
  
 

2 VMM TRANSACTIONS AND 
CHANNELS  

This chapter addresses the definition of transactions and channels.  Since we use a FIFO as the 
DUT model, a description of the FIFO controller model and interface is first. 
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2.1 THE DUT  

The design under test (DUT) used throughout the book is a synchronous first-in first-out (FIFO) 
model as shown in Figure 2.1-1.  The model consists of two blocks: the FIFO block and the 
configuration block.  The FIFO block is a simple synchronous FIFO controller with PUSH, POP, 
and RESET commands.  Upon a PUSH, the data_in is stored into the FIFO internal memory.  
Upon a POP, data_out provides in the same cycle the data off the stack.  Five flags are provided: 
full, empty, almost_full and almost_empty flags to identify the status of the FIFO, and an error 
flag to identify an erroneous PUSH on full or POP on empty.  The active low reset_n resets the 
FIFO to the empty state.  The configuration block can be used by an external controller to 
configure the levels of the almost_full and almost_empty flags.  However, this design can work 
without such external controls because a hard reset configures those levels to a default mid-level 
value.  

In the design of the DUT we have a choice in port style for the definition of the interconnections: 
SystemVerilog interfaces or ports-only a la Verilog’95.  This decision is irrelevant to the 
testbench design because the top-level connections of a SystemVerilog interface instance to the 
DUT instance can accommodate either style.  Thus, the ports of a DUT can be specified as either 
ports-only a la Verilog style, or with interfaces a la SystemVerilog style as shown in Figure 2.1-2. 
Some designers use the SystemVerilog interface definition in the RTL design.  Others restrict the 
design to the Verilog style with individual port signals, instead of grouping the signals with 
SystemVerilog interfaces.  If SystemVerilog interfaces are not defined, it is necessary for the 
verification engineer to define such interfaces at the top-level block.  This is because VMM 
requires that SystemVerilog interfaces representing the DUT port interconnections be made 
available to the testbench.  This facilitates the connections to the verification environment defined 
in classes through the use of virtual interfaces.  We selected for our DUT FIFO the use of 
SystemVerilog interfaces because the SystemVerilog interface abstracts the communication 
across several modules, but a port-only style would have been acceptable since the port style has 
no significant impact on the testbench – the changes are only at the top level interconnection of 
the DUT instance to the SystemVerilog interface instance.  

The SystemVerilog LRM states “The interface construct in SystemVerilog was specifically 
created to encapsulate the communication between blocks.  By encapsulating the communication 
between blocks, the interface construct also facilitates design reuse.  Note that other items can be 
specified within interfaces include clocking blocks, modports, assertions, and covergroups.   An 
interface may also have tasks and assertions associated with the operation of the signals of the 
interface.  VMM (rule 4-9) recommends that the definition of tasks associated with the interface 
be located in classes and subclasses (typically in command transactors), not defined in the 
interface.  This is because interfaces are not object-oriented, and functions and tasks cannot be 
defined as virtual.  Thus, they cannot be redefined to behave differently, such as inject errors or 
adapt to a new algorithm.  Examples of tasks include a push_task, a pop_task.  Interface 
assertions relate to the properties or timing relationships of those signals.  As a methodology, an 
interface *should* capture assertions related to its signals. 1   

 
Figure 2.1a demonstrates that the FIFO model includes the two separate blocks, each with its own 
SystemVerilog interface: the FIFO block with the the fifo_if interface for the normal operation of 
the FIFO device, and the configuration block with the fifo_csr_if interface for the configuration 
                                                      
1 From VMM Chapter 3 on assertions “Applying assertions to external interfaces treats the DUT as a black 
box. It is concerned with the correct function of the design, regardless of its implementation. “ 
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of FIFO levels.  The configuration block includes configuration registers to be setup by the 
environment during DUT initialization.     
 
 

clk
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data_in
push
pop

full
data_out

empty
error
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Figure 2.1-1 FIFO Interfaces (fifo_if and fifo_csr_if) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.1-2 Port Styles of DUT Ports 

