
Formal Verification Using Assertions 247 

 

 
7.3 Case Study - FV of a traffic light controller  

7.3.1 Model   
This design represents a simple traffic light controller for a North-South and East-West 

intersection.  The North-South is the main road, and is given the GREEN light unless a sensor on 

the East-West Street is activated.  When that occurs, and the North-South light was GREEN for 

sufficient time, then the light will change to give way to the East-West traffic.  The design also 

takes into account emergency vehicles that can activate an emergency sensor.  When the 

emergency sensor is activated, then the North-South and East-West lights will turn RED, and will 

stay RED for a minimum period of 3 cycles.  Figure 7.3.1-1 is a view of the intersection.   The 

model has the following interfaces:  

typedef enum { OFF,   // power off     // /ch7/7.3/trafficlightok.sv 

RED, // red state 

YELLOW,  // yellow state  

GREEN,  // green state 

PRE_GREEN}  // state before green 
      lights_t; 
 
 module trafficlight 
  ( 
   output  lights_t ns_light,  // North/South light status, Main road 
   output  lights_t ew_light,  // East/West light status 
   input     ew_sensor,   // East/West sensor for new car 
   input     emgcy_sensor, // emergency sensor  
   input     reset_n,      // synchronous reset 
   input     clk           // master clock 
   ); 
    timeunit 1ns;    timeprecision 100ps; 

Figure 7.4.1-1 North-South and East-West intersection. 

Since the traffic lights are timed, two timers are used in this first implementation:  

logic [1:0]    ns_green_timer;  // timer for NS light in Green 

logic [1:0]    ew_green_timer;  // timer for EW light in GREEN 

 

A high-level view of the traffic light controller is shown in Figure 7.3.1-2.  The architecture 

includes two FSMs and the timers.  The operation of the machine is very simple:  

1. North-South remains GREEN unless one of the East-West sensors is activated.  

2. If the North-South light is RED and the North-South GREEN timer is 3, then the light 

will switch to GREEN.  

3. If the North-South light is YELLOW, it will switch to RED. 



248    SystemVerilog Assertions Handbook, 4
th
 edition 

 

 

4. If the North-South light is GREEN, and the emergency sensor is activated, the light will 

switch to YELLOW.  Also, if the North-South timer is 3, and the East-West sensor is 

activated, the North-South light will switch to YELLOW.   

5. The North-South GREEN timer is reset to zero at reset, or when the North-South light is 

YELLOW.  Otherwise, it increments at every clock until it reaches the maximum count 

of 3.   

6. The East-West light switches from RED to a PRE_GREEN state (to allow the North-

South light to go to YELLOW) if the North-South timer is 3 and the East-West sensor is 

activated.   

7. If the East-West is PRE_GREEN, it will switch to GREEN at the next clock.  

8. If the East-West light is YELLOW, it will switch to RED.  

9. If the East-West is GREEN and either the emergency sensor is activated or the East-West 

timer reaches a count of 3 then it switches to YELLOW.  

10. The East-West GREEN timer is reset to zero at reset or when the East-West light is 

YELLOW.  Otherwise, it increments at every clock until it reaches the maximum count 

of 3.   

Figure 7.4.1-2 High-Level View of Traffic Light Controller 
 

Advance Notification:  

On the surface, this architecture looks acceptable.  However, it is flawed, as there are illegal 

behaviors, as demonstrated by formal verification tools.  For example, it is possible for both the 

North-South light and the East-West light to be GREEN in the same cycle.   

 

Even though the implementation of this synthesizable model is flawed, it is used in this book to 

demonstrate the value and power of ABV with SystemVerilog Assertions in formal verification.  

Later on in this chapter, a good traffic light controller is modeled and verified.  

 

7.3.2 SystemVerilog Assertions for traffic light controller   
Based upon the requirements, several assertions can be expressed prior to writing the RTL.  

