

4 BUILDING THE
ENVIRONMENT AND
TESTBENCH

A verification environment is an encapsulation of various verification components such as
drivers, generators, channels, monitors, scoreboards, etc. While the various verification
components are independent of each other, it is the environment that brings all of them together
to accomplish a given verification task. This chapter introduces the anatomy of a VMM
environment and then describes the operation of the environment in detail. Figure 4.0
demonstrates the relationship of the environment with respect to the testbench.

54 A Pragmatic Approach to Adopting VMM

Figure 4.0 Relationship of the Environment with Respect to Testbench

4.1 ANATOMY OF A VMM ENVIRONMENT

Broadly speaking, a VMM compliant verification environment consists of two major segments:
• A structural segment that hooks up different verification components,
• A generalized test flow segment that controls how all of these different components

interact with each other in both spatial and temporal contexts.

4.1.1 Structural Segment

This segment of the environment contains instantiation of various verification components such as:
• Transaction generators (Atomic or Scenario)
• Functional transactors, if needed for the system to emulate hardware resources not yet

developed (e.g., mid-level protocol translator, image reformatter, etc).
• Command level transactors - drivers as well as monitor (a.k.a BFMs)
• Channels to hook up different transactors
• Signal layer connections - via SystemVerilog virtual interfaces
• Any reactive response generators (slave models)
• Scoreboards
• Functional coverage unit
• Logger

Figure 4.1.1-1 represents the structural segment of the environment that consists of transactors
and channels to transmit transactions from the generator to the BFMs; responses form the BFMs
to the generator for transfer status information, e.g., success/failure/retry; and monitors for the
gathering of data off the DUT interfaces for transfer to a scoreboard for verification.

Environment

Testbench

DUTDUT

Clock
generators

DUT
Interfaces Transactions

Transactors

Monitor
transactors

scoreboard

Program

Generator

This chapter:
The environment

Building the Environment and Testbench 55

class fifo_env extends vmm_env;
// Fifo transaction class declaration
 Fifo_xactn fifo_xactn;
// command-layer declaration
 Fifo_cmd_xactor fifo_cmd_xactor_0;
// channel declaration
 Fifo_xactn_channel fifo_channel_0, fifo_mon_chan_0;
// response channel cmd transactor -> generator
 Fifo_response_channel fifo_response_chan0;
// Configuration declaration
 Test_cfg test_cfg_0;
// atomic generator declaration
 Fifo_xactn_atomic_gen fifo_xactn_gen_0;
// monitor declaration
 Fifo_mon_xactor mon_0;
// format control declaration
 Fifo_log_fmt log_fmt_cntl;

 ..
endclass : fifo_env

Figure 4.1.1-1 Structural Segment of the Environment (ch4_fifo/ fifo_env.sv)

The command transactor needs virtual interfaces to communicate (e.g., read and write) to the
signals of DUT. The virtual interfaces enable the reuse of the transactor for interconnection to
multiple instances of the actual interfaces. The vmm_env hookups such virtual interfaces to
actual, design interface. This is done in the test flow segment during the build() phase, addressed
in section 4.1.2.2.

The constructor (the function new()) of the fifo_env is shown in Figure 4.1.1-2. The constructor
is a good place to perform user preference settings such as:

• Log format control
• Time format control etc.

The construction of the structural components is delayed until the build() phase rather than within
the constructor because it facilitates maintenance of the environment. The Log format is done via
a VMM class named vmm_log_fmt, more on this in Chapter 7. The time formatting can be easily
done using Verilog’s $timeformat system task.

 function new(); // for environment
 super.new();
 $timeformat(-9,2, " ns");
 this.test_cfg_0 = new;1
 log_fmt_cntl = new();
 log = new("fifo_env", "");
 log.set_format(log_fmt_cntl);
 endfunction : new

Figure 4.1.1-2 Constructor of the FIFO Environment (ch4_fifo/ fifo_env.sv)

Figure 4.1.1-3 provides a UML view of the main elements of the environment.

1 VMM Example 4-18. Randomization of Testcase Configuration Descriptor

26450.00 ns
cmd_xactor
[Trace:DEB
UG] | Got a ..