Various type definitions are used throughout the design and the testbench, and are specified in the 
fifo_pkg.sv package as shown in Figure 2.1-3.  
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package fifo_pkg; 
  timeunit 1ns;  
  timeprecision 100ps; 
  `define TOP fifo_tb 
  typedef enum {PUSH, POP, PUSH_POP, IDLE, RESET} fifo_scen_e; 
  typedef enum {PUSH_MODE, POP_MODE} mode_e; 
  typedef enum {PASSED, FAILED} fifo_status_e; 
  typedef enum {DONE_GEN, DONE_BFM} notification_e; 
  parameter BIT_DEPTH = 4; 
  parameter FULL = 16;     
  parameter WIDTH = 32; 
  typedef   logic [WIDTH-1 : 0] word_t; 
  typedef   logic[31:0] wword_t; 
  typedef   logic [WIDTH-1 : 0] wire_word_t; 
  typedef   word_t [0 : (2**BIT_DEPTH-1)] buffer_t; 
  parameter    ALM_EMPTY_REG = 2'b00; 
  parameter    ALM_FULL_REG = 2'b01; 
endpackage : fifo_pkg 

Figure 2.1-3 Common Type and Parameter Definitions (ch4_fifo/fifp_pkg.sv) 

Figure 2.1-4 demonstrates the FIFO interface with the modports and clocking blocks used 
throughout the design and the testbench.2    

interface fifo_if(input wire clk,  
                  input wire reset_n); 
   timeunit 1ns; 
   timeprecision 100ps; 
  import fifo_pkg::*; 
  logic  push; // push data into the fifo 
  logic  pop;  // pop data from the fifo 
  wire  full;  // fifo is at maximum level 
  wire  empty; // fifo is at the zero level (no data) 
  logic almost_empty, almost_full; 
   
  logic  error; // fifo push or pop error    
  word_t data_in; 
  wire_word_t data_out; 
  parameter HOLD_TIME=3;      
  parameter SETUP_TIME = 5; 
 
  clocking slave_cb @ (posedge clk); 
   default input #5ns output #HOLD_TIME; 
     output empty, full, data_out, error; 
     input  data_in, push, pop; 
  endclocking : slave_cb 

                                                      
2 VMM recommendations in the use modport and clocking block are defined in VMM Rule 4-8, Rule 4-9, 
Rule 4-11, Rule 4-12 
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clocking driver_cb @ (posedge clk); 
   default input #SETUP_TIME output #HOLD_TIME; 
     input  empty, full, data_out, error; 
     output data_in, push, pop; 
  endclocking : driver_cb 
 
  // FIFO DUT view of the interface    
  modport fslave_if_mp (clocking slave_cb, 
                        output empty, 
                        output full, 
                        output data_out, 
                        output error, 
   output almost_empty, 
   output almost_full, 
                        input  data_in, 
                        input  push, 
                        input  pop); 
 
  // FIFO driver view of the interface 
   modport fdrvr_if_mp (clocking driver_cb); 
 
// FIFO Monitor view of the interface. 
 clocking mon_cb @ (posedge clk); 
   default input #SETUP_TIME output #HOLD_TIME; 
     input  empty, full, data_out, error; 
     input data_in, push, pop; 
  endclocking : mon_cb 
  
  modport fifo_mon_if_mp (clocking mon_cb); 
    
endinterface : fifo_if 

Figure 2.1-4  FIFO Interface  (file ch4_fifo/fifo_if.sv) 

Figure 2.1-5 represents the FIFO configuration register interface.   

interface fifo_csr_if (input clk, reset_n); 
  timeunit 1ns; 
  timeprecision 100ps; 
  logic csr_rd, csr_wr;  // configuration read, write  
  logic [1:0] csr_addr;  // configuration reg address 
  logic [4:0] csr_data;  // configuration reg data 
 
modport fifo_ctl_mp (input csr_rd, csr_wr, csr_addr, 
                     inout csr_data); 
   
endinterface : fifo_csr_if  

Figure 2.1-5 FIFO Configuration Register Interface (file ch4_fifo/fifo_csr_if.sv) 
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Partial code for the FIFO DUT is shown in Figure 2.1-6, with the full code available in the 
download.  The FIFO port connections include the clock, the reset, and the FIFO interface with 
the slave modport fifo_if.fslave, and the configuration interface with the control modport.  
fifo_csr_if.fifo_ctl_mp   

module fifo (input clk,  

             input reset_n,  
             fifo_if.fslave_if_mp f_if, 
        fifo_csr_if.fifo_ctl_mp f_csr_if 
      );  
// Note: We’re using a modport in the DUT instead of  
// an interface to avoid any accidental RTL writes to an input 
// This is a good coding guideline.  
  timeunit 1ns; 
  timeprecision 100ps; 
  import fifo_pkg::*; 
  logic [4 : 0] wr_addr;  
  logic [4 : 0] rd_addr; // read fifo address   
  typedef enum {NONE, PUSH, POP, PSPP} push_pop_e; 
  buffer_t buffer; // fifo storage 
  parameter shiftVal = int'(2**BIT_DEPTH); 
 
  logic [4:0] fifo_level, csr_almost_empty, csr_almost_full; 
  // Push on full with no pop error  
  property p_push_error;  
    @ (posedge clk)  
       not (f_if.push && f_if.full && !f_if.pop);  
  endproperty : p_push_error 
  ap_push_error_1 : assert property (p_push_error); 
 
