
Preface i

SystemVerilog Assertions
Handbook, 4th edition

and Formal Verification

Ben Cohen
Srinivasan Venkataramanan

Ajeetha Kumari
...and Lisa Piper

VhdlCohen Publishing
Los Angeles, California
http://www.SystemVerilog.us/

ii SystemVerilog Assertions Handbook, 4th Edition

SystemVerilog Assertions
Handbook, 4th Edition

and Formal Verification

Published by:
VhdlCohen Publishing
P.O. 2362
Palos Verdes Peninsula CA 90274-2362
ben@SystemVerilog.us
http://www. SystemVerilog.us/

Library of Congress Cataloging-in-Publication Data
A C.I.P. Catalog record for this book is available from the Library of Congress

SystemVerilog Assertions Handbook, 4th Edition
Dynamic and Formal Verification

ISBN 978-1518681448

[1] Reprinted with permission from IEEE Std. P1800/D5, 2012 -prelim Standard for
SystemVerilog Unified Hardware Design,Specification, and Verification Language,
Copyright 2012, by IEEE. The IEEE disclaims any responsibility or liability resulting from
the placement and use in the described manner.

Items reprinted from the above referenced IEEE document are identified with a prefix [1]
and are shown in italic font.

Copyright © 2016 by VhdlCohen Publishing

All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage and retrieval system, without the prior
written permission from the author, except for the inclusion of brief quotations in a
review.

Printed on acid-free paper

Printed in the United States of America

Preface iii

Contents
FOREWORD, Dennis Brophy xiii
FOREWORD, Sven Beyerxiv
FOREWORD, Stuart Sutherlandxv
PREFACExvii

What's new?xvii
The creatorsxviii
How this book addresses SVAxviii
More about the creation of this book ..xix
How to read this bookxx
The Intentxx
Book Organizationxxi

Acknowledgementsxxiii
About the Authorsxxvi

1 Assertions In a Verification Methodology ... 1

1.1 DESIGN VERIFICATION METHODOLOGIES .. 2
1.2 WHICH LANGUAGE/METHODOLOGY FOR PROJECT?... 3

1.2.1 What is a property? What is an assertion? ... 4
1.2.2 Are assertions supported in frameworks? ... 6
1.2.3 Why describe same thing in RTL and assertions?.. 6

1.3 WHY SYSTEMVERILOG ASSERTIONS? ... 6
1.3.1 Are assertions independent from SystemVerilog structures?.................................. 8
1.3.2 Where and how are assertions used?.. 8

1.3.2.1 Capture design intent.. 9
1.3.2.2 Allow protocols to be defined and verified ... 9
1.3.2.3 Simplify usage of reusable IP .. 10
1.3.2.4 Facilitate functional coverage metrics .. 10
1.3.2.5 Generate counterexamples to demonstrate violation of properties .. 10

1.4 OVERVIEW OF PROPERTIES, ASSERTIONS, ATTEMPTS... 10
1.4.1 Sequence.. 11
1.4.2 Cycle and range delays .. 13
1.4.3 Assertion states ... 14

1.5 ASSERTION-BASED VERIFICATION .. 17
1.5.1 Specification and verification .. 17
1.5.2 Assertions types... 18

1.5.2.1 Concurrent assertions: assume property, assert property, cover property,
cover sequence, restrict property ... 18

2 UNDERSTANDING SEQUENCES.. 21

2.1 SEQUENCE SYNTAX ... 22
2.2 SEQUENCE OPERATORS AND BUILT-IN FUNCTIONS.. 23
2.3 REPETITION OPERATORS .. 26

2.3.1 Attempt / thread difference .. 27
2.3.1.1 Important concepts on threads and sequences .. 28

2.3.2 Impact of multi-threaded sequences in assertions.. 29
2.3.2.1 Multi-threaded sequence in consequent .. 31

iv SystemVerilog Assertions Handbook, 4th Edition

2.3.2.1.1 Strong / weak sequence in consequent ... 33
2.3.2.2 Multi-thread sequences in both antecedent and consequent .. 33
2.3.2.3 Consequent with multiple antecedent / consequent pairs ... 33

2.3.3 Consecutive repetition ... 34
2.3.3.1 [*n] Repetition fixed ... 34
2.3.3.2 Sequence [*n:m] [*] [+] Repetition range .. 34
2.3.3.3 [*0 : m] Repetition range with zero ... 35
2.3.3.4 [*n : $], [*] [+] Repetition range with infinity.. 36

2.3.4 goto repetition, Boolean ([->n], [|->n:m]) ... 36
2.3.5 Non-consecutive repetition, Boolean([=n], [|=n:m]) ... 37

2.4 SEQUENCE COMPOSITION OPERATORS ... 38
2.4.1 Sequence fusion (##0) and empty sequences .. 39
2.4.2 Sequence disjunction (or) .. 41
2.4.3 Sequence non-length-matching (and)... 42
2.4.4 Sequence length-matching (intersect)... 42
2.4.5 Sequence containment (within).. 44
2.4.6 Expression over sequences (throughout operator) .. 45

2.5 METHODS SUPPORTING SEQUENCES.. 45
2.5.1 first_match operator ... 45
2.5.2 End point of sequences, .triggered ... 47
2.5.3 End Point of sequences, .matched .triggered .. 49

2.5.3.1 End Point of a multiclocked sequence .. 50
2.5.4 End point application examples... 51

2.5.4.1 End points as a starting point to build sequences... 51
2.5.4.2 Referring to the past using end points .. 52
2.5.4.3 .triggered as level-sensitive control .. 53
2.5.4.4 Sequence as events... 54

2.6 ALLOWED TYPES IN FORMAL ARGUMENTS FOR SEQUENCES AND PROPERTIES 54
2.6.1 Formal argument of event type... 55
2.6.2 Untyped formal argument... 56
2.6.3 Typed formal argument: sequence.. 57
2.6.4 Data types for typed formal arguments .. 58

2.6.4.1 Default actual argument ... 61
2.7 LOCAL VARIABLES IN FORMAL ARGUMENTS AND IN SEQUENCE AND PROPERTY DECLARATIONS 62

2.7.1 Variable types, initializations, assignments, updates (rule 1, 3, 4) 68
2.7.2 Update of local variables (rule 15) .. 69
2.7.3 Local variables in repetitions (rule 8, 9)... 70
2.7.4 Formal arguments and local variables in sequences (rule 11, 12, 17) 70
2.7.5 Typed formal local variables arguments and bindings (rule 1, 13, 19) 72
2.7.6 No empty match in local variables assignments (rule 5)....................................... 74
2.7.7 Local variable must be written once before being read (rule 6)............................ 74
2.7.8 Variable is unassigned if not flowed out (rule 7, 10) ... 75
2.7.9 Local variables in concurrent and, or, and intersect threads (rule 14)..................... 75