56 A Pragmatic Approach to Adopting VMM

Fifo_env

+Fifo_cmd_xactor fifo_cmd_xactor_0;
+Fifo_xactn_channel fifo_channel_0;
+Fifo_xactn_channel mon_chan;
+Fifo_response_channel fifo_response_chan0
+Test_cfg test_cfg_0;
+Fifo_xactn_atomic_gen fifo_xactn_gen_0
+Fifo_mon_xactor mon_0;
+Fifo_log_fmt log_fmt_cntl;

+gen_cfg()
+build()
+reset_dut()
+start()
+wait_for_end()
+report()

vmm_env

+vmm_log log

Figure 4.1.1-3 UML of Main Elements of the Environment

4.1.2 Test Flow Section

As with every other component in VMM, the base class vmm_env captures the best known
practices formulated from a variety of verification environments. One of the most interesting
aspects of VMM is its generalized test flow mechanism. Almost every functional test that is run
on a design has several distinct sequences of steps, but often that goes unnoticed. For example, a
novice engineer trying to verify the FIFO design may develop a testcase as follows:

• Generate the clock
• Reset the DUT
• Configure the registers (optional step)
• Start the transactions - PUSH, POP etc.
• Wait for certain number of clocks
• Finish the simulation

To appreciate the need for the generalized test flow, let’s consider a hypothetical networking
design.2 A simple test will look as follows:

• Generate the clock
• Reset the DUT for few clocks
• Configure the DUT registers (if any)
• Simulate few transaction/packets/frames
• Wait for certain number of clocks
• Finish the simulation

2 We present a sample of such design and a verification environment in Chapter 8.

Building the Environment and Testbench 57

While the above two flows look very similar, we list both examples to demonstrate the
fundamental fact that across a variety of designs, there is an underlying test flow common in
skeleton.

In a simple, non-VMM based testbench, the implementation of the above test flow may likely be
implemented inside a single (or few) Verilog initial block, where the concept of a “sequence of
steps” is often implicitly present. VMM standardizes this test flow and recommends a 9-step
flow. This flow is not duplicated in every test. It is captured once. These steps are implemented
using SystemVerilog virtual methods (tasks or functions inside a class). The use of virtual
methods allows you to easily annotate and customize a given step for your design. Such a
standard flow provides several advantages, including:

1. Consistency in structure across all designs
This is important because in the lifecycle of a design, the verification task undergoes
several iterations, and may often be handled by different verification engineers. Thus, as
new engineers inherit or review a verification testbench, they carry with them a common
understanding of the verification flow standardized by the VMM framework.

2. Customizable flow plan
The steps involved in the verification flow are well outlined and customizable by you, if
that customization is necessary. These well thought-out steps do serve as a reminder to
you, the verification engineer, and to the code reviewers as to the needed and possibly
missed steps in this flow. In essence, “it makes you think”. For example, in a
conventional, non-VMM flow, a testcase could have forgotten to configure the PCI
properly and have instead started the transactions. This could lead to all transactions
being aborted by the PCI interface, and a debug engineer might spend several hours
looking at the simulation results only to realize that the configuration of the DUT was not
done before sending the transactions

3. Reusability and maintainability
With a standard flow, building the environment is relatively easy. Maintaining it and
upgrading it is even easier. For example, in our FIFO model we demonstrated various
concepts in the different chapters, including the use of different transactions, generators,
factories, and callbacks. However, making the necessary changes to build a new
environment out of those various components and patterns was very easy

4. Enhanced debugability
With a standard test flow the debugging becomes simpler. For example, if there is a
problem in configuring a register, you can quickly look at the cfg_dut() method extension
and isolate the problem.

5. Flow control
There are two aspects to flow control: User-control and framework control. As a user,
you can control and modify the configuration of the environment and DUT. You can also
control the start/stop/restart of various transactors. The VMM framework automatically
controls the sequencing of the various steps needed to create the verification of the DUT.
That framework relieves you from the task to create this flow control.

The generalized test flow is illustrated through a flowchart in Figure 4.1.2 along with the actual
method names being used in VMM. The individual steps are further elaborated in the subsequent
sections.

58 A Pragmatic Approach to Adopting VMM

Figure 4.1.2 Test Flow of the Environment

Generate test
configuration

Build the
environment

Reset DUT

Configure DUT

Cleanup DUT/TB

Stop transactors

Report status

Start transactors

THE END

End of Simulation
reached?

Yes

No

gen_cfg()

build()

reset_dut()

cfg_dut()

start()

wait_for_end()

stop()

clean up()

report()

Building the Environment and Testbench 59

4.1.2.1. gen_cfg()

This generate configuration method creates a configuration of the test environment used by the
DUT. The random configuration is encouraged; however, the configuration could also be
determined from command-line arguments or an external file or be hard-coded. Typical items
that get randomized at this step are:

• Number of input/output ports, and their speed, mode etc. in a configurable IP.
• Number of masters and slaves in a shared bus env. such as OCP.
• Number of transactions, percentage errors etc.