 // *** SEE DOWNLOAD FILE FOR FULL CONTENT ***  
  … 
endmodule : fifo 

Figure 2.2b FIFO at  RTL  Level (ch4_fifo/fifo_rtl.sv) 

2.2  TRANSACTION  

VMM defines a transaction as an operation on an interface.  A transaction can be abstract and 
high-level, such as the reliable transmission of a TCP packet, or physical, such as a write cycle 
on a APB. Interconnect.  Thus, a transaction represents the job to be performed, such as Read / 
Write / Idle.  Figure 2.2-1 is a review of the testbench architecture to demonstrate the emphasis of 
where in the environment the transactions and the channel reside.  Transactions are typically 
randomized and put into a channel by the generator.  The transactions are then extracted (via the 
get method) by the command transactor for processing (more on this in Chapter 3).   

Transactions are implemented with a class extended from vmm_data base class.  
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Figure 2.2-1 Testbench Architecture with Emphasis on Transactions and Channels 

What’s in a transaction class?  The UML diagram, shown in Figure 2.2-2, summarizes the 
important (but not all) elements of the class.  Basically, a transaction class is an extension to base 
class vmm_data, and includes:  

1. A set of properties, also known as class variables.  The properties characterized with the 
rand qualifier can be randomized with the randomize function of the class instance.   

2. A set of methods to support the class.  The copy function is very important, and is 
discussed further down.   
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2.2.1 Extension to vmm_data 

Using the FIFO example, the first line of the transaction class definition is:  
class Fifo_xactn extends vmm_data; 

vmm_data is the base class type used to build data models that flow from transactors to 
transactors over time, such as a transaction model that flows from a generator to a transactor 
through a channel.3  In contrast, configuration descriptors are example of classes that should not 
be derived from vmm_data. A multi-dimensional look-up table in a scoreboard is another 
example. Why is transaction class extended from vmm_data?  Because vmm_data is part of the 
VMM framework and it provides several support methods that operate on objects of that class.  In 
addition, transactions are usually passed across the environment through VMM Channels, and a 
vmm_channel is a strongly typed SystemVerilog queue that can only carry vmm_data and its 
derivatives. 

2.2.2 Properties and Constraints 

Following the class declaration line you define the properties or variables that describe the 
transactions.  Variables that need to be class randomized (e.g., class_instance.randomize()) must 
be qualified with the rand attribute.4 Properties qualified with the rand will be randomized with 
the automatically generated atomic or scenario generators via macros, which are discussed in 
subsequent chapters. Types of objects to be randomized include address, data, modes, etc.  

2.2.2.1 Properties  

Figure 2.2.2.1-1 represents the properties and constraints for the FIFO model.  The variable kind 
identifies the possible instructions to be executed by the transactor.  For readability the variable 
kind should be of an enumerated data type.  In our design, that type is    
    typedef enum {PUSH, POP, PUSH_POP, IDLE, RESET} fifo_scen_e; 

Ideally, you have to identify the variable kind to represent all possible independent tasks that the 
transactor will execute.  Because design requirements change, it is often difficult to predict all the 
needed enumerations.  In the case of the FIFO design, the new requirement is the need to create a 
transaction that specifies a PUSH with a data error.  As an afterthought, we considered adding to 
the original type definition fifo_scen_e the enumeration PUSH_DATA_ERR to handle that case.   
However, we wanted to demonstrate real life change in requirements and the capability of adding 
changes to the execution of transactions through the use of factories and callbacks.  These are 
explained in subsequent chapters, but essentially, the approach we took is to substitute an IDLE 
instruction with a PUSH instruction (as defined by the transaction) with bit errors.  Not all IDLE 
instructions will have this substitution, but rather, this is determined on the probability of 
randomized variable to inject or not inject this error when the transaction calls for an IDLE 
instruction.   