Below (in file tlight/tlight_props1.sv60) are some example assertions written for this design.  Note 

that in order to later bind this checker module to the actual design, all its ports are declared as 

inputs. Its ports are all inputs and outputs of the actual design, plus some internal states needed to 

model the requirements. The internal states are defined in compilation unit scope as enumerations 

so they can be easily shared in the RTL.  In this case we choose to include the internal timer 

ns_green_timer in the port list. 

                                                      
60 Please refer to file model tlight/trafficlight.sv for the complete RTL code.  

ew_sensor

emgcy_sensor

reset_n

clk

ns_green_timer

ew_green_timer

-> ns_light

-> ew_light

East-West & 

North-South 

FSM

ew_sensor

emgcy_sensor

reset_n

clk

ns_green_timer

ew_green_timer

-> ns_light

-> ew_light

East-West & 

North-South 

FSM



Formal Verification Using Assertions 249 

 

 
 `define true 1 
`ifndef MULTIPLE_FILE_COMPILE  
  typedef enum {OFF, RED, YELLOW, GREEN, PRE_GREEN} lights_t;   `endif 
module tlight_props  ( // ch7/7.3/tlight_props2.sv 
   input  lights_t ns_light,  // North/South light status, Main road 
   input  lights_t ew_light,  // East/West light status 
   input     ew_sensor, // East/West sensor for new car 
   input     emgcy_sensor, // emergency sensor  
   input     reset_n,   // synchronous reset 
   input     clk,       // master clock 
   input [1:0]  ns_green_timer 
   ); 
  parameter FAIL   = 1'b0; 
   
  // **************************************************                   

  // Safety property 
  property Never_NS_EW_ALL_GREEN; 
      disable iff (!reset_n)  
     not (ns_light==GREEN && ew_light==GREEN); 
  endproperty : Never_NS_EW_ALL_GREEN 
  Never_NS_EW_ALL_GREEN_1 : assert property(@ (posedge clk) Never_NS_EW_ALL_GREEN); 
  // **************************************************   
  // State of lights at reset   
  property nsLightAtReset; 
     // disable iff (!reset_n)  // <-- this causes the assertion to always be vacuous  
     reset_n==1'b0 |=> ns_light==OFF; 
  endproperty : nsLightAtReset 
  nsLightAtReset_1 : assert property(@ (posedge clk) nsLightAtReset); 
  // 
  property ewLightAtReset; 
     // disable iff (!reset_n) // <-- this causes the assertion to always be vacuousM 
    reset_n==1'b0 |=> ew_light==OFF;  // RED??? 
   endproperty : ewLightAtReset 
  ewLightAtReset_1 : assert property(@ (posedge clk) ewLightAtReset);  
  // **************************************************   
  // State of lights during emergency 
  // Lights switch from GREEN to YELLOW to RED  
  property NsLightsWhenEmergency; 
     disable iff (!reset_n)  
    emgcy_sensor |=> `true[*2] ##1  ns_light==RED; 
   endproperty : NsLightsWhenEmergency 
  NsLightsWhenEmergency_1 : assert property(@ (posedge clk) NsLightsWhenEmergency); 

    
  property EwLightsWhenEmergency; 
     disable iff (!reset_n)  
     emgcy_sensor |=> `true[*2] ##1 ew_light==RED; 
  endproperty : EwLightsWhenEmergency 
  EwLightsWhenEmergency_1 : assert property(@ (posedge clk) EwLightsWhenEmergency); 

The following is preferred (see 8.3.3) 
(ns_light==GREEN |-> !ew_light==GREEN) 



250    SystemVerilog Assertions Handbook, 4
th
 edition 

 

 

// Safety, GREEN to RED is illegal.  Need YELLOW 
  property NsNeverFromGreenToRed; 
     disable iff (!reset_n)  
     not(ns_light==GREEN ##1 ns_light==RED); 
  endproperty : NsNeverFromGreenToRed 
  NsNeverFromGreenToRed_1 : assert property(@ (posedge clk) NsNeverFromGreenToRed);  

 property EwNeverFromGreenToRed; 
     disable iff (!reset_n)  
      not(ew_light==GREEN ##1 ew_light==RED); 
 endproperty : EwNeverFromGreenToRed 
  EwNeverFromGreenToRed_1 : assert property(@ (posedge clk) EwNeverFromGreenToRed); 

  // ************************************************** 
   // The NorthSouth light is the main street light.   

