
  

1  VMM FRAMEWORK 

 
New technologies are needed to verify today’s ever larger and more complex designs.  These 
technologies came in the form of new languages such as Open Vera, e and recently 
SystemVerilog.  However, having a powerful language alone was not sufficient to handle these 
designs as every design team had to find a way to make use of the extensive list of features in the 
language to address the problems at hand.  New methodologies and frameworks appeared to 
handle the verification tasks, including Transaction-Level Modeling (TLM)1, Reference 
Verification Methodology (RVM)2, Advanced Verification Methodology (AVM)3, and Universal 
Reuse Methodology (uRM).4  In mid 2005, Synopsys and ARM collaborated and published an 
open verification methodology built on the strong concepts of RVM, and the result was a 
document – The Verification Methodology Manual (VMM) for SystemVerilog – supplemented 
with a set of SystemVerilog libraries (classes and macros).5  VMM supports transaction-based 
verification (TBV), directed verification, coverage-driven verification (CDV), constrained-
random testing (CRT), and assertion-based verification (ABV), and proposes an optimal usage of 
each of these advanced techniques.  This chapter addresses the features that SystemVerilog 
provides in the field of verification, and why VMM represents a viable framework for 
verification.6  In this chapter, we present a short review of the SystemVerilog constructs used in 
testbenches along with an overview of a typical VMM compliant testbench architecture.  
  
                                                      
1 Transaction Level Modeling: An Overview  http://www.ics.uci.edu/~gajski/presentation/Transaction.ppt 
2 Synopsys, http://www.synopsys.com/products/simulation/pioneer/pioneer_ntb.html 
3 Mentor Graphics, http://www.mentor.com/products/fv/news/questa_avm.cfm 
4 Cadence, Incisive Plan-to-closure Methodology http://www.cadence.com/ 
5 VMM is an adaptation of RVM for SystemVerilog documented in the book Verification Methodology 
Manual for SystemVerilog, Springer 2006.  Additional information on VMM is available at  
http://vmm-sv.org/ 
6  This book addresses SystemVerilog and VMM only and makes no attempt to compare languages or other 
frameworks.  
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1.1 FRAMEWORK  

What is a framework?  The dictionary defines it as:7  
1. A structure for supporting or enclosing something else, especially a skeletal 

support used as the basis for something being constructed. 
2. An external work platform; a scaffold. 
3. A fundamental structure, as for a written work. 
4. A set of assumptions, concepts, values, and practices that constitutes a way of 

viewing reality. 

In software development, a framework is a defined support structure in which another software 
project can be organized and developed. A framework may include support programs, code 
libraries, a scripting language, or other software to help develop and glue together the different 
components of a software project.  The word "framework" has become a buzzword due to recent 
continuous and unfettered use of the term for any generic type of libraries. 

A software framework is a reusable design for a software system (or subsystem). This is 
expressed as a set of abstract classes and the way their instances collaborate for a specific type 
of software (Johnson and Foote 1988; Deutsch 1989).  Most software frameworks are object-
oriented designs. Although designs don't have to be implemented in an object-oriented language, 
they usually are.  

VMM is a framework for the verification of hardware FPGA and ASIC designs, and is built with 
SystemVerilog as its supporting language.8   VMM provides the support environment to create a 
reusable and extensible testbench in a transaction-level style.  As such, you need to understand 
how to use this framework.  In this book we will demonstrate how the various concepts and 
libraries are used to build such a testbench.  These concepts are introduced in this chapter and are 
explained in the subsequent chapters.  

1.2 WHY SYSTEMVERILOG FOR VERIFICATION  

SystemVerilog is a rich language that provides constructs needed to support advanced 
methodologies for verification of today’s complex designs. These methodologies include 
transaction-based verification (TBV), coverage-driven verification (CDV), constrained-random 
testing (CRT), and assertion-based verification (ABV).  Directed testcases is another 
methodology that, despite its low productivity rate, continues to be required to exercise deep 
corner cases or initialization of DUT.  A proper methodology must be able to support directed 
tests – but directed tests should not be the primary verification approach. 