 For example, in our FIFO model, we can determine the random values for the various CSRs
(Configuration and Status Registers). The goal of this step is that over many random runs, one
will test every possible configuration, instead of the limited number chosen by directed test
writers. The actual configurations are placed under a custom SystemVerilog class known as a
“test configuration descriptor”. In our FIFO example we used the Test_cfg class. An example of
a gen_cfg that randomizes properties used by the environment and the DUT is shown in Figure
4.1.2.1.

class Test_cfg;
 rand bit [7:0] no_of_xactions;
endclass : Test_cfg

class Fifo_env extends vmm_env;
 Test_cfg test_cfg_0; // Test Configuration Descriptor
 …
 extern function void gen_cfg();
endclass : Fifo_env

function void Fifo_env::gen_cfg();
 super.gen_cfg();
 this.test_cfg_0.randomize();
endfunction : gen_cfg

Figure 4.1.2.1 Sample configuration generation in vmm_env (ch4_fifo/ fifo_env.sv)

Essentially this step provides one central place for all random configurations for the environment
of the DUT. This centralized location helps in the control and maintenance of that environment.
The created configuration of the environment is set in the build(), while the DUT detailed
configuration is later downloaded during cfg_dut() step,

4.1.2.2. build()

 This method builds the verification environment per the configuration generated in the previous
step. This includes generators, checkers, drivers, monitors etc. In SystemVerilog, this method
essentially calls the constructors of various component classes. One question that often arises is
“Why not construct these elements as part of the constructor of the env itself (i.e., the new of the
environment)?” - Remember that the verification environment is also a SystemVerilog class.
There are two main reasons as to why you want to construct the instantiated components in the
build method:

1. The random configurations are not yet available during the construction
2. This architecture allows for dynamic re-configurability, thus after a specific number of

transactions, you may choose to re-configure the environment and re-build it.

Figure 4.1.2.2a represents our build for the FIFO.

60 A Pragmatic Approach to Adopting VMM

 function void Fifo_env::build();
 string msg;
 super.build();
 // Instantiation of channels
 this.fifo_channel_0 = new("fifo_chan","channel");
 this.fifo_response_chan0=
 new("fifo_response_channel", "channel");3
 // Instantiation of command-layer transactor
 this.fifo_cmd_xactor_0 = new("cmd_xactor",
 0,
 `TOP.f_if,
 fifo_channel_0,
 fifo_response_chan0
);
 // Instantiation of transaction generator
 this.fifo_xactn_gen_0 =
 new ("fifo_gen", 0, fifo_channel_0);

 // Setting up the number of transactions
 this.fifo_xactn_gen_0.stop_after_n_insts =
 this.test_cfg_0.no_of_xactions;
 // Setting up a message, then issue it
 $sformat(msg, "Sim shall run for no_of_xactions %0d ",
 this.fifo_xactn_gen_0.stop_after_n_insts);
 `vmm_note(log, msg);
 // Instantiation of monitor channel
 this.fifo_mon_chan_0 =
 new("Fifo_mon_chan_0","channel");
 // Instantiation of monitor
 this.mon_0 = new("FIFO Mon", 0, `TOP.f_if,
 this.fifo_mon_chan_0);

endfunction : build

Figure 4.1.2.2a FIFO Build (ch4_fifo/ fifo_env.sv)

An important aspect of build() is the hookup of the command-level transactor virtual interface to
corresponding DUT interface. The virtual interface is used by command transactors in VMM to
drive the transactions to the DUT. By maintaining this virtual interface the transactor can be
connected to different actual interfaces of the same type. At the top level testbench, each of
these interfaces will be instantiated along with DUT (Refer to Section 4.2 later in this chapter),
and that complete hierarchical path to the interface instance is provided to the command level
transactor as shown in Figure 4.1.2.2b (e.g., `TOP.fifo_if_0). The macro TOP is defined in the
FIFO package with a `define construct that refers to the top level testbench.4

3 The Fifo_response represents a transaction for the transfer of status or data back to the generator. This
information is useful because a RETRY feedback to the generator should cause a retry of the last issued
transaction. This response model is used here for demonstration purposes and could be ignored for simple
testbench environments.
4 A direct path can be used instead of the macro TOP since there is only one top-level.