  // If ns is green and no emergency or ew sensor, then next cycle is also GREEN 
  property NsGreenNext; 
    (ns_light==GREEN) && ($past(emgcy_sensor)==1'b0 && reset_n==1'b1)  
                  |=> ns_light==GREEN; 
 endproperty : NsGreenNext 
 NsGreenNext_1:  assert property (@ (posedge clk) NsGreenNext); 
   

   // GREEN-YELLOW at the same time 
  property NeverGreenYellow; 
     not ((ew_light==GREEN && ns_light==YELLOW) || 
          (ns_light==GREEN && ew_light==YELLOW)); 
  endproperty : NeverGreenYellow 
  NeverGreenYellow_1: assert property (@ (posedge clk) NeverGreenYellow); 

    // **************************************************   

  // The NorthSouth light is the main street light.   

  // It must remain GREEN for ns_green_timer == 3 before it can switch.  

  // Timer ns_green_timer will count to 3, and remain at 3 until light changes. 
   property NsGreenForMin3Ccyles; 
    @ (posedge clk) disable iff (!reset_n || emgcy_sensor)  
      $rose(ns_light==GREEN) && !$past(emgcy_sensor) |=>  
             ns_light==GREEN[*2]; // abort emgcy_sensor); 
   endproperty : NsGreenForMin3Ccyles 
  NsGreenForMin3Ccyles_1 : assert property (NsGreenForMin3Ccyles); 

  // ************************************************** 

GREEN        RED

RED          GREEN       GREEN GREEN

See 8.3.3  for guidelines. Rewrite as 

ew_light==GREEN |=> ! ew_light==RED 

See 8.3.3  for guidelines.  Rewrite as  
(ew_light==GREEN |->  !ns_light==YELLOW)  
and  

 (ns_light==GREEN |-> !ew_light==YELLOW) 

 



Formal Verification Using Assertions 251 

 

 

  // East-West North-South Lights with East-West sensor  

  // If ew_sensor is activated (new car), then light will switch for the ew_light  

  // when minimum time for ns_light is satisfied.  ew_green_timer will count to 3,  

  // at which time, the ns_green_timer will regain control of GREEN. 
   property EwNewSensorActivation; 
    @ (posedge clk) disable iff (!reset_n || emgcy_sensor)  
     ( (ew_sensor==1'b1) && $rose(ns_green_timer==2'b11 )) &&  
                         !$past(emgcy_sensor) && ns_light!= RED  
                               |=>   ns_light==YELLOW ##1 ew_light==GREEN;  
   endproperty : EwNewSensorActivation 
   EwNewSensorActivation_1 : assert property (EwNewSensorActivation); 
// End of new properties 09/10/09 
 endmodule : tlight_props 
 
bind trafficlight tlight_props tlight_props1 (.*);  

 

7.3.3 Verification  
The above model was verified with OneSpin 360 MV, and it revealed several failures in the 

design, as shown in Figure 7.4.3-1.61  In that figure, “fail (9)” means that the tool detected a 

violation of the property starting 9 cycles after reset.  

As an example of debugging a failing property, Figure 7.4.3-2 shows the debugging view for the 

first property “Never_NS_EW_ALL_GREEN”: 

 

The left part of the debugging window shows an interactive view of the property, with the 

failing parts highlighted in red (see ch6/tlight/1_some_fail.png file for a color view of a 

larger image).   The waveform shows that indeed in cycle 0, both the EW and the NS 

lights are green62.  Further, it indicates that some steps earlier, the emergency sensor, and 

the EW sensor were activated.  To explore this situation, the time-point “-2” has been 

selected (indicated by the yellow vertical bar).  The active source code annotation in the 

upper right corner shows the critical part of the DUV, with the active source lines marked 

in red: the root cause is the conditional transition from RED to the PRE_GREEN state, 

the condition  
if (ns_green_timer==3'b11 && ew_sensor==1'b1) 

being satisfied although in fact the NS light is not green, but being switched to green in 

the same step. 