2.7.9.1 .. 75
2.7.9.1.1 first_match(seq1 or seq2) .. 77

2.7.9.2 .. 78
2.7.10 .triggered method in sequences with input or inout

local variable formal arguments ... 80

Preface v

3 Understanding Properties ... 81

3.1 ASSERTIONS, PROPERTIES, TERMINOLOGIES, SYNTAX .. 81
3.2 PROPERTY HEADER ... 86
3.3 PROPERTY IDENTIFIER ... 87
3.4 FORMAL ARGUMENTS AND USAGE .. 87

3.4.1 Formal argument representing a delay range... 89
3.5 PROPERTY VARIABLE DECLARATION ... 89
3.6 BODY OF THE PROPERTY STATEMENT ... 89
3.7 CLOCKING EVENT ... 89

3.7.1 Leading clocking event .. 90
3.8 DISABLING CONDITION .. 92

3.8.1 Disable rules .. 92
3.8.2 Default disable... 93
3.8.3 Inferred functions for clock and disable .. 94

3.9 PROPERTY EXPRESSION AND OPERATORS .. 96
3.9.1 Implication operators |->, |=> ... 98

3.9.1.1 Overlapped implication operator |-> ... 99
3.9.1.2 Non-Overlapped Implication Operator |=>.. 100

3.9.2 not operator... 100
3.9.2.1 Vacuity .. 100

3.9.3 and operator.. 101
3.9.3.1 Vacuity .. 101

3.9.4 or operator... 102
3.9.4.1 Vacuity .. 102

3.9.5 implies.. 103
3.9.5.1 Vacuity .. 103

3.10 APPLICATIONS ... 104
3.10.1 iff.. 105

3.10.1.1 Vacuity .. 106
3.10.2 until.. 106

3.10.2.1 Vacuity .. 107
3.10.3 Followed-by #-#, #=# ... 108

3.10.3.1 Vacuity .. 109
3.10.4 nexttime, s_nexttime... 110

3.10.4.1 Vacuity .. 110
3.10.5 if else... 111

3.10.5.1 Vacuity .. 111
3.10.6 always, always[cycle_delay_const_range], s_always[bounded range] 111

3.10.6.1 Vacuity .. 112
3.10.6.2 Application example and options.. 113

3.10.7 eventually, s_eventually .. 114
3.10.7.1 Vacuity .. 115

3.10.8 case.. 116
3.10.8.1 Vacuity .. 117

3.10.9 accept_on, reject_on, sync_accept_on, reject_onsync_reject_on 117
3.10.9.1 Vacuity .. 122

3.11 LOCAL VARIABLES IN PROPERTIES.. 122
3.11.1 Local Variable Formal Arguments ... 124
3.11.2 Using Variables as Counters .. 125
3.11.3 Using variables as Delays ... 127

vi SystemVerilog Assertions Handbook, 4th Edition

3.11.4 Using Variables as Timeouts.. 127

4 Advanced Topics For Properties and Sequences... 131

4.1 SYSTEMVERILOG SCHEDULING SEMANTICS FOR ASSERTIONS.................................... 131
4.2 ASSERTION-BASED SYSTEM FUNCTIONS .. 134

4.2.1 Sampled valued functions.. 134
4.2.1.1 Value access functions .. 134

4.2.1.1.1 $sampled(expression) .. 134
4.2.1.1.1.1 $sampled in a disable iff clause .. 134
4.2.1.1.1.2 $sampled in an action block .. 135

4.2.1.1.2 $past... 136
4.2.1.2 Value change functions ... 137

4.2.1.2.1 $rose and $fell .. 137
4.2.1.2.2 $stable, $changed ... 138

4.2.2 Vector-analysis system functions .. 139
4.2.3 Severity-level system functions.. 140

4.2.3.1 SystemVerilog severity levels .. 140
4.2.3.2 UVM severity levels .. 142

4.2.4 Assertion-control system tasks .. 143
4.2.4.1 Assert control.. 144

4.2.4.1.1 Control_type .. 145
4.2.4.1.2 assertion_type.. 148
4.2.4.1.3 directive_type .. 148
4.2.4.1.4 Equivalent assertion control system tasks ... 148
4.2.4.1.5 Assertion action blocks -control system tasks.. 149

4.3 CLOCKED SEQUENCES, PROPERTIES, AND MULTICLOCKING ... 150
4.3.1 Multiclocked Sequences and Properties .. 151
4.3.2 Clocking Rules in Assertions... 153
4.3.3 Clock Flow.. 153
4.3.4 Procedural Concurrent Assertion... 155
4.3.5 Arguments to Procedural Concurrent Assertions .. 158

4.4 PROPERTIES IN INTERFACES .. 160
4.5 ASSERTION STATEMENTS ... 161

4.5.1 Purpose of verification statements.. 163
4.5.1.1 assert Statement ... 163
4.5.1.2 assume statement... 164

4.5.1.2.1 assert and assume for same property: then what?... 165
4.5.1.2.2 Same inputs in antecedent and consequent .. 165

4.5.1.3 restrict statement ... 165
4.5.1.4 cover statement .. 166

4.5.1.4.1 Understanding coverage .. 167
4.5.1.4.2 Using covergroup for data coverage .. 169

4.5.1.5 Expect construct.. 170
4.5.1.6 Action-Block .. 172

4.5.2 Assertions in RTL.. 172
4.6 IMMEDIATE ASSERTIONS.. 173

4.6.1 Simple immediate assertions... 174
4.6.2 Deferred assertions.. 175

4.6.2.1 Deferred assertion reporting .. 177
4.7 BINDING ASSERTIONS TO SCOPES OR INSTANCES .. 178
4.8 STATIC / AUTOMATIC VARIABLES AND ASSERTIONS ... 182

4.8.1 Static / automatic variable defintions ... 182
4.8.2 Sampling of variables in assertions ... 183

Preface vii

5 CHECKER .. 187

5.1 MOTIVATION AND ADVANTAGES OF CHECKER CONSTRUCT ... 187
5.2 SYNTAX OF CHECKER CONSTRUCT.. 189
5.3 CHECKER CONTENTS.. 190
5.4 CHECKER USE MODEL .. 192

5.4.1 Classification of assertion statements... 192
5.4.2 Classification of checker Instances .. 193
5.4.3 Checker behaviors based on types and instances.. 193

5.4.3.1 checker usages .. 198
5.4.3.1.1 Self-sustained independent checker declaration with direct of bind instantiation 198
5.4.3.1.2 Checker declared and instantiated inside design unit (module, interface,

checker, or program) .. 199
5.4.3.1.3 Checker declared in packages that are instantiated inside the design unit 200
5.4.3.1.4 checker bound to a design unit .. 201

5.5 CONTEXT INFERENCE .. 202
5.6 CHECKER VARIABLES ... 203

5.6.1 Static and automatic variables.. 203
5.6.2 rand and rand const variables ... 204
5.6.3 Capturing functional coverage model inside checker.. 205

