sutherland HDL.

I, Ben Cohen, thank my wife, Gloria Jean, for supporting and bearing with me again in this endeavor.

4 http://www.synopsys.com/products/simulation/simulation.html

xxii A Pragmatic Approach to Adopting VMM

Sculpture Created by my Wife Gloria to
 Express my Long Hours with a Laptop in the Creation of Books

Preface xxiii

About the Authors

Ben Cohen is currently an HDL and Property languages (PSL, SystemVerilog Assertions)
trainer and consultant. He has technical experience in digital and analog hardware design,
computer architecture, ASIC design, synthesis, and use of hardware description languages for
modeling of statistical simulations (with ECSS and Simscript), instruction set descriptions (with
ISPS), and hardware models (VHDL, Verilog). He applied VHDL since 1990 to model various
bus functional models of computer interfaces. He authored VHDL Coding Styles and
Methodologies, first and second editions, and VHDL Answers to Frequently Asked Questions,
first and second editions, Component Design by Example, Real Chip Design and Verification
Using Verilog and VHDL, Using PSL/SUGAR with Verilog and VHDL, Guide to Property
Specification Language for ABV (1st Edition, also translated to Japanese by Cadence), Using
PSL/Sugar for Formal and Dynamic Verification, 2nd Edition, and SystemVerilog Assertions
Handbook (also translated to Japanese). He was one of the pilot team members of the VHDL
Synthesis Interoperability Working Group of the Design Automation Standards Committee who
authored the IEEE P1076.6 Standard for VHDL Register Transfer Level Synthesis. He is
currently a member of the VHDL and Verilog Synthesis Interoperability Working Group of the
Design Automation Standards Committees, and Accellera OVL and PSL and SVA
standardization working groups. He taught several VHDL, PSL, and SVA training classes.

VhdlCohen Publishing
Email: ben@systemverilog.us
Web: http://www.systemverilog.us/

xxiv A Pragmatic Approach to Adopting VMM

Srinivasan Venkataramanan is currently employed as a Corporate Application
Engineer (CAE) Manager with Synopsys, India Private Ltd., Bangalore – India. His areas of
interest are the emerging verification solutions and methodologies such as SystemVerilog, VMM,
Assertion-Based Verification, formal verification etc. He provides support to leading edge
semiconductor design companies on their verification methodologies and challenges. In his
previous employment with various design houses, he was actively involved in the verification of
leading edge high-speed, multi-million gates ASIC designs. He successfully developed complex
verification environments using advanced methodologies, such CDV using Verisity’s Specman,
ABV etc. Prior to joining Synopsys, he worked at Intel, Philips Semiconductors, and RealChip
communications in the areas of front-end design and verification of ASICs with several HDLs
and HVLs, including VHDL, Verilog, Specman, and Vera. Srini is active in several technical
discussion forums, working committees of OVL, SystemVerilog, VHDL-200X Testbench and
Verification, etc. Srini holds a Masters Degree from the prestigious Indian Institute of
Technology (IIT), Delhi in VLSI Design, and Bachelors degree in Electrical engineering from
TCE, Madurai. Srini has co-authored the book Using PSL/Sugar for Formal and Dynamic
Verification, 2nd Edition and SystemVerilog Assertions Handbook.

Web: http://www.noveldv.com/
Email: sri@noveldv.com

Ajeetha Kumari is running a Bangalore-based Verification Consultancy firm named
Contemporary Verification Consultants (CVC), and consults for various customers on high end
verification methodologies and languages. CVC offers corporate and educational trainings in
areas such as VHDL, SystemVerilog, SVA, PSL, VMM, etc. She co-authored Using PSL/Sugar
for Formal and Dynamic Verification, 2nd Edition and SystemVerilog Assertions Handbook. Her
interests include front-end design and verification methodologies including the application of
VMM. She has also been involved in EDA tool evaluations. She has experience with several
HDLs and HVLs including Verilog, VHDL, SystemVerilog, PSL, SystemVerilog Assertions and
Vera. She currently maintains a Verification centric web site. She received her M.S. in Electrical
engineering from the prestigious Indian Institute of Technology (IIT), Madras and Bachelors
from TCE, Madurai.

Contemporary Vérification Consultants Pvt. Ltd.
Email: ajeetha@noveldv.com ajeetha@abv-sva.org
Web : http://www.noveldv.com/

Preface xxv

DISCLAIMER

Every attempt was made to ensure accuracy in the interpretation of VMM and SystemVerilog,
and in the implementation of the model examples. However, all code provided in this book and
in the accompanied website is distributed with *ABSOLUTELY NO SUPPORT* and *NO
WARRANTY* from the authors. Neither the authors nor any supporting vendors shall be liable
for damage in connection with, or arising out of, the furnishing, performance, or use of the
information provided in the book and website.

Without permission, use or reproduction of the information provided in this book and on the
linked website for commercial gain is strictly prohibited.

xxvi A Pragmatic Approach to Adopting VMM