Functional coverage can be further divided into temporal coverage (with SystemVerilog 
assertions (SVA)), and data coverage (with covergroup).  A good transaction-based verification 
methodology with CRT relies on constrained randomization of transactions and the channeling of 
those transactions to transactors for execution (i.e., driving the device under test (DUT) signals 
for testing).  These methodologies can use the collection and access of functional coverage so as 
to dynamically modify the test scenarios.   An adaptation of these methodologies supported by 
reusable libraries is explained in the book Verification Methodology Manual (VMM) for 
SystemVerilog.   

                                                      
7 From http://www.answers.com/framework 
8 Note: This framework can be implemented in another language. For example, RVM is the same 
framework implemented using OpenVera.  VMM could be implemented in SystemC. 
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1.2.1 SystemVerilog Constructs Supporting Verification  

A summary of the SystemVerilog constructs supporting verification is shown in Table 1.2.1  

Table 1.2.1 SystemVerilog Constructs for Verification 

SystemVerilog 
Construct 

Verification Application 

Interface and virtual 
interface  

Encapsulates the communication between different components of the 
design by grouping the signals used for communication, capturing legal 
and illegal behavior of these signals via assertions, covergroup etc.     

Class and virtual class Fundamental building block for an Object-Oriented Verification 
environment.  Builds reusable extensible classes for the definition of 
constrained-random variables and the collection of supporting tasks 
related to common objectives.   

Constraint Provides a way to constrain random generation.  Pure random generation 
is almost never useful for practical designs.  However, constraints and 
their associated methods lay the foundation for CRT in SystemVerilog. 

Mailbox / Queue Provides channeling and synchronization of transactions and data.  May 
also be used by scoreboard for verification 

Clocking block Identifies clock signals, and captures the timing and synchronization 
requirements of the blocks being modeled.  Provides a synchronous 
communication between testbench and design. 

Program block Provides an entry point to the execution of testbenches.  Creates a scope 
that encapsulates program-wide data.  Provides a syntactic context that 
specifies scheduling in the Reactive region.  Creates a clear separation of 
testbench and design, thereby eliminating potential race conditions when 
the same design constructs are used to model testbenches. 

covergroup Provides a way to measure verification effectiveness by capturing parts 
of traditional test plan in an executable fashion.  Provides coverage of 
variables and expressions, as well as cross coverage between them. 

Assertions, cover 
( SystemVerilog 
Assertions)  

Captures temporal behavior of the design as assumptions, checks those 
behaviors, and provides functional coverage and reporting of 
information upon error.  Assertions can interact with the testbench. 

API Supports Application Programming Interface (API) for assertions and 
coverage.  

 
The SystemVerilog class construct deserves some explanation because classes are core to the 
VMM methodology.  A class is a collection of data (class properties) and a set of subroutines 
(methods) that operate on that data.    

• Classes can be inherited to extend functionality. 
• Classes can be virtual (requiring a subclass or derived class)  
• Classes can be used to build libraries for common functions, e.g., VMM. 
• Classes must be instantiated (i.e., create an object) and allocated (i.e., create storage) to 

be used.  
• The randomize function can be used to randomize class variables (that are qualified via 

rand; individual randomization of scalar variables is also possible). 
• Classes can be typed and parameterized. 
• Classes can be passed as objects (instance of class) to methods in other classes and to 

mailboxes and queues.  
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• Classes that need to interconnect to physical interfaces can use virtual interfaces that are 
referenced to the appropriate SystemVerilog interfaces instances (e.g., DUT interface)   

 
With the number of directed test cases exponentially increasing, it is becoming a huge task to 
scale up that methodology to modern day designs.  CRT provides a viable alternative as it puts 
the burden on the machine rather than the user – the same test run with a different seed creates a 
different set of scenarios.  CDV works hand-in-hand with CRT to monitor the verification 
progress.   

SystemVerilog supports the generation of constrained-random values with the use of the 
randomize function, the rand and randc type-modifiers, randcase and randsequence statements, 
and the rich sets of constraints with the constraint construct.  