6 SystemVerilog Assertions In the Design Process... 207

6.1 TRADITIONAL DESIGN PROCESS .. 208
6.2 DESIGN PROCESS WITH SVA .. 208

6.2.1 System-level Assertions ... 208
6.3 REQUIREMENTS ... 209

6.3.1 Cause and effect class of requirements ... 209
6.3.2 Latencies .. 209
6.3.3 Definition of Processing Algorithms .. 210
6.3.4 Interface Assertions ... 211

6.4 ARCHITECTURAL PLAN .. 211
6.5 VERIFICATION AND TEST PLAN .. 212
6.6 RTL DESIGN .. 213
6.7 TESTBENCH DESIGN .. 213
6.8 FUNCTIONAL COVERAGE IN VERIFICATION ... 213

6.8.1 SystemVerilog Assertions API .. 214
6.8.2 Formal verification (FV) ... 217

6.9 CASE STUDY - SYNCHRONOUS FIFO... 217
6.9.1 Synchronous FIFO Requirements ... 217
6.9.2 Test Plan .. 228

6.10 RTL DESIGN .. 235
6.11 SIMULATION ... 235

viii SystemVerilog Assertions Handbook, 4th Edition

7 FORMAL VERIFICATION USING Assertions ... 237

7.1 FORMAL PROPERTY VERIFICATION ... 238
7.1.1 What is formal property verification ? .. 238
7.1.2 Why formal property verification .. 238
7.1.3 Who should use formal property verification.. 239
7.1.4 More about model property checking ... 239

7.1.4.1 Formal verification design process.. 239
7.2 GLOBAL CLOCKING, PAST AND FUTURE SAMPLED VALUE FUNCTIONS 240

7.2.1 Global Clocking .. 240
7.2.2 Past and future sampled value functions .. 242
7.2.3 Application of Global Clocking... 245

7.3 CASE STUDY - FV OF A TRAFFIC LIGHT CONTROLLER.. 247
7.3.1 Model... 247
7.3.2 SystemVerilog Assertions for traffic light controller.. 248
7.3.3 Verification .. 251
7.3.4 Good Traffic Light Controller ... 253

8 SystemVerilog Assertions Guidelines .. 257

8.1 NAMING CONVENTION GUIDELINES .. 258
8.1.1 File naming .. 258
8.1.2 Naming of assertion constructs... 259
8.1.3 Ending statements with labels... 260
8.1.4 Constants for modules / interfaces / checkers .. 260
8.1.5 Local variables within properties and sequences .. 260

8.2 STYLE ... 261
8.2.1 Where should assertions be declared and asserted? ... 261
8.2.2 .. 262
8.2.3 When to use concurrent assertions in procedural code 263

8.2.3.1 Concurrent assertions in procedures .. 263
8.2.3.2 Concurrent assertions in a checker ... 263

8.2.4 Explicit or implicit declaration of properties.. 264
8.2.5 Use formal arguments only when reuse is intended ... 265
8.2.6 Use generate for assertions conditional on parameters or individual bits.......... 265
8.2.7 Standardize action block error display .. 266
8.2.8 Using named sequences/properties .. 266
8.2.9 Adopting new IEEE 1800-2012 features .. 266
8.2.10 Use strong property operators for assertions that must complete 266
8.2.11 Defining clocking events .. 267
8.2.12 Modeling abort conditions in properties ... 267
8.2.13 Dynamic data types inside properties ... 268
8.2.14 Cyclic dependencies between sequences... 269

8.3 USE MODEL GUIDELINES .. 269
8.3.1 Insure uniqueness for attempts ... 269
8.3.2 Use first_match to avoid unexpected results .. 269
8.3.3 Avoid concurrent assertions that have just a sea of logic 270
8.3.4 Beware of metalogical values.. 271
8.3.5 Assertions with output or inout ports.. 271
8.3.6 Avoid vacuous properties .. 272

Preface ix

8.3.7 Avoid contradictory properties .. 272
8.3.8

if necessary.. 273
8.3.9 Use $sampled function in action block to display values 274
8.3.10 Update of module / checker variables from within an assertion. 274

8.3.10.1 Variables updated in action block ... 275
8.3.11 Ensure assertions can hold .. 275
8.3.12 Do not use [=n] in antecedent without a first_match ... 276
8.3.13 Use the bind... 276

8.4 METHODOLOGY GUIDELINES .. 276
8.4.1.1 Design centric.. 276
8.4.1.2 Assumption centric ... 276
8.4.1.3 Environmental properties ... 276
8.4.1.4 Coverage properties.. 277

8.4.2 Process of writing properties and assertions... 278
8.4.3 Review properties and assertions against requirements 280
8.4.4 Verify the DUT design .. 280
8.4.5 Guidelines for Debugging Assertions... 281

8.5 SYSTEMVERILOG ASSERTION LINTING .. 281
8.6 SVA WITH UVM.. 282

8.6.1 SVA-in-a-UVM-Class-based-Environment.. 282
8.6.2 Assertions Instead of FSMs/logic for Scoreboarding and Verification 282

9 Verifying assertions ... 283

9.1 DRIVING INTO PORTS .. 286
9.1.1 Ports of modules and module wires .. 286
9.1.2 SystemVerilog interfaces and tasks ... 288

9.1.2.1 Interface variables... 288
9.1.2.2 Notes: interface and classes.. 289

9.2 STIMULUS VECTORS .. 290
9.2.1 What types can be randomized... 290
9.2.2 How constraints are solved ... 291
9.2.3 Randomization and variable ordering effect... 292
9.2.4 Simple unconstrained randomization.. 292
9.2.5 Distribution operator ... 293
9.2.6 Set membership ... 294
9.2.7 Word aligned ... 294
9.2.8 Implication... 294
9.2.9 "solve before" constraint ... 294

9.3 TESTBENCH APPROACHES .. 296
9.3.1 Top-down or bottom-up? .. 296
9.3.2 Elements of a testbench .. 296

9.4 SIMPLE UNCONSTRAINED RANDOMIZATION OF TEST VECTORS IN A TEST MODULE 297
9.4.1 Simple constrained randomization of test vectors in a test module 298
9.4.2 Class-based randomization of test vectors.. 298
9.4.3 Transaction-based defintion of test sequences ... 299

9.4.3.1 The sequence item.. 300
9.4.3.2 Transitioning from testbenching assertions to quick testbenching DUT..................................... 301