Building the Environment and Testbench 61

4.1.2.3. reset_dut()

This step takes care of resetting the DUT. In simple designs this simply means toggling the reset
signal and waiting for few clocks. However, complex ASICs may have a well defined reset
sequence and may take several hundred clocks to get the proper reset. Some designs get reset
when specific values written to configuration registers and/or memory blocks. The reset_dut
method has the following functionalities:

• Initiate the reset condition
• Wait for the reset sequence to be completed.
• Verify the status of DUT after reset.

Complex SoCs have one or more processors and their boot sequence can also be considered as
part of this reset_dut() method. On-chip PLLs is another candidate where reset holds the key for
the entire chip’s operation in normal mode. In PLLs, the time it takes to get to a locked state is
usually long in terms of simulation cycles. As seen from the previous examples, the reset process
can consume many clock cycles. To speed this process, one could use a FAST_MODE
configuration technique to initialize the design via backdoor access, such as the direct load of the
memory elements via the direct path.

Figure 4.1.2.3 represents the simple reset for our FIFO model

task Fifo_env:: reset_dut();
 super.reset_dut();
 `TOP.reset_n <= 1'b0; // in fifo_pkg.sv: `define TOP fifo_tb
 `TOP.f_if.pop <= 1'b0;
 `TOP.f_if.push <= 1'b0;
 repeat (10) @(`TOP.f_if.driver_cb);
 `TOP.reset_n <= 1'b1;
 repeat (10) @(`TOP.f_if.driver_cb);
 endtask : reset_dut

Figure 4.1.2.3 FIFO Reset Task (ch4_fifo/ fifo_env.sv)

4.1.2.4. cfg_dut ()

Once the DUT is reset, the next step is to configure the DUT as per the random configuration
generated in gen_cfg() step. This is a very important step in real design. Some verification teams
tend to combine this step with the reset_dut() step. This is not recommended because keeping the
two steps separate allows a simulation to run in one configuration for some transactions and then
in a different configuration for other transactions.

For example, consider a networking chip with a large address table. The address table is
architected to be configured as a linked list for faster search operations. The configuration
process is considered done only after the entire table is initialized properly to form a linked list, a
process that can take several hundred clock cycles. Once this is done, a specific value is written
by the ASIC to a status register. In this case, the address table should be verified for link list
consistency (such as all entries being linked, no loops, etc.).

In complex systems such as an Ethernet device, the number of registers to be configured can be
large and can take a long simulation time. It is recommended that you provide backdoor accesses
for such designs to speed up simulations, using $readmemh/b or a hierarchical reference to
configuration registers (e.g., top.chip.pci_blk.cfg_0 = 10). Some design teams also prefer using
C-code for this step as the C-code can be reused across software and hardware validation.
SystemVerilog allows direct C-function calls across C and SystemVerilog language. This is a
greatly simplified method over the PLI route of integrating C with Verilog.

62 A Pragmatic Approach to Adopting VMM

4.1.2.5. start()

This method starts the test components. Note that some components may need to be started in
cfg_dut() to be able to do read/write cycles. At this stage in the test flow, both the design and
testbench are configured with the chosen configurations and the design is ready to be simulated
with traffic. In a TLM based environment such as VMM, this is usually done by starting the
transactors such as generators, driver, monitor etc. VMM provides such a task in the vmm_xactor
base class named vmm_xactor::start_xactor(). It is very important that transactors do not start on
their own immediately after construction. Starting may need to be phased in a particular order,
depending on the relationships of components. For example, a transactor that emulates a
pyrotechnic controller may need to be started after a BFM transactor that drives it. It is very
important not to forget to start of a transactor because without a start, it will not be active and will
have no effect in the verification process. For example, if you leave out the driver transactor
(command transactor, or BFM) from starting, the generator will simply generate transactions, but
there will be no consumer or drivers for those transactions. Moreover, since the channel is
blocking after the channel level is reached, the generator will wait and the simulation will be
running with no useful traffic being simulated. In our FIFO example, the start() task in class
fifo_env calls the start_xactor() of individual components/transactors. The start_xactor method
internally starts the main method of its corresponding transactor. Figure 4.1.2.5 demonstrates a
snippet of code for start task in FIFO model.

 task Fifo_env:: start();
 super.start();
 this.fifo_xactn_gen_0.start_xactor();
 this.fifo_cmd_xactor_0.start_xactor();
 this.mon_0.start_xactor();

 this.fifo_mon_chan_0.sink(); // flush content of channel 5
 endtask : start

Figure 4.1.2.5 Snippet of start Task for FIFO model (ch4_fifo/ fifo_env.sv)

4.1.2.6. wait_for_end()

This step is where the “core” of verification occurs until the end of test. Thus, this is where
transactions are generated and driven to the DUT, and where responses are monitored, covered,
and verified for correctness. This could also mean that when a simulation fails, the actual
analysis of the failure can generally be traced from this step. However, this is only a guideline as
errors can be traced back to the configuration or initialization process.