In this model, the data represents the data to be stored into the FIFO via the data_in port; the 
idle_cycles represents the number of idle cycles to be executed during the IDLE transaction; and 
xactn_time is a variable that is intended to be used as a time stamp for debug purposes. An 
alternative to the xactn_time is the use the timestamp built-in into the vmm_notify notifications in 
vmm-data STARTED and ENDED.  Those concepts are addressed in Chapter 7.    

 

                                                      
3 VMM Rule 4-55:  Data and transaction model classes shall be derived from the vmm_data class. 
4 VMM Rule 4-59:  All class properties corresponding to a protocol property or field shall have the rand 
attribute. 
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The log variable is of vmm_log class that implements an interface to the message service.  VMM 
requires that the log property of a transaction be declared static.5  By default all class properties 
are automatic and are created and destroyed on the fly.  However, a messaging service for 
transactions should be unique to provide consistent messaging and to avoid a potential simulation 
performance impact.  There will be thousands of object instances created and destroyed 
throughout a simulation, and it is needless to create so many of messaging service agents. 

class Fifo_xactn extends vmm_data; 
  import fifo_pkg::*; 
  rand fifo_scen_e kind; 
  rand word_t  data; // in : data to push 
  rand int idle_cycles; 
  time xactn_time; 
  static vmm_log log = new("Fifo_xactn", //name 
                           "class");6    // instance 
 constraint cst_idle { 
   idle_cycles inside {[1:3]};  
  }   
 
  constraint cst_xact_kind { 
    kind dist { 
      PUSH := 400, 
      POP := 300, 
      PUSH_POP :=200, 
      IDLE := 300,  
      RESET := 1 
    }; 
  } // cst_xact_kind 
… 

Figure 2.2.2.1-1  Properties of FIFO Transaction (ch4_fifo/fifo_xactn.sv) 

From vmm_log, the format of the function is: 

 function vmm_log::new(string name, 
                       string instance, 
                       vmm_log under = null); 

That creates a new instance of a message service interface, with the specified interface name and 
instance name.  In our example, we used:  
          static vmm_log log = new(“Fifo_xactn”, “class”); 

The log is displayed with the application of a messaging macro, such as `vmm_note.7   If we 
modify the new function of the fifo_xactn class with the addition of a `vmm_note as shown in  
Figure 2.2.2.3, then the note is displayed during the simulation run at every allocation of the 
transaction object.  For example, 

Normal[NOTE] on Fifo_xactn(class) at              0.00 ns: 
    New fifo_xactn 

                                                      
5 VMM Rule 4-58  All data classes shall have a public static class property referring to an instance of the 
message service interface. 
6 VMM Example 4-33. Declaring and Initializing a Message Service Interface 
7 VMM Appendix A,  vmm_log, Table A-2 
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VMM is a flexible framework that adapts to users’ requirements.  For example, VMM provides 
the capability to globally set the message formatter to the specified message formatter instance. 8  
With our changes to the log format, the result of the above `vmm_note would yield the following: 

0.00 ns Fifo_xactn [Normal:NOTE] | New fifo_xactn9 

2.2.2.2 Constraints 

The constraints determine the legal (and reasonable) values that can be assigned to the random 
variables.  In our example we constrained the number of idle cycles and the distributed value of 
the variable kind.  

2.2.2.3 Methods 

There are three groups of pre-defined vmm_data methods that need to be overloaded by the user 
in the definition of a class derived from vmm_data.10  These include: 

1. Basic methods: new(), allocate(), copy(), compare() 
2. Debug method: psdisplay() 
3. Physical handling methods: byte_pack(), byte_unpack(), max_byte_size().  Refer to the 

VMM book for usage of methods.  
Figure 2.2.2.3 demonstrates the methods used for the FIFO transaction class, including the new, 
copy, allocate, and psdisplay. Except for the new, all methods in our code have a prototype and 
extern definitions to enhance readability.  This use of extern is a general software 
recommendation.  Note that if a method has arguments, then the arguments can have default 
values at the prototype class definition level, but not in the external implementation level.  We 
specified the default values of a method at the prototype level.   
 
class Fifo_xactn extends vmm_data; 
… 
  function new(); 
    super.new(this.log); 
  `vmm_note(this.log, "New fifo_xactn"); 
  endfunction : new 
  extern virtual function string psdisplay(string prefix = ""); 
  extern virtual function vmm_data copy(vmm_data to=null); 
  extern virtual function vmm_data allocate(); 
  extern virtual function bit compare(vmm_data   to, 
                               output string diff, 
                               input int kind = -1 
                               ); 
endclass:Fifo_xactn  