Coverage is another important ingredient in the verification process because it provides feedback 
on the progress of the verification effort.  SystemVerilog supports two types of coverage: 
temporal coverage with SVA’s cover, and data coverage with covergroup.  It also allows them to 
be used together.  For instance a PCI abort condition can be detected via a SVA sequence, and the 
slaves being addressed during such an abort condition can be monitored using covergroup, which 
bins or groups the address space.  The results of the coverage information may also be used to 
create a reactive testbench based on the coverage information extracted dynamically during 
simulation.   

Assertions play a key role in the verification process as they provide a concise way to capture 
design behavior spread across multiple and possibly varying numbers of clock cycles.  In 
addition, assertions can be tightly coupled to the verification environment through the action 
blocks or calls to tasks from within an assertion thread.  They also can be used as SystemVerilog 
events.  This interaction capability with the testbench can provide the following:  

• Write to a variable, thus having the capacity to modify the flow of the testbench.   

• Update user’s implementation of coverage. For example, bits of an initialized static 
vector can be modified when an assertion (i.e., assert or cover) reaches a certain state 
(e.g., passes or is covered).  When that vector is all ONEs, then the desired coverage 
is reached. In addition, SystemVerilog API can also extract coverage info.  

• Upon a failure, write information about the failure, along with a text message that can 
include all the relevant variables of the design, the local variables of the assertion 
thread, simulation time, severity level, etc. 

• SystemVerilog sequence can create an event when the sequence is finished, and that 
is very useful to synchronize various testbench elements. 

Note that assertions can be written in modules, programs, or interfaces.  Assertions are not 
allowed in classes.  However, Chapter 6 demonstrates the capability, via callbacks, to copy class 
properties (i.e., variables) to a debug SystemVerilog interface.  This allows you to write within 
the debug interface assertions derived from both the DUT interface and copies of the variables 
defined in the class object.    
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1.3 WHY VMM? 

SystemVerilog is a vast language with a 550+ page LRM (on top of IEEE Standard 1364-2001 
Verilog HDL).  It is easy to get trapped in its landscape and use it in a sub-optimal way to achieve 
the end goal - i.e., finding all bugs as efficiently as possible.  A good methodology is the best way 
to use the language to its optimum.  Figure 1.3-1 shows the impact of such a methodology in 
capturing the power of SystemVerilog.  VMM represents a methodology supported by a standard 
library that consists of a set of base and utility classes to implement a VMM-compliant 
verification environment and verification components.  VMM provides several benefits in the 
construction of testbenches.  These include unification in the style and construction of the 
testbench and in the reporting of information; speedy creation of a layered and reusable testbench; 
and access to high-level tests using constrained random stimulus and functional coverage to 
indicate which areas of the design have been checked. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3-1 Impact of VMM Methodology in Capturing the Power of SystemVerilog 

The VMM consists of several base classes as shown in Figure 1.3-2, and described in the VMM 
for SystemVerilog book.   A brief definition of those base classes is presented below. 

vmm_data: This class type is used to build the data model (e.g., transactions).  It contains 
constraints for valid random values and ultimately randomization. 

vmm_log: This is a message class, allowing the users to have consistent, flexible, and 
controllable message processing.  This class allows the display of complex messages.  It is 
supported by several macros to facilitate the issuance of messages.  
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vmm_env: This is the environment manager base class. It controls the instantiation of other 
classes, resets/starts/stops those classes, registers callbacks, and manages the overall flow of the 
simulation. It allows a test to be as simple as an instantiation of this class and the invocation of 
the environment’s run task. 

vmm_xactor:  This is the base class used for the generators, drivers (e.g., BFMs), monitors and 
checkers.  It is also optionally used for the scoreboard and coverage classes, as well as for other 
auxiliary transactor classes. 

xvc_xactor: System-level transactors referred to as an extensible verification component (XVC).  
XVCs provide a foundation for modular, scalable and reusable system-level verification 
environments, with the aim of minimizing test set-up overhead.  XVCs can be used to drive block 
interconnect infrastructures or external interfaces.  They can also support other XVC components 
by monitoring system state and providing notification information.9  

 
Figure 1,3-2 VMM Basic Base Classes 

 
The major differences between a VMM compliant testbench and a conventional transaction-based 
testbench include the following aspects:  

1. The formalization of the sequencing of steps taken during the verification cycle.  This is 
explained in Chapter 4 in the discussion of the environment.  