9.4.4 Guidelines for Debugging Assertions... 303

x SystemVerilog Assertions Handbook, 4th Edition

10 Assertions Dictionary.. 305

10.1 BUS INCREMENTED AT ROSE OF EN SIGNAL ... 306
10.2 IF COND1, THEN COND2 .. 307
10.3 IF COND1, THEN AT NEXT COND2, COND3 .. 307
10.4 IF COND1, THEN AFTER NTH COND2, COND3... 308
10.5 IF COND1 AND FIRST COND2, THEN COND3 UNTIL COND4... 308
10.6 IF COND1 AND FIRST COND2, THEN SEQUENCE ... 309
10.7 BETWEEN COND1 AND COND2, SIGNAL 1 ASSERTED ... 310
10.8 IF COND1 AND THEN 1 OCCURRENCE OF COND2 THEN SEQUENCE ... 310
10.9 IF COND1 THEN N OCCURRENCES OF COND2 BEFORE COND3; N IS VALUE OF A VARIABLE 311
10.10 IF COND1 AND, WITHIN N CYCLES, Y OCCURRENCES OF COND2 THEN COND3..................... 311
10.11 IF COND1, THEN COND2 UNTIL COND3 ... 312
10.12 IF COND1 THEN COND2 BEFORE COND3 ... 313
10.13 IF COND1 IS FOLLOWED BY COND2, AND COND3 IS NOT RECEIVED WITHIN 64 CYCLES

WHILE COND2 THEN ERROR (COND5). IF COND3 IS RECEIVED WITHIN 64 CYCLES THEN COND4 313
10.14 IF COND1 THEN COND2 IN N CYCLES UNLESS COND3 ... 314
10.15 DATA INTEGRITY IN MEMORY: DATA READ FROM MEMORY

SHOULD BE SAME AS WHAT WAS LAST WRITTEN... 315
10.16 DATA INTEGRITY IN QUEUES. INTERFACE DATA WRITTEN MUST BE PROPERLY

TRANSFERRED TO THE RECEIVING HARDWARE .. 317
10.17 NEVER 2 CONSECUTIVE WRITES WITH SAME ADDRESS ... 319
10.18 FOLLOWING 2 CONSECUTIVE WRITES AT ADDRESS ==0, READY==1 AT NEXT CYCLE.................. 320
10.19 ASSUME RESET LOW FOR INITIAL N CYCLES .. 320
10.20 IF A SEQUENCE STARTS BUT DOES NOT COMPLETE, THEN STATE REGISTER MUST BE ERROR 321
10.21 PROPERTY1 AND PROPERTY2 ARE MUTUALLY EXCLUSIVE ... 321
10.22 NO REWRITES TO SAME ADDRESS BEFORE READ ... 323
10.23 SIGNALA[ODD_BITS] |=> SIGNALB[ODD_BITS];

SIGNALA[EVEN_BITS] |=> SIGNALB[EVEN_BITS];.. 324
10.24 ACCESSING CLASS VARIABLES FOR USE IN ASSERTIONS ... 324
10.25 HOW TO COVER A FOUR STATE VARIABLE (0, 1, X, Z) ... 324
10.26 UNIQUENESS IN ATTEMPTED THREADS -- THE FIFO.. 325
10.27 EXCLUSIVE CONSEQUENT ONCE ANTECEDENT IS TRUE ... 327
10.28 SETUP AND HOLD CHECKS .. 328
10.29 TIME CHECK .. 329
10.30 BETWEEN 2 PULSES, SIGNAL A MUST BE TRUE; NO FIXED CLOCK.. 329
10.31 "A" HIGH FOR 10 OCCURRENCES OF "B".. 329
10.32 PARALLEL TO SERIAL.. 330
10.33 SIGNAL STABLE AFTER TWO (NON-CONSECUTIVE) FALLING EDGE OF ANOTHER SIGNAL. 330
10.34 MEASURING CLOCK PERIODS .. 331
10.35 SEQUENTIAL FIRING OF ASSERTIONS... 331
10.36 ASSERTIONS FOR CLOCK-DOMAIN-CROSSING DATA PATHS ... 332
10.37 SEQUENCE BUS .. 332
10.38 DISABLE AN ASSERTION UNTIL A CLOCK EDGE (POSEDGE OR NEGEDGE OCCURS)....................... 332
10.39 WHAT'S WRONG WITH THIS PROPERTY?... 332
10.40 SIGNAL HI FOR N CYCLES BETWEEN 2 EVENTS .. 333

Preface xi

11 1800'18 Preview .. 335

11.1 MAKE LOCAL VARIABLES A FIRST CLASS LANGUAGE CONSTRUCT .. 335
11.2 5063: ALLOW TOOLS TO MODIFY ASSERTION STATEMENT TYPE.. 336
11.3 STANDARD PACKAGE TO DEFINE ASSERTION-RELATED CONSTANTS .. 336
11.4 5067: ALLOW VARIABLES IN DELAY AND REPEAT OPERATORS .. 338

11.4.1 Simple delay (e.g., ##v b)... 338
11.4.2 Range delay (e.g., ##[2:v] b ... 339
11.4.3 Simple repeat (e.g., a[*v]] ... 339
11.4.4 Range repeat (e.g., a[*1:v] .. 339
11.4.5 GOTO repeat (e.g., a[->v] .. 340
11.4.6 Non-consecutive repetition (e.g., a[=v]) .. 340

Appendix A Answers to Exercises.. 341

Appendix B: Definitions ... 349

IndeX.. 365

xii SystemVerilog Assertions Handbook, 4th Edition

Preface xiii

FOREWORD, Dennis Brophy

In the decade since the completion and release of the first version of the IEEE SystemVerilog
standard, the use of assertions in verification has taken center stage. In as much as design and
verification teams have been able to use assertions during functional verification tests, they have
proven even more valuable to open the world of formal verification to more users to perform
exhaustive block-level and interface tests.

We know debug of electronic systems is an ever increasing challenge given the relentless increase
in design complexity and protocols engineers must use in their designs. Many design issues are
buried deep in a system and can be difficult to reach or detect in a timely fashion even with

reuse paradigm that allows design teams to pull predesigned blocks into their design has led to the
creation of the Verification Intellectual Property (VIP) business. The various protocols and
blocks that now come together to comprise a design come with VIP that will include assertions to
detect illegal use and conditions that might otherwise be difficult to detect. VIP also lessens the
need for design and verification teams to have deeper protocol expertise and knowledge. All this
is enabled with assertions.

In 2010, research showed use of SystemVerilog was up more than 233% over prior years with
more than 7 out of 10 design and verification engineers using it. Even more telling was the use of
the SystemVerilog Assertions (SVA) part of the standard. Research showed that assertions
enjoyed the same high level of use with 7 out of 10 design and verification engineers adopting
SVA.

Assertion based verification (ABV) methodologies has been found to address design and
verification challenges and the market use reflects it. The assertions portion of the IEEE
SystemVerilog standard has also been enhanced over these years to extend and improve what can
be done with them based on the cumulative experiences of the design and verification community
to date.

This edition to the SystemVerilog Assertions Handbook comes at a time when the IEEE updates
its popular SystemVerilog standard and at a time when the FPGA community is increasing its
adoption of SystemVerilog assertions as well. Design and verification engineers will find the
handbook useful not just as a resource to begin to adopt assertions, but to apply the latest
additions and updates found in the IEEE standard to the ever pressing design and verification
challenges.