This method waits for the end of the test, and is usually done by waiting for a certain number of
transactions or a maximum time limit, or a predefined number of errors to occur. A sample code
from our FIFO example is shown in Figure 4.2.2.6-1. In our example, the environment waits for
a DONE notification generated by the atomic generator.6

5 May also want to flush response channel with “this.fifo_response_chan0.sink();”
6 See Chapter 7 for more information on notification.

Building the Environment and Testbench 63

task Fifo_env:: wait_for_end();
 super.wait_for_end();
 this.fifo_xactn_gen_0.notify.wait_for(
 Fifo_xactn_atomic_gen::DONE);
 // this. mon_0.notify.wait_for(fifo_pkg.MON_DONE);
 // Not yet implemented, but shown here for documentation
 endtask : wait_for_end

Figure 4.1.2.6-1 wait_for_end Task (ch4_fifo/fifo_env)

Determining the end of test is sometimes an overlooked step, but as per the authors’ experience,
this is a very important step - more so with constrained random tests because you cannot simply
“wait for 1000 clocks and exit”. Depending on the random number of transactions being
generated, that number 1000 maybe insufficient to run all the transactions. EOT (End Of Test)
detection is quite system/design dependent, and it is recommended that the verification architects
bring this process upfront, and provide the necessary hooks in the environment to determine the
EOT (e.g., notification, watchdog, number of transactions, coverage value, etc). A simplified
flow for EOT detection is provided in Figure 4.1.2.6.

Figure 4.1.2.6 End Of Test Recommended Flow

Note that the above flow chart does not cover many other issues, such as watchdog for inactivity
in the DUT, dropped transactions, internal FSM states etc. These are highly system/design
dependent. We provide another example that addresses those issues as part of advanced topics in
Chapter 7.

Once the EOT condition is detected, you could abruptly end the simulation. However, such an
abrupt end might lead to false failures as some of the transactions might still be in progress, and
the data checking has not yet completed etc. To be VMM compliant, the recommended approach
is to stop all the active elements in the verification environment, clean up the design/environment
and then finish. The next three steps in the VMM test flow address the termination of simulation.

Wait for generator to flag DONE

Wait for driver to indicate that all
generated transactions are
consumed

Wait for monitor to indicate that
all transactions are accounted for

64 A Pragmatic Approach to Adopting VMM

4.1.2.7. stop()

This method is used to stop all the components of the verification environment to terminate the
simulation cleanly in preparation for the next step. If this method has not been explicitly invoked
in the test program, it will be by default invoked by the vmm_env::cleanup() method.

4.1.2.8. cleanup()

This method is intended to be a place where the design and testbench is cleaned up before finish.
Cleanup of testbench may involve emptying the VMM channels, SystemVerilog Qs (declared in a
scoreboard for example) etc. On the design side, this could involve reading interrupt status
registers, statistics counters etc.

For example in a networking ASIC with 16 ports, some of the output ports may be configured to
be in blocking state during the simulation. The intended test functionality should be tested in
such a mode untill wait_for_end is reached. However, once the intended functionality has been
tested, you may want to re-enable the previously blocked output ports so that all packets inside
the DUT can be emptied out cleanly. This step will also be beneficial if you want to run several
tests in chain without a HARD RESET in between. Usually this is not required, but once a design
is mature enough, some design teams like to run several tests in a chain without applying reset in
between. In a sophisticated environment with self-checkers, such a run might raise false alarms
if the previous test did not clean up the expected queues. VMM channel provides a method to
empty the channel as vmm_channel::flush(), as shown in Figure 4.1.2.8.

task Fifo_env::cleanup();
 super. cleanup ();
 this.mon_0.out_chan.flush();
 ...
 endtask : cleanup