The sequence of events leading to this situation is fairly complex, and would have required 

extensive simulation with pseudo-random patterns to arrive at the failed situation.  The bug, 

together with the other bugs detected by the formal tool, led to a thorough redesign of the 

controller, as discussed in the next section. 

 

                                                      
61  OneSpin’s 360 MV is a family of formal verification tools ranging from fully automatic RTL 

checks for large designs all the way to OneSpin's patented gap-free verification.  

http://www.onespin-solutions.com/ 

 
62 The cycles are numbered such that the property always starts at cycle 0, while the reset cycle is 

at some negative number, not shown in the figure. 



252    SystemVerilog Assertions Handbook, 4
th
 edition 

 

 

 

Figure 7.4.3-1 Summary of Formal Verification Results (ch7/tlight/1_some_fail.png) 

The screenshots in this section were made with OneSpin 360 MV,  

courtesy of OneSpin Solutions 

 



Formal Verification Using Assertions 253 

 

 

 

Figure 7.4.3-2 Counterexample: all lights are green, ch7/tlight/2_debug_allgreen.png 

7.3.4 Good Traffic Light Controller 
The traffic light controller demonstrated in the previously section represents a model where the 

East-West and North-South FSMs are loosely tied, and there lies the source of errors such as both 

East-West and North-South lights turning GREEN in the same cycle.  Of course, that erroneous 

condition only happens under specific sequences, as demonstrated by formal verification.   

 

To resolve this issue, a centralized architecture will be used.  The new design relies on the North-

South FSM being the master controller.  The East-West slave FSM makes an ew_green_request 

whenever it wants access to the light.  That request is granted with the ew_green_grant 

handshake.  It is provided by the North-South FSM when the North-South goes YELLOW.   In 

addition, to maintain this centralized control, the North-South FSM will inform the East-West 

FSM to go RED with the ew_to_red_cmd command.   That command is a function of the value of 

the emergency sensor, the value of the East-West sensor, and the length of time that East-West 

light stayed GREEN.  A centralized North-South GREEN timer, instead of two independent 

timers, controls that time.  Figure 7.4.4-1 represents a high-level view of this architecture.   

Figure 7.4.4-1 Good traffic light controller architecture 
 

The last property “EwNewSensorActivation” fails now, although this held on the first (faulty) 

design! This property describes how the EW light is switched to green after activation of the EW 

sensor.  

 

 

 

North-South FSMEast-West FSM

ew_green_req

ew_green_grant

ew_2red_cmd

ew_sensor
emgcy_

sensor

ns_light
ew_light



254    SystemVerilog Assertions Handbook, 4
th
 edition 

 

 
property EwNewSensorActivation; 
    @ (posedge clk) disable iff (!reset_n || emgcy_sensor)  
      ew_sensor==1'b1 && $rose(ns_green_timer==2'b11) 

&& !$past(emgcy_sensor) && ns_light!= RED |->  
          ##[1:3] ns_light==YELLOW ##1 ew_light==GREEN;  

     endproperty : EwNewSensorActivation 
    EwNewSensorActivation_1 : assert property (EwNewSensorActivation); 

Analyzing the counterexample in figure 7.4.4-2 reveals that the EW light is indeed switched to 

green, but only four cycles after the sensor activation, rather than two cycles as predicted by the 

property. This is caused by the momentum of the FSMs.  Figure 7.4.4-2 indicated that there is a 

witness for this property, i.e. it is possible to meet the predicted timing.   

