
218 SystemVerilog Assertions Handbook, 4th Edition

Synchronous FIFO to be used as an IP. FIFO management (e.g., push, pop, error
handling) is external to the FIFO.

SystemVerilog Assertions in the Design Process 219

1. SCOPE
1.1 Scope
This document establishes the requirements for an Intellectual Property (IP) that provides a
synchronous First-In First-Out (FIFO) function.

The specification is primarily targeted for component developers, IP integrators, and system
OEMs.

1.2 Purpose
These requirements shall apply to a synchronous FIFO with a simple interface for inclusion as a
component. This requirement includes SystemVerilog assertions to further clarify the properties
of the FIFO.

1.3 Classification
This document defines the requirements for a hardware design.

2. DEFINITIONS
2.1 PUSH
The action of inserting data into the FIFO buffer.

2.2 POP
The action of extracting data from the FIFO buffer

2.3 FULL
The FIFO buffer being at it maximum level.

2.4 EMPTY
The FIFO buffer with no valid data.

2.5 Read and Write Pointers
Pointers represent internal structure of the FIFO to identify where in the buffer data will be stored
(write pointer, wr_ptr), or be read (read pointer, rd_ptr)

3. APPLICABLE DOCUMENTS
3.1 Government Documents
None
3.2 Non-government Documents
None

4. ARCHITECTURAL OVERVIEW
4.1 Introduction
The FIFO component shall represent a design written in SystemVerilog with SystemVerilog
assertions. The FIFO shall be synchronous with a single clock that governs both reads and
writes. The FIFO typically interfaces to a controller for the synchronous pushing and popping of
data. Figure 4.1 represents a high level view of the interfaces.

220 SystemVerilog Assertions Handbook, 4th Edition

Figure 4.1 High level view of the FIFO interfaces

The FIFO shall include the following features:
1. Parameterized storage space for data buffers
2. Parameterized data widths for the data.
3. Flag information for FULL, EMPTY, ALMOST FULL at the ¾ level,

ALMOST EMPTY at the ¼ level.
4. A synchronous RESET capability.

4.2 System Application
The FIFO can be applied in a variety of system configurations. Figure 4.2-1
demonstrates one such configuration where the FIFO interfaces on one side to a bus
controller, and on the other side to a different controller. All buses use the same system
clock. It is the responsibility of the enqueue/dequeue controller to manage the integrity
of quantity of data transferred into and extracted out of the FIFO.

Figure 4.2-2 Hardwired Application of a FIFO

FIFO
Controller Controls

Data_in
Data_out

Status

FIFO
Enqueue/
Dequeue
Controller

Controls

Data_in
Data_out

Status

Bus B

Controller

Bus A

Controller

BUSA

BUSB

SystemVerilog Assertions in the Design Process 221

5. PHYSICAL LAYER

Figure 5.0 Interfaces of the FIFO

A SystemVerilog description of the interface is shown in Figure 5.1.

//58

58 The complete SystemVerilog interface with assertions is in file ch6/fifo_if.sv

clk
reset_n

data_in
push
pop

almost_full
full

data_out

almost_empty
empty

error

FIFO

222 SystemVerilog Assertions Handbook, 4th Edition

// tasks / sequences / properties / assertions shall be added here.
endinterface : fifo_if

Figure 5.1 SystemVerilog FIFO interface
5.1 Interface port description
The individual port elements in the interface in figure 5.1 are described in this section
with requirements on them captured as assertions. Since some of the ports describe data
intensive portion of the system (such as the data being popped from the FIFO), some of
the SystemVerilog testbench features such as queues and tasks are used to capture their
requirements. Since these tasks and queues are meant solely for the purpose of
specification and verification, and do not have a direct correlation to the hardware
implementation of the FIFO, they are declared in the interface itself:

Interface description with
modports clarifies the use of
the ports. Maintain ordering
convention: outputs first,
inputs last.

Used by application
interfaced to the FIFO

SystemVerilog Assertions in the Design Process 223

Data Queue

Input data stored into FIFO
buffer 1 cycle following the
push control.

Use immediate assertion for
simple, local checks.

224 SystemVerilog Assertions Handbook, 4th Edition

5.1.1 Data input/output
Figure 5.1.1 provides a timing diagram of the interface.

Figure 5.1.1 FIFO Interface Timing Diagram

5.1.1.1 Data_in
Direction: Input, Peripheral -> FIFO;
Size: Determined by WIDTH parameter; Active level: High
Data sent from a peripheral device to the FIFO under the control of the push control.
5.1.1.2 Data_out
Direction: Output, FIFO -> Peripheral;
Size: Determined by WIDTH parameter; Active level: High
FIFO data sent to a peripheral device under the control of pop signal.