Dennis Brophy
Director of Strategic Business Development
Design Verification Technology Division
Mentor Graphics Corporation
http://www.mentor.com/

xiv SystemVerilog Assertions Handbook, 4th Edition

FOREWORD, Sven Beyer

In 2005, SystemVerilog assertions became part of the IEEE 1800 standard. Now, 7 years later,
there is no longer any doubt about the fact that Assertion-Based Verification has become a
mainstream technology: according to the 2010 Wilson Research Group Functional Verification
Study, assertions are used in roughly two thirds of all projects from rather simple automatically
generated assertions to capturing complex bus transactions in assertions. Interestingly, the usage
of formal ABV has also increased by 50% from 2007 to 2010, with a projected further increase in
the coming years. Nowadays, companies that have not yet adopted assertions feel a strong need to
do so in order to catch up with their competition. Finally, SVA is the dominant assertion

In addition to the growing acceptance and tool support of SVA over the last 7 years, the standard
itself has been very much alive with two updates in 2009 and now in 2012, enhancing many
existing features and adding numerous new ones. So in summary, more and more engineers are
exposed to SVA while at the same time, the standard quickly evolves, trying to address the
growing needs of those engineers for more productivity. This definitely calls for a first class
reference documentation and this book, SystemVerilog Assertions Handbook by Ben Cohen,
Srinivasan Venkataramanan, Ajeetha Kumari, and Lisa Piper, provides such a comprehensive
reference manual that is suited for both SVA power users and novices. It introduces assertion
methodologies and gives a clear idea on what assertions are good for, addressing both coverage
and the complementary strengths of dynamic and formal verification. It carefully lays out the
numerous SVA language constructs one by one in a way that really gets across to the typical
engineer, emphasizing the intended usage, adding telling examples, and listing the counter-
intuitive pitfalls that may cost an engineer precious time in debugging. Therefore, this book is
sure to find its place on the bookshelf of numerous engineers all over the world, and since it is the
first comprehensive reference manual to also address the IEEE 1800-2012 standard, for example
with its numerous enhancements to the checker construct, it is sure to remain on this shelf and be
extensively used for quite some time.

Sven Beyer
Product Manager Design Verification
OneSpin Solutions
http://www.onespin-solutions.com/

Preface xv

FOREWORD, Stuart Sutherland

The fact that you picked up this book means that you are most likely already aware of the benefits
of using temporal assertions to verify hardware functionality in hardware design models. These
benefits include, but are not limited to, proving that actual design functionality matches (or does
not match) the intent of a design specification, localizing design bugs in large, complex models,
and significantly reducing the amount of verification code required to gain confidence that a
design is functionally correct.

As one who has been teaching and consulting on Verilog and SystemVerilog for many years, I
can attest first-hand to those benefits. On one project, I was contracted late in the design cycle to
help create a more robust verification environment. As is often the case, many of the engineers
working on the project wore two hats. Early in the project they worked on modeling the RTL
code. As the design progressed, they transitioned to verifying the RTL models and the post-
synthesis gate-level models. The RTL modeling of design was complete when I arrived on the
scene, and the engineering team felt the RTL models that made up the design had been
thoroughly tested and worked correctly. As I reviewed the verification process, I noted that no
assertions had been used, and saw several places where simple assertions often just one-line of
functional code could easily be added. I wrote about 20 SystemVerilog temporal assertions,
and immediately found several places where the design functionality did not match the design
specification. The same verification stimulus was used, but these few temporal assertions detected

The assertions also identified
just where in the full design the problem first showed up. There was no need to spend hours
tracing back in both logic and time from an incorrect output value to try to troubleshoot the cause
of a problem. SystemVerilog Assertions did an excellent job of saying something has gone
wrong, and the problem is right here! The benefits of assertion based verification are very real.

The complexity of the design we need to verify requires that an assertions language has a robust
set of features and capabilities. The SystemVerilog Assertions (SVA) language meets that
rigorous requirement. The robustness of SVA also means that it can be challenging to learn to
use SVA -- and to use it correctly. The SystemVerilog Assertions Handbook is an essential
resource for overcoming that challenge. The book examines the use of SVA in the context of
verifying true-to-life designs. Thorough explanations of each feature of SVA show the where and
how to use SVA correctly, as well as point out pitfalls to avoid. At my company, we feel this
book is so essential for understanding and properly using SVA, that we include a copy of the

Stuart Sutherland
SystemVerilog Training and Consulting Wizard
Sutherland HDL, Inc.
http://www.sutherland-hdl.com

xvi SystemVerilog Assertions Handbook, 4th Edition

FOREWORD, Cristian Amitroaie

As usual, Ben keeps up with the latest trends in our industry. This time he focuses on the new
SystemVerilog assertion capabilities in the IEEE 1800-2012 standard update, including the
checker construct.

The first benefit this book brings is a systematic and clearly organized perspective on SVA, from
planning to terminology, from how assertions work and how to debug them, to coverage driven
and formal verification using assertions. This includes the language clearly identified rules, and
many tables and figures annotated with comments.

Second it offers many concrete examples. Examples are fresh air for engineers when diving into
complex topics and this book has plenty, including the mapping between natural language and the
corresponding SVA implementation.

Third, it contains guidelines on what to use and what to avoid, based on experience with both
SVA and UVM. Knowing and following best practices are essential to engineers these days,
when work pressure doesn't leave much time to carefully digest all the implications of the highly
sophisticated means we use on a daily basis.

This is a book every engineer should keep handy!

Cristian Amitroaie
CEO
Amiq.com
http://www.dvteclipse.com

Preface xvii

ik Seligman,
Chair of the IEEE p1800 Special Subcommittee on Checkers

PREFACE

new?
SystemVerilog Assertions Handbook, 4th Edition is a follow-up book to the popular and highly
recommended third edition, published in 2013. This 4th Edition is updated to include:

1. A new section on verifying assertions, including the use of constrained-randomization,
along with an explanation of how constraints operate, and with a definition of the most
commonly used constraints for verifying assertions.

2. More assertion examples and comments that were derived from users' experiences and
difficulties in using assertions; many of these issues were reported in newsgroups, such
as the verificationAcademy.com and the verificationGuild.com.