2. The methodology used to generate and consume transactions, including the automation 
with the use of VMM macros.  This is explained throughout the book. 

3. The methodology and support used to adapt transactions to modifications through 
factories and callbacks. This is explained in Chapter 5 and 6.  

4. The level of support using the various base-class methods.  This is explained throughout 
the book 

5. The methodology used to report logging and status information.  This is explained and 
used throughout the book.  

                                                      
9 XVC is not addressed in this book.   
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1.4 TESTBENCH ARCHITECTURE WITH VMM  

Fundamentally, VMM recommends a layered approach to building verification environments. 
While layered testbench concepts have been around for several years now, there has not been any 
common definition.  The different interpretations of the layered testbench concept caused the 
design of different verification environments even within the same organization.10  Experience 
has shown that such heterogeneous verification environments lead to too much redundancy.  For 
example, verification IP developed by one group doesn’t fit easily into a slightly different 
project/environment.  A significant amount of effort can be saved when different teams follow a 
unified methodology in the architecture of testbenches.  For this to become reality, a reference 
verification architecture that is flexible enough to cater to various domains must be developed.  
VMM is the industry’s first such non-proprietary, open, standard language-based verification 
methodology.  

The basic idea of a transaction-level methodology, such as VMM, is to separate the transaction 
from the transactor.  While there are various definitions for these terms, we define a transaction 
as an operation that represents the job to be performed, such as Read / Write / Idle.  Transactions 
are implemented with a class extended from the vmm_data base class.   For example, a 
transaction may consist of the following: 

1. Instruction.  This represents the high-level tasks to be executed, such as a READ, 
WRITE, NO-OP, LOAD, etc. 

2. Data.  This represents information such as address, data, number of cycles, etc.  
3. Parameters.  This can represent a mode, a size, path, etc.  
   

In VMM, a transactor is a generic name, and there are several kinds of transactors such as 
generators, drivers, monitors, scoreboards, etc.  A direct equivalent of a typical VMM transactor 
is what’s conventionally known as a BFM (Bus Functional Model) at the lower level. In this book 
we refer to a BFM type of transactor as a “command transactor” that accepts transactions and 
sends then to the DUT according to the underlying protocol. 

Transactors are the workhorses of a transaction-based verification (TBV) environment; they 
perform the actual job of transferring the data (transaction) to other units to perform a task, such 
as driving the DUT pins or driving the verification scoreboard.  

This concept is represented in Figure 1.4 where, in constrained-random testing, the transactions 
defined in a transaction class are randomized with a generator and are sent to a transactor via a 
channel for the execution of those transactions.  A channel is an object that holds handles (i.e., 
links) to transaction objects, and behaves like a queue of handles to those objects.  A channel 
supports methods to put and get transactions form the queue.  The put method blocks if there is 
no room in the channel to insert another transaction.  When the transactor is ready to process 
another transaction, it extracts the next transaction from the channel via the get method.  The 
transactor then proceeds to execute the retrieved transaction.  Transactions and transactors are 
addressed in Chapters 2, 3, and 5. 

Note that the use of a channel provides several advantages, including the buffering and separation 
between the generation and the consumption of the transactions.  A second advantage is the 
simplicity in clock synchronization between the generation and consumption side of the 
transactions.  Specifically, they do not need to be synchronized to a common clock because the 
insertion and extraction of transactions is separate.  A third advantage is the capability to easily 
modify the transactions through callbacks to provide changes, such as error injection.  A fourth 

                                                      
10 Note: the layers in the environment and testbench are conceptual more than structural. Everything is still 
instantiated in a flat manner. 
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advantage is the ability to generate (and even consume) the transactions with different 
agents/transactors.   This is useful for reusability. 