Figure 2.2.2.3  Transaction  Methods in the Class  (ch4_fifo/fifo_xactn.sv) 

                                                      
8 Throughout this book we modified the default message formatter using the function set_format 
(vmm_log_format fmt), VMM Appendix A, vmm_log.   Chapter 8 provides an explanation of the changes.  
9 VMM page 372, Table A-2. Message Type and Severity for Shorthand Macros defines other macros 
include: vmm_fatal(), vmm_error(), vmm_warning(), vmm_note(), vmm_trace(), vmm_debug(), 
vmm_verbose(),  vmm_report(), vmm_command(), vmm_transaction(),  vmm_protocol() and vmm_cycle() 
10 VMM Rule 4-76.  All classes derived from the vmm_data class shall provide implementations for the 
psdisplay(), is_valid(), allocate(), copy() and compare() virtual methods.  VMM Appendix A, vmm_data 
specifies the base methods. 
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2.2.2.3.1 new() 

In the model, the new does not have any argument.  The new function must call vmm_data::new 
and pass the log object that was statically allocated.11 

function new(); 
    super.new(this.log); 
endfunction : new 

2.2.2.3.2 allocate() 

The allocate function is used for the factory pattern, and is explained in Chapter 5.  The format is 
as shown in Figure 2.2.2.3.2.  

function vmm_data Fifo_xactn::allocate(); 

    Fifo_xactn fifo_xactn_local=new(); 
    allocate = fifo_xactn_local; 
endfunction : allocate 

Figure 2.2.2.3.2  allocate Function 

2.2.2.3.3 copy() 

The copy function is necessary to create a copy of the source transaction descriptor.  The copy 
function allows the creation of a duplicate of the transaction to be sent to a channel while 
maintaining the original version pristine and ready to be modified by the original transactor that 
modifies the transaction.  For example, a transaction generator (atomic, scenario, or user-defined) 
may need to update a transaction based on its previous value (e.g., increment the address), and 
then send a copy of that modified transaction to a channel, thus keeping the versions stored in the 
channel separate and distinct form the version being modified by the transaction generator.    The 
VMM recommends the implementation style shown in Figure 2.3.2.3.3.12 

function  vmm_data Fifo_xactn::copy(vmm_data to); 
  Fifo_xactn cpy; 
 
  if (to !=null) begin  
    if (!$cast(cpy, to)) begin 
      `vmm_fatal(log,  
                 "Attempting to copy a non fifo_xactn instance"); 
   return; 
 end 
  end else cpy =new; 
  super.copy_data(cpy); 
  cpy.kind = this.kind; 
  cpy.data = this.data; 
  cpy.idle_cycles = this.idle_cycles; 
  copy = cpy; 
endfunction : copy 

Figure 2.3.2.3.3 Copy Function 

                                                      
11 VMM Appendix A, vmm_data, function new().  
12 VMM Appendix A, vmm_data, Example A-7. Proper Implementation of the vmm_data::copy() Method 
    Also, see page 385 for the model. 
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2.2.2.3.4 compare() 

The compare function is used to dynamically compare the predicted response to the observed 
response.13  An example of the compare function is shown in Figure 2.2.2.3.4.   For our simple 
FIFO model, we did not make use of this function.  

function bit Fifo_xactn::compare(vmm_data   to, 

                               output string diff, 
                               input int kind 
                               ); 
begin 
   Fifo_xactn cmp; 
   string tmp_str; 
  
   compare = 1; // Assume success by default. 
   diff    = ""; 
  
   // Cast assign the vmm_data handle to an Fifo_xactn handle 
   if (!$cast(cmp, to)) begin 
      `vmm_fatal(this.log,  
        "Attempting to compare to a non Fifo_xactn instance"); 
      compare = 0; 
      diff = "Cannot compare non Fifo_xactn to Fifo_xactn"; 
      return; 
   end 
  
   // Compare the individual data members, and set compare to 0 and 
   // the "diff" text string to "xxx field mismatched" on failure. 
  
   if (this.data !== cmp.data) begin  
     compare = 0; diff = {diff, "Data Mismatch "}; end 
   if (compare == 0)begin 
     diff = {"Fifo_xactn objects are not identical. Mismatched 
field(s) is(are):\n", diff}; 
   end 
end 
endfunction 

Figure 2.2.2.3.4 compare Function (/ch4_fifo_fifo_xactn.sv) 