3. Links to new papers on the use of assertions, such as in a UVM environment.

4. Expected updates on assertions in the upcoming IEEE 1800-2018 Standard for
SystemVerilog Unified Hardware Design, Specification, and Verification Language. The
SVA goals for this 1800-2018 were to maintain stability and not introduce substantial
new features. However, a few minor enhancements were identified and are expected to be
approved. The 3rd Edition of this book was based on the IEEE 1800-2012.1

The 2012 LRM changes included several enhancements for properties and sequences,
particularly in the area of immediate assertions, data type support, argument passing,
vacuity definitions, global clock resolution, and inferred clocking in sequences.
Enhancements were also made in vector-analysis system functions, assertion-control
system tasks, newer assertion statements, and in the usage and restrictions of property
and sequence local variables. There were also changes in the interpretation of some
operators. The checker, as an encapsulation for SVA, was introduced in 2009 and many
significant enhancements were made in the 2012 LRM including module-like
programming features with some restrictions. The 2012 update includes details on all
these new changes to the LRM as well as improvements to the organization and content
of the previous release based on feedback received from our customers.

1 http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
The 3rd edition was based on P1800/D6, 2012 DRAFT STANDARD FOR SYSTEMVERILOG,
which reflects the latest version frozen to further technical changes.

xviii SystemVerilog Assertions Handbook, 4th Edition

The creators

This SVA 4th Edition evolved from many years of practical experiences, training, and studies in
the processes / design / verification / and language worlds. This book is an excellent reference in
the process and application of SVA. It was created by four authors who came from very strong
technical backgrounds, thus putting a lot of synergy in the creation of this book. Ben has many
years of design, synthesis, and verification of digital designs; he authored 12 books on VHDL,
Verilog, design processes, VMM, PSL, and SVA, and has taught several classes in these fields.
Srini worked at Intel as a verification engineer, and at Synopsys as an application and verification
field engineer; he is now CTO of CVC Pvt Ltd, a high-end design-verification consulting
company, and provides training in SV, SVA, VMM, OVM/UVM, VHDL, consulting for
companies, and sales representation for many EDA products. Ajeetha has many years of
experience in design and verification using VHDL, SV, SVA, VMM, OVM/UVM; she is the
founder, CEO and Managing Director of CVC. She has also been consultant for many EDA
companies and verification turnkey projects across India, Israel & Taiwan. Lisa worked at
Cadence as a methodology and product engineer supporting assertions in simulation, formal
verification, and emulation. She participated in the SVA standardization work for the IEEE 1800-
2009 release. She also managed an organization that was responsible for the definition,
verification, and support of Telecom IC's, LAN IC's, and ATM IC's at Lucent Microelectronics.
She now is a technical marketing manager at Real Intent.

How this book addresses SVA
This book is unique in the application and understanding of SVA for verification. This is because
it addresses the assertion language from several viewpoints:

1. The process of using assertions in the design of a chip. This includes using assertions
throughout the requirements, design, and verification phases, as demonstrated by
examples we deem critical, and was
incorporated in Component Design by Example book.

2. SystemVerilog as a language for engineers. The book presents many complete and
simulatable examples that make use of best coding practices and advanced
SystemVerilog constructs, including associative arrays, queues, and classes. It also
addresses the use of SystemVerilog with VHDL. Our VHDL experiences and
books on VHDL and Verilog made us more sensitive to the issues a VHDL user may
encounter in using SystemVerilog.

3. Assertions as a language, and the deep understanding of how assertions are processed.
This includes the concepts of attempts / threads / clock flow / end points / automatic
variables / scheduling semantics and their relationships on coding styles and efficiency
and verification outputs.

4. Assertions for real designs. What is reflected in many examples and code
writing methodologies and approaches is our vast work experience along with books on
PSL, SVA and VMM, and presentation of several papers for DvCon and SNUG, and
interactions with customers

5. Style and coding guidelines. Again, our experiences are reflected in our explanation of
the constructs to use and to avoid, and why. The goal is to be able to write assertions that
express the intended behavior, and to write them in a style that is efficient for simulation
and formal verification.

Preface xix

6. Verifying assertions. Verifying assertions for sanity and accuracy can quickly be done
via simulation. We explain how to quickly built a very simple testbench using
constrained randomization targeted to the requirements of the assertions.

7. Verification and interaction with UVM. Using our deep understanding of verification
techniques and frameworks (wrote book A Pragmatic Approach to VMM Adoption) we
provide techniques and styles in the verification of assertions; these approaches include
quick-and-dirty simple randomization to constrained-random testing using a UVM-like
penchant. In addition, we added a tie-in of SVA with UVM notifications. We also
explain the interactions of SVA with class-based UVM code in the area of using
assertions as a substitute to UVM monitors and scoreboards for verification, and using
the error messaging of assertions and in the modification of variable values for use by the
class-based control tasks.

8. Coverage. Coverage is a key element in the verification process. We demonstrate data
oriented and control oriented coverage in the many complete examples addressing those
topics.

9. Formal verification. Our understanding and appreciation of formal verification is
demonstrated through the complete analysis of a design case.

10. Dictionary of models. We felt a need to demonstrate how English requirements can be
translated into SVA models. We achieved that by selecting a set of requirements based
on documents, our work experience, and inquiries posted by users in several online
technical forums. This dictionary was expanded in this version.

11. Dictionary of terms relating to SystemVerilog assertions. As authors of several books,
we felt a need to explain the technical terms used in the field of design and verification
and assertions. A dictionary of terms, with explanations and references is presented as an
appendix.

12. What will be new in 1800'2018. Expected updates to the next version of 1800 as they
relate to assertions are presented, along with solutions that can be implemented with
1800'2012.

More about the creation of this book
Our goal is to make SystemVerilog Assertions Handbook, 4th Edition an excellent reference
manual on the application of SystemVerilog assertions during the design and verification
processes. We explain the concepts, coding rules, and guidelines via text/tables/diagrams,
images, annotations, complete models, and simulation results.

We validated the many complete examples and test verification code with major EDA tools to
insure accuracy and IEEE compliance with the currently supported features of SystemVerilog
The simulation results included in the book are courtesy of Mentor Graphics who provided us
with access to QuestaSim for the simulation of SVA code (mentor.com).

In addition, the models used in formal verification were verified with
Product Family of formal verification tools, and the graphical results are also provided on the
distribution files (onespin-solutions.com/).

The construction of the many examples was greatly facilitated by the use of the Design and
Verification Tools platform (DVT, dvteclipse.com), which is a powerful programming
environment for the e language, SystemVerilog and VHDL with support for UVM, OVM, and
VMM.

xx SystemVerilog Assertions Handbook, 4th Edition

How to read this book
When a child learns a language, he/she first learns, by dense exposure to the words and through
multiple passes, concepts, basic vocabulary, and overview before learning the alphabet and the
grammar of the language. SystemVerilog is a language, and the assertions aspect is another
outbreak of that language. In presenting the material for SVA, we took a similar approach to the
learning process of a language. We started with an overview and exposure of the basic concepts,
with many examples, without getting into the details of the grammar and rules. We then focused
on the details of the sequences and properties, and then moved on to advanced topics with more
examples. We followed that by addressing the process of using assertions in all phases of the
design and verification cycles, including the requirements, design, and verification phases. We
added the application of formal verification with two complete models. We then followed that
with coding and usage guidelines, and then a dictionary of models and a dictionary of terms.