Channels maybe implemented with queues, or mailboxes, or some other data structure, but from a 
user standpoint they are superior to raw SystemVerilog queues or mailboxes.  This is because 
channels are well supported by a rich variety of methods and classes to create needed verification 
testcases and environments.  For example, vmm_channel supports complex requirements in 
handling transactions in channels (e.g., out-of-order execution model) with methods that let 
transactors query the execution progress of a transaction directly from the channel itself.  
vmm_broadcast allows multiple consumers to extracting transaction descriptors from a channel, 
while vmm_scheduler lets multiple sources add descriptors to a single channel.11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4 High-level View of the Testbench 

1.4.1 Layered testbench architecture 

One of the key aspects of reusable design is a layered architecture, as shown in Figure 1.4.1.  It 
provides: 

• Abstraction at different levels in the verification infrastructure. 
• Easy plug-and-play with different levels of DUT abstraction. 
• Concurrent development of various Verification environment pieces. 
 

                                                      
11 Chapter 2 addresses channels, while channel 7 covers advanced topics in the use of channels.  
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Figure 1.4.1 Layered Verification Environment Architecture 

1.4.1.1 Command Layer   

The command layer (a.k.a. Bus-Functional Model (BFM) layer) is the lowest layer where 
bit-wiggling per the bus interface protocol is defined.   This layer is the least reusable (except for 
some standard protocols like PCI, AHB etc.).  Examples: signal-level details of tasks such as 
read, write, drive a packet, etc. 

1.4.1.2 Functional layer  

This is an optional layer above the BFM layer that models the “functionality” of the system, and 
has no knowledge of the bus interface protocol.  For example: 

• Perform a DMA transfer. 
• Store an image to memory (e.g., that is processed through PCI or AHB in the BFM). 

1.4.1.3 Generation/Scenario layer  

This layer is responsible for the generation of meaningful, interesting scenarios, which are 
sequences of transactions.  For example, considering a SoC with multiple peripherals, a scenario 
can be a USB transfer of an image from an external memory card followed by the storage of that 
image onto a CD.  To simulate this kind of scenario, one needs to generate first a write-to-mem 
via USB, then a read-from-memory via a CD-Interface.  However, the requirement is that the 
address in the second transfer should be the same as the previous transfer (to put that same image 
onto the CD).  Note that in a directed test, this layer is temporarily bypassed or altogether absent. 

1.4.1.4 Interaction between the different layers  

One of the challenges in building a layered environment is to decide how the layers communicate.  
A direct reference to the other layer will break the rules of reuse, maintenance, concurrent 
development etc.  One way to prevent this is to have a generic medium of interlayer 
communication that provides isolation between the producers of transactions and the consumers 
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of those transactions.  VMM channels are excellent candidates for such a requirement.  At every 
layer, the producer can put transactions into a channel while the consumer can extract 
transactions from this channel.   These channels are local to individual layers and hence 
completely independent of each other.  These can be initialized through a constructor (e.g., the 
new() function in SV).  A final environment layer can hook up individual layers and connect their 
channels accordingly. 

1.4.2 Testbench Outline  

Figure 1.4.2 represents a structural view of the testbench. The testbench includes the following 
objects:  

1. Interface instantiations:  These are the DUT interfaces to provide the connection 
between the stimulus drivers/monitors and the DUT.   

2. Program instantiations: The program provides the control for testing the DUT.  A 
testbench may contain more than one program. 

3. DUT instantiations:  These are the devices under test.  

4. Binding of property modules to DUT instances: Property modules typically include 
assertions and coverage requirements. 

5. Clock generators: These generators emulate the clocks in the system.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 1.4.2 Testbench Structure 

Chapter 4 provides details about the modeling of the environment and the testbench.   
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Chapter 1 Questions12 
 

Q1. Why does VMM, based on SystemVerilog, use an object-oriented (OO) approach? Why 
are classes used instead of modules? 
 
 
Q2. Why is SystemVerilog a suitable language to create a verification framework? 
   
  
Q3. Why is a framework such as VMM useful for the design of testbenches?  
   
 
 
 
 
  

                                                      
12 See Appendix A for answers to questions 
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