2.2.2.3.5 psdisplay(string prefix = "")14, 15 

This is a useful function that returns an image of the current value of the transaction or data in a 
human-readable string format.  We used this function to display a message and the value of the 
current transaction kind variable.  The prototype of the function is:  

  virtual function string psdisplay(string prefix = ""); 

                                                      
13 For application example, see VMM Example 5-49. Checking In-Order Response for Multiple Output 
Ports 
14 VMM Rule 4-45 . All simulation messages shall be sent through the message service. 
15 VMM Rule 4-76 . All classes derived from the vmm_data class shall provide implementations for the 
psdisplay(), is_valid(), allocate(), copy() and compare() virtual methods. 
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. The body of the function with a user defined message for the FIFO transaction is:  
  function string Fifo_xactn::psdisplay(string prefix); 
      $sformat(psdisplay, 
               "%s Fifo Xaction %s \n", 
               prefix, this.kind.name()); 
  endfunction : psdisplay   // ch4_fifo/ fifo_xactn.sv 
 
In a transactor, one can apply this function as shown below:  
 `vmm_note(this.log,  
   $psprintf("Got a new fifo xaction from in_channel %s ", 
              fifo_xactn_0.psdisplay())); // ch4_fifo/ fifo_cmd_xactor.sv 

`vmm_note is a macro that provides a shorthand notation for issuing single-line note messages.  
During simulation, the following message gets printed to the log file.  With the default display 
format, the log has the following look in two lines:  

Normal[NOTE] on Fifo_cmd_xactor(class) at           1950.00 ns: 
    Got a new fifo xaction from in_channel  #0.0.0 Fifo Xaction PUSH   
 
With our customized display format, we get the following look in one line:  
1950.00 ns cmd_xactor [Normal:NOTE] | Got a new fifo xaction from 
in_channel  #0.0.0 Fifo Xaction PUSH    
 
2.3 CHANNEL   

Per VMM, the channel object is the primary transaction and data interface mechanism used by 
transactors. 16   It can be used with any class that is derived from the vmm_data class.  In our 
example, as shown in Figure 2.3, a channel is used to connect the transaction generator to the 
transactor.  It can also be used to connect a bus monitor to the scoreboard.  

Basically, a channel is a conduit built for a particular type of data object (derived from 
vmm_data).  A channel is a class that holds handles to transaction objects.  It is implemented with 
a bounded or unbounded queue of handles to transaction objects.  However, channels can be 
reconfigured for size.   

 
 
 
 
 
 
 
 
 

Figure 2.3 Typical Use of Channels 

2.3.1 Creation of channels  

In the VMM framework, channels are generated with the macro `vmm_channel 
(trasaction_class_name).  This macro is typically added in the same file where the specified class 
is defined and implemented.  In our example, this macro is at the end of the file fifo_xactn.sv.  

                                                      
16 VMM Rule 4-111  A channel shall be used to exchange transactions between two transactors.     
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The macro creates an external class declaration with name Fifo_xactn_channel.  In our example, 
we used the following: 

// This macro declares new derived class named: 
// fifo_xactn_channel from vmm_channel 
`vmm_channel (Fifo_xactn) 

2.3.2 Access to Elements in a Channel  

VMM framework provides a very rich set of methods that support channels, as shown in UML in 
Figure 2.3.2.   In our FIFO model we made use of the new, put and get methods.  A description of 
the most commonly used methods is provided below.  However, vmm_channel supports   
complex requirements in handling transactions in channels (e.g., out-of-order execution model) 
with methods that let transactors query the execution progress of a transaction directly from the 
channel itself.  Refer to the VMM book for a description and application of these methods.  
  

 
 

Figure 2.3.2-1  vmm_channel Properties and Methods 
 
Transactions are transferred through a channel using the put and get tasks (provided in the created 
channel) and the optional use of an offset (without an offset, the default of the task is used).  
Figure 2.3.2-2 demonstrates the offset relationships of a channel queue.  Note that the channel 
offsets items can be ordered from either end.  New transactions are stored by default at the tail of 
the queue (i.e., -1), and are extracted by default from the head of the queue (i.e., 0).   Also note 
that there are two ways to define the offset:  
 

Methods of 
base class  
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1. Natural number (e.g., 0, 1, 2, .. n), where “0” is the head of the channel.  Thus, an offset 
of “1” represents the transaction prior to the one at the head of the queue.   