When addressing each of those topics, we decided to present applications and information that
dealt with the topic at hand (e.g., local variables) but with certain advanced topics presented in
later sections (e.g., first_match operator)). We clearly identified the language rules and
guidelines addressing the individual topics during their contexts. We annotated the rules and
code examples with comments and callout boxes. In reading this book, many users may find it
easier to first take a look at the annotated code examples and grasp the concepts and style prior to
digging deeper into the text that explains the rules. Once a good understanding of the language
rules and guidelines is achieved, users may frequently refer to the tables that summarize (with
examples) the syntax of the language (e.g., Section 2.1, 2.2, 2.3, 3.1, 3.9, 4.2.3, 4.2.4, 4.5).

Throughout the book we indicated the forward / backward referencing of critical topics. Thus,
we envision the reading of this book as a multi-pass process, with appropriate jumps to forwarded
material if the reader needs more information on that topic. We believe that this process will help
the reader grasp the various concepts, applications, and grammar of the language.

The coding and usage guidelines presented throughout this book emerged from years of doing
design and verification, and of using / teaching HDLs and assertion languages and framework
libraries. We envision that in near future EDA tools will emerge to enforce these guidelines as
sort of lint checks for SVA.

We also strongly recommend doing the exercises at the end of Chapter 3 and verifying the
answers to those exercises in Appendix A; those answers provide additional information and
recommendations about the critical concepts.

The intent
One of the reasons that we decided to write this handbook on SystemVerilog Assertions is the
positive impact Assertion-based Verification (ABV) is providing in the design & verification of
complex chips. We believe that SystemVerilog is setting up a viable and effective standard in the
design and verification processes. We also felt that the assertion
needed special emphasis. Thus, we maintain the focus of this book on SystemVerilog Assertions,
with usage of many of the new features that SystemVerilog provides. We are assuming that the
users are familiar with SystemVerilog, and have access to books that address SystemVerilog
language.2 Assertion-Based Verification is changing the traditional design process because that

2 * SystemVerilog Language Reference Manual http://www.systemverilog.org/

Preface xxi

methodology helps to formally characterize the design intent and expected operations.3 ABV
also quickens the verification task because it provides feedback at the white-box level.4 As a
formal property specification language, SystemVerilog Assertions facilitate automation of
common verification tasks that can be exploited across various verification technologies.

As designers and consultants/trainers, we experienced many designs that were weakly specified
and documented. The RTL modeling lacked information about properties and design
characteristics, and that led to difficulties and/or ambiguities in the maintenance and verification
processes. A design specification is helpful in defining requirements. However, specifications
are generally defined in an informal language, like English. They lack a standard machine
executable representation and cannot be dynamically simulated and/or statically processed by a
formal verification tool to ensure compliance to requirement. Adding SVA to the process fills
that gap at least partly for control dominated feature specifications.

Book Organization
Chapter 1 provides an introduction to Assertion-Based Verification and serves as an introduction
to SystemVerilog Assertions (SVA) concepts with emphasis on properties and assertions,
immediate and concurrent. It also addresses the topic of states of an assertion. It prepares the

Chapter 2 delves into the understanding and application of sequences that represent the real base
for the definition of temporal assertions. That chapter extends from chapter 1 the concepts of
attempts / threads of assertions; the definition of the sequence operators; and the rules of local
variables.

Chapter 3 delves into understanding properties, along with the property operators.

Chapter 4 provides a deeper appreciation of SystemVerilog Assertions by addressing advanced
topics for properties and sequences, including assertion-based functions; clocked sequences and
assertions across multiple-clock domains; the SystemVerilog scheduling mechanism used in
assertions; the assertion directives; the immediate assertions; and binding of verification entities
to modules.

Chapter 5 introduces the checker, an entity similar to a module but specifically designed for
verification using assertions. That chapter includes the motivation behind this relatively new
entity, the syntax, its contents, the use model, the rules, and its applications by examples.

Chapter 6 addresses the methodologies in using properties / sequences / assertions during the
requirement and verification planning phases, in addition to the RTL and testbench levels. It first
explains the process, and then demonstrates an application of assertions in the requirements
specification and verification plan using a synchronous First-In First-Out (FIFO) as an

* SystemVerilog for Verification: A Guide to Learning the Testbench Language Features, Chris
Spear and

Greg Tumbush (Feb 14, 2012)
* SystemVerilog For Design A Guide to Using SystemVerilog for Hardware Design and

Modeling
Stuart Sutherland, Simon Davidmann, Peter Flake, KAP, June 2003, ISBN 1-4020-7530-8

3 Assertion-Based Design, Second Edition, Harry D. Foster, Adam C. Krolnik, David J. Lacey
June 2004, ISBN 1-4020-8027-1,
The SystemVerilog Verification Methodology Manual (VMM), 2005 Springeronline.com

4 Writing Testbenches: Functional Verification of HDL Models, Janick Bergeron, Kluwer
Academic Publishers

xxii SystemVerilog Assertions Handbook, 4th Edition

Intellectual Property. SystemVerilog packages, interfaces, modules, and bindings are also
demonstrated.

Chapter 7 addresses the formal verification aspects of SystemVerilog Assertions, and introduces
the global clocking functions, typically used in formal verification. Chapter 7 focuses on Formal
Verification (FV) methodologies for functional verification of RTL designs. It provides a test
case study verified with of formal verification tools.

Chapter 8 provides a set of guidelines in using SystemVerilog Assertions. These guidelines
emerged from experience with usage of Assertion-

Chapter 9 addresses the methodologies and techniques to verify assertions, including the quick
modeling for verifying assertions using constrained randomization. Typical SystemVerilog
constraints are explained and demonstrated.

Chapter 10 es that translate English
descriptions of properties to SystemVerilog properties.
Chapter 11 presents the expected 1800'2018 updates, along with solutions that can be
implemented with the current version of 1800.

Appendix A provides the answers to the exercises asked at the end of Chapter 3.

Appendix B is a summary of terms and definitions used within this book.

Appendix C is a list of the system tasks and system functions.
Reserved words are listed in this section.

Index provides a page lookup for information available in this book.

DISCLAIMER

Every attempt was made to ensure accuracy in the specifications and implementation of the
languages (HDLs and SystemVerilog Assertions) and models. However, all code provided in this
book and in the accompanied website is distributed with *ABSOLUTELY NO SUPPORT* and
NO WARRANTY from the authors. Neither the authors nor any supporting vendors shall be
liable for damage in connection with, or arising out of, the furnishing, performance or use of the
models provided in the book and website.

Without permission, use or reproduction of the information provided in this book and on the
linked website for commercial gain is strictly prohibited.