Figure 4.1.2.8 Application of vmm_channel::flush()

vmm_env::cleanup() is also an ideal place to do a memory profiling of a simulation run. Typical
memory profile statistics indicate areas prone to memory leaks, excessive storage in the system
etc. Usually the memory consumption is largest towards the end of simulation7. Synopsys’ vcs
provides techniques to analyze/profile memory consumption during a simulation run. For
example, vcs provides a system task $vcsmemprof() that can be called from testbench code at an
appropriate point in simulation time to dump out memory profile data. Adding that to
vmm_env::cleanup() is recommended to check for unusually large memory consumption. For
example, in an environment with several SystemVerilog Qs and VMM Channels (with some of
them not being consumed because higher layers do not need those transactions), the number of
transactions stored in these Queues and channels might be a primary contributor to excessive
memory consumption. A memory profile will reveal such code level bottlenecks.

7 This is however not always true, some times the peak consumption can be in the early simulation cycles.

Building the Environment and Testbench 65

4.1.2.9. report()

This is the last step in VMM test flow. This method is responsible to declare the test run as a
PASS or a FAIL. You may also want to include a final statistics of what the test has achieved to
provide a quick summary of the achieved goals. For example, in our FIFO model we provided
two text messages, as shown in Figure 4.1.2.9-1..

task Fifo_env:: report();
 super.report();
 `vmm_trace(log,
 "This is where additional model info is displayed");
 `vmm_note(log, "**** REPORT ***");
 endtask : report

Figure 4.1.2.9-1 Report Task

4.2 TOP LEVEL TESTBENCH/SYSTEM WITH VMM

Once an environment is created using vmm_env, the last phase is to instantiate that environment
in a SystemVerilog program. Hence the top level testbench has essentially three components, as
shown in Figure 4.2-1:

1. The SystemVerilog program that wraps the VMM environment
2. The DUT instantiation
3. The Clock generators

Figure 4.2 demonstrates an overview of the testbench.

Figure 4.2 Testbench Overview

Environment

TOP Level System

DUT DUT

Clock
generator

DUT

Transactions

Command
Transactor

Monitor
transactors

scoreboard

Program

Generator

66 A Pragmatic Approach to Adopting VMM

4.2.1 The Test program

As mentioned briefly in Chapter 1, SystemVerilog provides a new construct for testbench entry
point - the program. For over a decade, design teams have been using Verilog’s module construct
to model both designs and testbenches. While it certainly works, a clear separation from the two,
from a language semantic viewpoint, makes a lot of sense - especially because of the infamous
race conditions that are inherent in Verilog (and SystemVerilog as it inherits basic Verilog).

The reset_n signal can be viewed as either part of the interface or part of a signal at the top level.
If the reset signal is handled as part of the interface, then a system with multiple instantiations of
that interface will have several reset signals, one for each of the separate interfaces. Since our
FIFO model has a single reset signal defined at the top level, we access the reset signal through
hierarchical cross module reference. Depending upon your requirements, you need to decide how
your reset signal will be handled.

The program for our FIFO model is shown in Figure 4.2.1-1. A common mistake is to forget to
include the vmm.sv file in the program file. This is necessary to have access to VMM. Having
the include file within the program instead of in the compilation script also provides
documentation for the need of the base VMM classes.

program fifo_test_pgm ();
 timeunit 1ns;
 timeprecision 100ps;
 //the include files + log + fifo_env_0 instantiation
 `include "test.svh"
 initial
 begin
 // Build all components of an environment - testbench
 `vmm_note(log,"Start of Test");
 fifo_env_0.build();
 begin
 Fifo_xactn fifo_xactn; // fifo transaction class declaration
 // Instantiation of transaction class
 fifo_xactn = new();
 // Setting the factory for the transaction on the generator (see Ch 5 for factory)
 // ** NOTE: If next line is commented out, then transaction generator
 // will use its internally instantiated copy of randomized_obj
 fifo_env_0.fifo_xactn_gen_0.randomized_obj =
 fifo_xactn;
 // Setting up the factory fifo_xactn for the monitor
 fifo_env_0.mon_0.factory_xactn=fifo_xactn;
 end
 fifo_env_0.run();
 `vmm_note(log, "End of Test");
 end
endprogram : fifo_test_pgm

Figure 4.2.1-1 program Structure for FIFO Model (ch4_fifo/fifo_pgm.sv)

Figure 4.2.1-2 shows the contents of test.svh file.