2. Negative number (e.g., -1, -2, …-n) where “-1” is the tail of the channel.  Thus, an offset 
of -2 represents the transaction prior (or more recent) to the one at the tail of the channel.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 2.3.2-2 Offset Relationships of a Channel Queue 

The created channel class provides several methods to put or get transactions into and out of the 
channel. These methods include the put, get, peek, and sneak tasks, as described below.  Channels 
are blocking with the put and get tasks. If the channel is full, and the consumer is not ready to pull 
from a full channel, then the producer will be blocked from adding more transactions.  The 
prototype for the put method is:  

task put(class_name obj, 
         int   offset = -1); // tail is the default offset 

The put inserts the transaction object at the specified offset.  The task blocks if the channel is full.  

task get(output class_name obj, 
         input int offset = 0); // head is the default offset 

The get task retrieves the next transaction at the specified offset.  The task blocks if the channel is 
empty. 

Why are the put and get methods blocking when the maximum level of the channel is reached?  
Those methods are blocking because this mechanism is a self-regulating control flow mechanism 
where no transactor goes faster than the slowest of all transactors in a pipeline.  The producer of 
transactions may be capable of producing a large number of transactions at a rate much faster 
than what can be consumed.  However, because the flow control is throttled by the channel, 
replacing a transactor with a different generation/consumption speed has no effect in modifying 
the channel code.  For example, if the default channel level of one is used, consider the following 
situations:  
 

0      -n         head 

1     -n(-1)

2     -(n-2)

n-2    -2

n-1    -1          tail

vmm channel
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1. Channel is empty:  the consumer is blocked if it attempts to get the transaction.  There is 
nothing to get, thus the blocking is obviously necessary. 

2. Channel is full: The producer is blocked if it attempts to put a transaction.  This 
mechanism also avoids an unnecessary overload on the simulator resources in filling up 
the channel with transactions that are not yet needed by the consumer.  For example, if a 
transaction occupies 1000 bytes of resource, and the generator is capable of producing 
one million transactions, then a nonblocking put would put a load of 1GB just for the 
channel.   Instead, a blocking put (as implemented in VMM) throttles the production of 
channels in synchronism with the consumption of those channels within the set bounds of 
the channel size.  

A snippet of code that uses the get is demonstrated in Figure 2.3.2-3. 

class Fifo_cmd_xactor extends vmm_xactor; 
  … 
  Fifo_xactn  fifo_xactn_0; 
  Fifo_xactn_channel in_chan; 
  begin : main_loop 
    this.in_chan.get(fifo_xactn_0); 
     case (fifo_xactn_0.kind) 
      PUSH : 
        begin 
          this.push_task(fifo_xactn_0.data); 
        end 
  .. 

Figure 2.3.2-3 Snippet of Code Using get (ch4_fifo_fifo_cmd_xactor.sv) 
 
The prototype for the sneak method is:  
task sneak(class_name obj); 
vmm_channel::sneak() is a non-blocking method to add items to the tail of a channel, as 
compared to a put(), which is blocking.  The sneak() method simply ignores any 
pre-configured full level.  This can be performed because the channel queue buffer is infinite and 
not statically allocated. 

A question that often comes up is “why do we need the sneak method, and where should we use 
that method”?   To answer that question you need to understand how channels handle the storing 
of transactions.  Channels must be sunk; meaning that some other component in the environment 
must perform a get of the transaction to unblock the channel that reached its maximum level (and 
to allow a put of another transaction).  Without this get of the transactions to lower the channel 
full level, the use of put will be blocked when the channel reaches maximum level.  This can 
cause operational problems when the generator of the put needs to be nonblocking.  For example, 
a monitor collects words of a packet from an interface and needs to add at every cycle, in a 
nonblocking manner, the collected data into the scoreboard channel (otherwise, new words from 
the same packet will be missed).  The scoreboard is not ready to process that data until the end of 
packet signal is received, and many packets words are stored into the channel.  The packet size 
can vary, and fixing the channel level to a fixed value may not guarantee that the maximum will 
not be reached.  Thus, the use of the nonblocking sneak to add items into the channel solves that 
nonblocking need.   

The prototype for the peek method is: 

task peek(output class_name obj,input int offset = 0); 
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vmm_channel::peek gets a reference to the next transaction descriptor that will be retrieved from 
the channel at the specified offset without actually retrieving it. If the channel is empty, the 
function will block until a transaction descriptor is available to be retrieved. Essentially, a peek 
allows a functional transactor to see the next transaction in order to make decisions about the 
current transaction in progress.  

