
1.1 Uniqueness in threads -- the FIFO

in_data is pushe into a FIFO upon a push control signal, data is popped out as out_data upon a pop

signal.

On second thoughts, the problem with this assertion for the fifo is uniqueness.

Below is a way to fix this using tags to force uniqueness. What I mean here is that yoou

don't want a pop to complete 2 separate threads, as shown in the simulation results for

 ap_data_checker_bad where one pop terminates both threads.

A solution that appears plausible, but has severe issues, is the following:
module fifo_aa;
 bit clk, push, pop;
 int ticket, now_serving;
 bit [7:0] in_data, out_data;
 initial forever #5 clk=!clk;

 property p_data_chk_bad; //
 bit [7:0] push_data;
 @(posedge clk) (push, push_data=in_data[7:0])
 |-> ##[1:10] pop ##0 (out_data == push_data);
 endproperty
 ap_data_checker_bad: assert property(p_data_chk_bad);

Figure XXX demonstrates the simulation result for this assertion. Note that after 2 push controls

with the same value of data, both assertion threads terminate with a single pop; this is obvioulsy

not desired.

Figure XXX Simulation of a plausible, but incorrect assertion

The issue with the above assertion is that there is a lack of uniqueness, or identity for each thread. What is desired
for this FIFO assertion is the independence of each attempted thread sequences. To accomplish this, one could use
concepts of a model seen in hardware stores in the paint department. There, the store provides a spool of tickets,
each with a number. As a customer comes in, he takes a ticket. The clerk serving the customers has a sign that
reads "NOW SERVING TICKET #X". The customer that has the ticket gets served. When done, the number X in

incremented, and the next in-line customer gets served. The assertion code could then be written as follows:

Problem is uniqueness,
one pop can terminate
all threads

module fifo_aa;
 bit clk, push, pop;
 int ticket, now_serving;
 bit [7:0] in_data, out_data;
 initial forever #5 clk=!clk;

 function void inc_ticket();
 ticket = ticket + 1'b1;
 endfunction

 property p_data_unique;
 bit [7:0] push_data;
 int v_serving_ticket;
 @(posedge clk) (push, push_data=in_data[7:0],
 v_serving_ticket=ticket, inc_ticket())
 |-> ##[1:10] pop && now_serving==v_serving_ticket
 ##0 (out_data == push_data);
 endproperty
 ap_data_unique: assert property(p_data_unique)
 now_serving =now_serving+1;
 else now_serving =now_serving+1;

Figure XXXX simulation results with code uniqueness

support variable to achieve attempted

thread uniquness

Function needed to increment the

ticket spool in the

sequence_match_item

now_serving tag

incremented at

conclusion of assertion

for pass or fail case.