Building the Environment and Testbench 67

`include "vmm.sv"
`include "fifo_xactn.sv"
`include "fifo_response.sv"
`include "fifo_log_fmt.sv"
`include "fifo_cmd_xactor.sv"
`include "fifo_gen_xactor.sv"
`include "fifo_mon_xactor.sv"
`include "fifo_env.sv"
 vmm_log log = new("test", "main");
 Fifo_env fifo_env_0=new();

Figure 4.2.1-2 Contents of test.svh File ((ch4_fifo/test.svh).

As per SystemVerilog LRM, a program can contain everything that a module can, except the
always block and module instantiations. Thus, an initial block is used to construct the
environment and start the test flow.

In SystemVerilog, a simulation is considered finished once the program block’s execution is
completed. This is quite different and new to Verilog users who are accustomed to adding a
$finish or $stop to stop the simulation at the desired point. So in the above example, if the
vmm_env::wait_for_end() is not properly implemented, you may experience an early simulation
termination even without an explicit call to $stop or $finish. If an unexpected early or late
termination occurs, take a close look at the conditions that caused the wait_for_end to occur (or
never occur).

4.1.3 Clock generation

As a good methodology, clock generation should be done in a module and not inside a program.
To appreciate this guideline, you need to understand the SystemVerilog’s event scheduling
mechanism. Though there are many regions within the same time step, the ones that are relevant
to this discussion are the active, nonblocking assignment (NBA), and reactive regions. While the
classical Verilog module assignments get evaluated in the active/NBA regions, the newly added
program block gets executed in the reactive region. This scheduling mechanism was designed in
SystemVerilog to prevent race conditions originating between the design and testbench. Hence
any assignment within the program will be visible to the design (module) only after the reactive
region execution. This would mean that the design will go wrong on the combinatorial signal
computation. This is obviously not desired. Also, fundamentally a clock is more closely
associated with the hardware design than to a high level software-oriented testbench model.
Usually the testbench’s view of clock is more an abstract view - it is only concerned with the
clock edges. Hence it makes lot of sense to retain the clock generation in a module. In our FIFO
model, we have added that as code at the top testbench.

A question may arise as to how to randomize some of the clock generation parameters, such as
clock period, duty cycle etc. This can be achieved at the top level with randomized variables
used in the clock generation model. Those variables can be defined in classes.

4.1.4 DUT Instantiation and hook up

The top level module instantiates and connects the following blocks:
• program block
• Needed interfaces
• DUT
• Clock generator

68 A Pragmatic Approach to Adopting VMM

This is very much similar to any classical Verilog structural model, and hence is not elaborated
further here. Please refer to file ch4_fifo/ top_tb.sv for details.

4.3 DEVELOPING TESTCASES WITH VMM

In a VMM framework, a testcase is implemented inside a SystemVerilog program block. In this
section, we will show how you can progressively develop testcases starting from a simple,
constrained random test to an advanced test case. One of the benefits of using the vmm_env base
class to build a verification environment is that the sequencing of these individual steps is
maintained under the hood. The user needs to only call the vmm_env::run() method and the test
sequencing will be automatically taken care of.

4.3.1 Simplest Testcase in VMM framework

The simplest test for our FIFO model looks as shown in Figure 4.3.1-2 It basically instantiates
the fifo_env, constructs the instance of fifo_env as fifo_env_0, and simply calls the run() method.
The run method then performs the steps explained in section 4.1.2. The simplest testcase does
not include any customization, which is explained in Chapter 5.

4.3.2 Trivial Testcase with just one transaction in VMM framework

While the simplest test looks good for a stable DUT, when the very first test is being run, you
may prefer to have a fairly simple, directed-like test case with only one transaction. This is easily
achievable in the VMM framework by redefining the number of transactions from within the
program, as shown in Figure 4.3.2.

program first_test();
 //the include files + log fifo_env_0 instantiations
 `include "test.svh"

 initial begin : b1
 fifo_env_0.gen_cfg(); // from vmm_env::gen_cfg
 // Override the number of xactions field
 fifo_env_0.test_cfg_0.no_of_xactions = 1;
 // Do the rest of the flow as usual
 fifo_env_0.run();
 end : b1
endprogram : first_test

Figure 4.3.2 Redefining the number of transactions for simulation

Here, the fifo_env::gen_cfg() is called first to generate random test configurations. But since we
wanted to override the number of transactions property inside the test configuration descriptor,
the value is simply assigned a new value after generation. Once the number of transactions is
changed, we want to follow the rest of the test flow as usual. This is done by calling
fifo_env::run(). Note that since the test case has explicitly called the fifo_env::gen_cfg(), the
fifo_env::run() continues the flow from where it left off (i.e., it shall not re-invoke that
fifo_env::gen_cfg()) and proceed from the step that follows it - i.e., fifo_env::build().8 This is
very important because otherwise the number of transactions will again get randomly generated.