2.3.3 Channel allocation 

An instance of a channel is allocated with the predefined function new as shown below:  

function new(string name,            // specified name  

             string instance,        // instance name  
             int unsigned full = 1,  // full level default to 1 
             int unsigned empty = 0, // empty level default to 0 
             bit fill_as_bytes = 0); // level is transaction  

“The new function creates a new instance of a channel with the specified name, instance name 
and full and empty levels. If the fill_as_bytes argument is TRUE (i.e., non-zero) the full and 
empty levels and the fill level of the channel are interpreted as the number of bytes in the channel 
as computed by the sum of vmm_data::byte_size() of all transaction descriptors in the channel, 
not the number of objects in the channel. If the value is FALSE (i.e., zero), the full and empty 
levels and the fill level of the channel are interpreted as the number of transaction descriptors in 
the channel. It is illegal to configure a channel with a full level lower than the empty level.” 

Note that the fill_as_bytes ==1 is useful for Transaction-Level (TL) modeling.17  For example, 
consider the case of a video CODEC model with data buffering capability.  The size of that buffer 
is likely limited, but in a TL model, you would not want to model the actual RAM used to 
implement that buffer.  A VMM channel is just perfect for this application, but the amount of 
memory a packet (or video frame) takes depends on its size.  By default, a VMM channel simply 
counts the number of transaction is has, not how big they are. With this parameter ON, the 
channel is "filled" as a function of the size of what it contains. So it can have lots of small packets 
or a few large video frames.  The fill_as_bytes argument changes how the FULL level of the 
channel is computed.  It is useful in a transaction-level model of a bandwidth-limited transport 
medium or transfer function.  However, for most applications, the default value of 
fill_as_bytes==0 will work.  

An example of the new is in the FIFO environment (see fifo_env.sv) and is shown below: 

// channel instantiation 
  Fifo_xactn_channel fifo_channel_0; 
function void build(); 
 .. 
  this.fifo_ channel_0 = new("fifo_chan","0"); // allocation 

                                                      
17 http://verificationguild.com/modules.php?name=Forums&file=viewtopic&p=5307#5307 



30   A Pragmatic Approach to Adopting VMM 

2.3.4 Channel reconfiguration 

The full level of a channel can be dynamically reconfigured with the reconfigure function.  The 
prototype of the reconfigure function is:  
function void reconfigure( 
   int full = -1, // full level,  
   int empty = -1,  // empty level 
   logic fill_as_bytes = 1’bx 
   );18 
 
For example, to reconfigure the maximum level (referred to as the full level) of the FIFO channel 
to 3, you could write:  
this.fifo_channel_0.reconfigure(.full(3)); 
 

                                                      
18 VMM Appendix A, vmm_channel reconfigure(). Reconfiguration may cause threads currently blocked 
on a vmm_channel::put() call to unblock. 
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2.4 FILE STRUCTURE  

Table 2.5 demonstrates the file Structure in the downloaded code for this chapter, and the purpose 
of each file.   Figure 2.5 is a graphical representation of the relationship between the files. 

Table 2.5.  File Structure and Functions 
File Function Used by 

fifo_pkg.sv Defines types and parameters ALL 
fifo_if.sv Defines the FIFO interface RTL, property models, 

and by program, 
testbench, transaction 
and transactors 

fifo_csr_if.sv Defines the FIFO configuration interface  RTL, property models, 
and by environment, and 
possibly transactors 

fifo_xactn.sv Defines the transaction class with the constraints 
Also used for the channel generation with: 
  `vmm_channel (Fifo_xactn) 

`vmm_channel macro for 
generation of channel, 
`vmm_atomic_gen 
macro for generation of 
atomic generator, 
monitor transactor for 
creation of transaction 
from observed values on 
bus interface.  

fifo_rtl.sv Represents the FIFO RTL DUT.  Top level  
fifo_props.sv Defines the properties for assertions Top level for bind 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                     

 

 

 
 

Figure  2.5 File Structure and Relationships 
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Chapter 2 Questions and LAB 
 
Q1. Why are transactions specified in a class instead of a structure within a transactor?  
 
 
Q2. Why can’t transactions specified in a class be used without the need of a channel?  
 
 
Q3.  How do you build a custom channel?  
 
 
Q4. If I extend my transaction class (e.g., class Fifo2_xactn extends Fifo_xactn) do I also 
need to define and use a new channel?  
 
 
Lab02.  Build a Transaction Class and Channel Class for a loadable counter. 
See instructions in subdirectory lab/lab02/todo/readme.txt. 
 
Figure Lab02 represents the model for a loadable counter.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure Lab02 Loadable Counter for Labs 
 
  
  
 