5.1.2 Push / Pop
5.1.2.1 push
Direction: Input, Peripheral -> FIFO; Size: 1 bit, Active level: high
When push is active, data_in shall be stored into the FIFO buffer at the next clock cycle.
It is an error if a push with no pop control occurs on a full FIFO. The following property
characterizes these requirements:

5.1.2.2 pop
Direction: Input, Peripheral -> FIFO; Size: 1 bit, Active level: high
When pop is active, data_out shall carry the data that was first stored into the FIFO, but
was not yet popped. The data_out shall be asserted in the same cycle of pop control. It
is an error if a pop control occurs on an empty FIFO. The following properties and task
characterize these requirements:

Could also use the construct:

SystemVerilog Assertions in the Design Process 225

5.1.2.3 Push-Pop Data Sequencing

Data entered into the FIFO buffer shall be outputted in the same order that it is entered.
The push_task and pop_task tasks, and the properties characterized in sections 5.1.2.1
and 5.1.2.2 define the ordering sequence. Specifically, data pushed in the back of the
FIFO buffer is extracted from the front of the buffer in a first-in, first-out manner.

5.1.3 Status flags
5.1.3.1 Full
Direction: Output, FIFO -> Peripheral ; Size: 1 bit, Active level: high
When the FIFO reaches the maximum depth of the buffer, as defined by the parameter
BIT_DEPTH, then the full flag shall be active. The following sequence and property
characterize this requirement:

5.1.3.2 Almost full
Direction: Output, FIFO -> Peripheral ; Size: 1 bit, Active level: high
When the number of entries in the FIFO reaches or is greater than the predefined value of
¾ of the maximum depth of the buffer, as defined by the parameter ALMOST_FULL,
then the almost_full flag shall be active. The following sequence and property
characterizes this requirement:

Could also use the construct:

Could also use the construct:

Could also use the construct:

226 SystemVerilog Assertions Handbook, 4th Edition

5.1.3.3 Empty
Direction: Output, FIFO -> Peripheral ; Size: 1 bit, Active level: high
When all the enqueued data has been dequeued, then the empty flag shall be active. A
reset shall cause the empty flag to be active. The following sequence and properties
characterize these requirements:

The property for the flags at reset time is defined in section 5.1.4.

5.1.3.4 Almost empty
Direction: Output, FIFO -> Peripheral ; Size: 1 bit, Active level: high
When the number of entries in the FIFO reaches or is less the predefined value of ¼ of
the maximum depth of the buffer, as defined by the parameter ALMOST_EMPTY, then
the almost_empty flag shall be active. The following sequence and property characterize
this requirement:

5.1.4 Reset
Direction: Input, Peripheral -> FIFO ; Size: 1 bit, Active level: low
The reset_n is an active low reset control that clears the pointers and the status flags. The
reset_n is asynchronous to the system clock clk. See properties defined in section 5.1.3.3
for the behavior of the empty flag when reset_n is asserted in the FIFO.

Could also use the construct:

Could also use the construct:

SystemVerilog Assertions in the Design Process 227

5.15 Clock
Direction: Input, Peripheral -> FIFO ; Size: 1 bit, Active edge: rising edge
The clk clock is the synchronous system clock for both the read and write transactions; it
is active on the positive edge of the clock. The clock shall be at 50% duty cycle.

5.16. Error
Direction: Output, FIFO -> Peripheral; Size: 1 bit, Active level: high
When either an overflow (push on full) or underflow (pop on empty) error has occurred,
the error flag shall be asserted. The following properties characterize the error output.

// Reusing the q_push_error and q_pop_error definitions,

6. PROTOCOL LAYER
The FIFO operates on single word writes (push) or single word reads (pop).

7. ROBUSTNESS
7.1 Error Detection
The FIFO shall lump all overflow (push on full) or underflow (pop on empty) errors as a
single error output. See 5.16 for details.

8.1 Fixed Parameterization
The FIFO shall provide the following parameters used for the definition of the
implemented hardware during hardware build:

BIT_DEPTH where 2 BIT_DEPTH represents the depth of FIFO.
WIDTH represents the data width.
ALMOST_FULL (0.75 (2 BIT_DEPTH))
ALMOST_EMPTY (0.25 (2 BIT_DEPTH))

8.2 Software interfaces
The FIFO shall enter input data (data_in) into the FIFO buffer when the push control is
active. It shall provide data from the buffer upon an activation of the pop control. See
5.1.2 Push / Pop for definition of the properties that characterize these controls. The
FIFO contains no internal registers that can be configured.

This section typically contains the internal registers that the
software can access and configure.

228 SystemVerilog Assertions Handbook, 4th Edition

9. PERFORMANCE
9.1 Frequency
The FIFO shall support a maximum rate of 25 MHz.

9.2 Power dissipation
The power shall be less than 0.01 watt at 25 MHz.

9.3 Environmental
Does not apply.

9.4 Technology
The design shall be adaptable to any technology because the design shall be portable and
defined in SystemVerilog RTL.

10. TESTABILITY
None required.

11. Mechanical
Does not apply.

12. Backup information
A copy of the FIFO interface model and supporting package is included in the download
files.

6.9.2 Test Plan
The following demonstrates the application of assertions in a verification plan to clarify the
verification goals and milestones.

FIFO Requirements Example