8 This flow is also addressed in section 5.2.

Building the Environment and Testbench 69

4.4 FILE STRUCTURE AND COMPILATION

Table 4.4.demonstrates the file structure and the purpose of each file. Figure 4.4-1 is a graphical
representation of the relationship between the files.

The compilation and simulation of the model with Synopsys VCS simulator can make use of the
Makefile in the vcs subdirectory, as shown in Figure 4.4-2. The file flist is shown in Figure 4.4-3.

env:
 vcs -debug_all -sverilog -f flist +incdir+../ -ntb_opts rvm -R -l ch4_fifo.log
// with trace:
 vcs -debug_all -sverilog -f flist +incdir+../ -ntb_opts rvm -R -l ch4_fifo.log
+rvm_log_default=trace +plusargs_save

run:
 ./simv -gui &
clean:
 \rm -fr csrc* simv* scsim* *vpd ag* session* work/* WORK/* *.so *.log test* cm* ucli*
worklib/* DVE* *.h

pp:
 dve -vpd vcdplus.vpd &

Figure 4.4-1. Makefile for Compilation with Synopsys VCS Simulator
(ch4_fifo/vcs/Makefile)

../fifo_pkg.sv
../fifo_props.sv
../fifo_if.sv
../fifo_csr_if.sv
../fifo_rtl.sv
../fifo_pgm.sv
../top_tb.sv

Figure 4.4-2. File list used for Compilation (file vsc/flist)

Note that the compilation list does not include all the files used by the testbench. This is because
the program file (test.svh) included in the program file includes the following:

`include "vmm.sv"
`include "fifo_xactn.sv"
`include "fifo_response.sv"
`include "fifo_log_fmt.sv"
`include "fifo_cmd_xactor.sv"
`include "fifo_gen_xactor.sv"
`include "fifo_mon_xactor.sv"
`include "fifo_env.sv"

 vmm_log log = new("test", "main");
 Fifo_env fifo_env_0=new();

70 A Pragmatic Approach to Adopting VMM

Table 4.4. File Structure and Functions
File Function Used by

fifo_pkg.sv Defines types and parameters ALL
fifo_if.sv Defines the FIFO interface RTL, property models,

and by program,
testbench, transaction
and transactors

fifo_csr_if.sv

Defines the FIFO configuration interface RTL, property models,
and by program,
testbench, transaction
and transactors

fifo_xactn.sv Defines the transaction class with the constraints
Also used for the channel generation with:
 `vmm_channel (fifo_xactn)

`vmm_channel macro for
generation of channel,
`vmm_atomic_gen
macro for generation of
atomic generator,
monitor transactor for
creation of transaction
from observed values on
bus interface

fifo_gen_xactor.sv Uses the macro `vmm_atomic_gen for generation of
atomic generator, defines the constraints for the
number of transactions

 Environment for
creation of the build
model

fifo_cmd_xactor.sv Provides the transactor definition to drive the FIFO
model.

FIFO environment

fifo_log_fmt.sv Defines formatting information for display. FIFO environment
fifo_mon_xactor.sv Creates a copy of the observed transaction onto a

transaction channel.
Scoreboard, top level

fifo_env.sv Creates the build and start for simulation program
fifo_pgm.sv Creates the modeling for simulation and initiates the

run in the environment
Top level

fifo_props.sv Defines the properties for assertions Top level for bind
fifo_rtl.sv Represents the FIFO RTL DUT Top level
top_tb.sv Represents the top level and instantiates the RTL,

the bind, the monitor, etc
none

test.svh Include files needed for compilation In program
fifo_response.sv The response transaction from the command

transactor to another transactor, such as a generator
Environment

Building the Environment and Testbench 71

 Figure 4.4-3. File Structure and Relationships

72 A Pragmatic Approach to Adopting VMM

Chapter 4 Questions and LAB

Q1. Why is it necessary to build the verification environment in a separate class?

Q2. Why is the environment in a program rather than in a module?

Q3. How is the testflow of the environment initiated? What is the importance of this
testflow?

LAB04, Build a verification environment for the counter.
Follow instructions in subdirectory lab/la04/todo/readme.txt