 
Figure 7.4.4-2 Debugging property EwNeverSensorActivation_1, 

ch7/tlight/4_debugEWSensor.png 

 
Therefore the property needs to be modified to allow for a more liberal timing: 

   property EwNewSensorActivation; 
    @ (posedge clk) disable iff (!reset_n || emgcy_sensor)  
      ew_sensor==1'b1 && $rose(ns_green_timer==2'b11) 

&& !$past(emgcy_sensor) && ns_light!= RED |->  
          ##[1:3] ns_light==YELLOW ##1 ew_light==GREEN;  

    endproperty : EwNewSensorActivation 

    EwNewSensorActivation_1 : assert property (EwNewSensorActivation); 
 

This property holds. However, inspecting the property again, we find that its antecedent describes 

a rather special situation, namely that the ns_green_timer expires in the same instant when the 

ew_sensor is activated.  Also the additional assumption ns_light != RED raises the question 

whether we need to examine further cases before we can claim that this feature is truly verified.  

A more powerful way to write the “EwNewSensorActivation” is shown below, by introducing a 

formal argument for the delay between sensor activation and switching to green: 
property EwNewSensorActivation_w(int del); 
   @ (posedge clk) disable iff (!reset_n || emgcy_sensor) 
  ew_sensor |->  ##[0:del] ew_light==GREEN; 
 endproperty : EwNewSensorActivation_w 

   

This property can be called with different delay values to explore the actual worst case delay: 

  
    EwNewSensorActivation3: assert property (EwNewSensorActivation_w(3)); 
  … 
  EwNewSensorActivation11 : assert property (EwNewSensorActivation_w(11)); 
  EwNewSensorActivation12 : assert property (EwNewSensorActivation_w(12)); 

 

It turns out that even a delay of 10 can occur, but the property does hold with delay 11 or more, as 

is shown in the final result in figure 7.4.4-3.    The final properties are in file 

ch7/tlight/tlight_props2.sv. 



Formal Verification Using Assertions 255 

 

 

 

 

 

 
Figure 7.4.4-3 Final result for traffic light controller, ch7/tlight/5_finalresult.png 

 

  



256    SystemVerilog Assertions Handbook, 4
th
 edition 

 

 

Reflections: 

Some reflections on the derivation of this model are in order:  

1. It took about 10 iterations to arrive at a working model.  

2. Each iteration went fairly fast because formal verification was used without a testbench.  

As the design matured, and more analysis was done, it took longer between iterations 

(early mortality effect).  This methodology is analogous to the edit-compilation/synthesis 

process used in RTL design and synthesis to eliminate the gross errors.   

3. Linting of the model significantly helped in debugging the model prior to performing 

formal verification.   

4. Formal verification quickly arrived at errors in the design, along with counterexamples 

that demonstrated the problems.  Corrections of these errors were quickly verified with 

another run of the formal verification tool.   

5. Formal verification also demonstrated that some properties needed modifications since 

they were not properly expressed.  These incorrectly stated properties challenged the 

author of the properties in his understanding of the requirements.  That cycle caused a 

better understanding of the operation of the machine and the requirements.  

 A debugger closely integrated with the verification tool helped greatly in understanding the root 

cause of the failures.  

 

 



 

 

 

 

 
 

 

 

8 SYSTEMVERILOG 

ASSERTIONS GUIDELINES 

This chapter provides a rich set of guidelines in using SystemVerilog Assertions.  These 

guidelines emerged from experience with usage of Assertion-Based Verification, vendor’s 

recommendations, code reviews, and SystemVerilog 1800 documentation.  Those guidelines are 

supplemental to those addressed throughout this book.  

 

It is recommended that when Assertion-Based Verification is used in a project, all designers and 

verification engineers involved in that project use that methodology.  A general guideline in the 

use of assertions is to ensure a common “feel and look” throughout the design.  This includes 

among other things, naming convention, directory structure, error reporting, initialization, 

synchronization or properties, use of clocks and default clock, defining resets in properties, the 

declaration of properties and tasks in packages, interfaces, and/or modules.  A consistency in the 

verification environment will speed up the design and debug process and significantly improves 

maintainability.  Sporadic and partial usage of assertions in a project defuses the benefits of ABV.   

 

  

 

 

  