Preface xxiii

Acknowledgements
SystemVerilog Assertions Handbook, 4th Edition could not have been written without the support
and help from several companies who provided us with access to their design and verification
tools that support SystemVerilog, along with access to their support groups who provided us with
valuable information about SystemVerilog. We also acknowledge the insights of several
engineers who helped us in the review process.

We thank Karen Pieper, Accellera chair for IEEE P1800 Standard for SystemVerilog for
nominating Ben Cohen to represent Accellera in the SV-AC assertions group for the development
of SVA . His participation and involvement in this group helped in the specification of the
language and allowed us to bring more insights into the best practices and applications of SVA.

We particularly thank Mentor Graphics® for providing us licenses of QuestaSim (a part of the
Questa® verification platform) for the verification of assertions through simulation.5 The ease of
use of those tools, and the display of results with concise, but on target, information on the
various views helped us in better explaining the behavior of assertions. Of particular interest was
the waveform view that displayed the assertion signals, assertion successful attempts, vacuity,
pass, and fail. The assertion thread viewer was also of great value as it provided more detailed
information about an assertion attempt, its threads, and the values of its local and related
variables. Other valuable outputs provided by the tool included the assertion / coverage/ cover /
covergroup windows. We thank Mentor Graphics® for granting us permission to publish those
results in our book and on the distribution files.

We would like to express our gratitude to OneSpin Solutions for providing us with formal
verification analyses and results of two of our RTL models using 6,
assertion-based verification (ABV) solution for ASIC and FPGA designs.
supports a broad range of formal ABV applications including automatic RTL checks, verification
of implementation intent and high-level functional requirements, systematic operation- and
transaction-level design verification, as well as automatic detection of verification gaps in
assertion sets. The application of 360 MV uncovered several subtle design and assertion issues in
our RTL models that have been missed by previous verifications. The graphical root cause
analysis features of were very helpful in understanding and correcting these issues.
We also thank OneSpin Solutions for granting us permission to publish the results in both the
book and the distribution files. We also thank Klaus Winkelmann for helping us in the use of
formal verification to uncover the issues with our designs.

We thank Cristian Amitroaie and his support group from AMIQ for providing us licenses of DVT,
an excellent set of Design and Verification tools. DVT provides a complete and easy to use

5 Mentor Graphics® provides software and hardware design solutions that enable companies to
develop better electronic products faster and more cost-effectively. They offer numerous
products in the area of chip design and verification. In the area of simulation and assertions,
Mentor Graphics provides ModelSim DE and QuestaSim simulators. http://www.mentor.com
6 OneSpin 360 MV product family is a comprehensive formal assertion-based verification
solution for starters, experienced users and experts. 360 MV is based on more than a decade of
industrial application experience and technology development in formal verification.
http://www.onespin-solutions.com/

xxiv SystemVerilog Assertions Handbook, 4th Edition

programming environment for the e Language, SystemVerilog with support for SVA and the
VMM/OVM/UVM frameworks, and VHDL7. The use of DVT allows us to easily code and
verify the examples prior to compilation, and copy the formatted code into the book.

In the creation of the 2nd Edition of this book, we received support from several companies, and
that information is retained in this edition. Our sincere thanks are due to Synopsys for providing
us, at that time, access to their VCS platform supporting many of the SystemVerilog IEEE 1800-
2009 features.8 In addition, SpringSoft supported us by providing a license of the
Automated Debug System, an advanced solution for debugging digital designs and assertions.9

Aldec was another company who provided an engineering resource for technical review and
access to their Riviera-PRO -performance verification platform for ASIC and FPGA
designs with ABV support.10

We thank the IEEE for granting us permission to quote material from the IEEE 1800 LRM, the
document that defines the rules of SystemVerilog and SystemVerilog Assertions.

Several SystemVerilog experts participated in the review process of this book. The review is a

requirements in the application of SystemVerilog Assertions. In that endeavor, we sincerely
thank the following people and organizations: Dennis Brophy, from Mentor Graphics for his full
support of our endeavor; Michael Siegel and Klaus Winkelmann, from OneSpin Solutions for
their help and support in verifying two models through , and
for valuable feedback on formal verification.

We also thank the following engineers for reviewing our book and providing valuable feedback:
Anupam Prabhakar, Mentor Graphics®; Sven Beyer, OneSpin Solutions.

During the creation of this book there were several language issues and clarifications that needed
to be addressed in the IEEE 1800 SVA committee. Several participants of this IEEE committee
contributed to our specific questions on some issues; thus we particularly thank Erik Seligman,
Dmitry Korchemny, and Ed Cerny.

A text substitution tool that I found extremely useful in typing content and code for this (and
other books) is PhaseExpress http://www.phraseexpress.com/ Another tool for code editing that
I also found useful is DVKit http://dvkit.sourceforge.net/

7 http://www.amiq.ro/consulting/, http://www.dvteclipse.com/index.html Design and Verification
Tools (DVT) The Complete Development Environment for the e Language, SystemVerilog, and
VHDL.
8 The VCS solution powerful debug and visualization environment minimizes the turnaround time
to find and fix design bugs.
http://www.synopsys.com/tools/verification/functionalverification/pages/vcs.aspx
9 The Verdi Automated Debug System is an advanced solution for debugging digital designs that
provides powerful technology to comprehend complex and unfamiliar design behavior; automate
difficult and tedious debug processes; and unify diverse and complicated design environments.
http://www.springsoft.com/products/debug-automation/verdi
10 Riviera-PRO is a high-performance verification platform for ASIC and FPGA design teams,
equipped with mixed-language simulation engine and advanced debugging tools. Riviera-PRO
supports Electronic System Level (ESL) Verification with SystemC and SystemVerilog,
Assertions Based Verification (ABV), Transaction Level Modeling (TLM) and VHDL/Verilog
Design Rule Checking. http://www.aldec.com/Products/default.aspx

Preface xxv

I (Ben) especially thank my wife, Gloria Jean, for supporting me in this endeavor.

We (Ajeetha & Srini) would like to acknowledge the valuable time our cute little son Adruth and
elder son Anirudh have allowed us to spare on this book. I (Srini) would like to personally
dedicate this book to my beloved father Sri. K. Venkataramanan who passed away recently; his
memories and blessings are my sole inspiration to cross any hurdle in my life.

Sculpture Created by my Wife Gloria to
Express my Long Hours with a Laptop in the Creation of Books

xxvi SystemVerilog Assertions Handbook, 4th Edition

Preface xxvii

About the Authors

Ben Cohen is currently a consultant and actively represented Accellera in the IEEE 1800-
2012. He has technical experience in digital and analog hardware design, computer architecture,
ASIC design, synthesis, and use of hardware description languages for modeling of statistical
simulations, instruction set descriptions, and hardware models. He applied VHDL since 1990 to
model designs and various bus functional models of computer interfaces. He authored several
books in the field of design and verification languages including VHDL Coding Styles and
Methodologies, first and second edition; VHDL Answers to Frequently Asked Questions, first and
second editions; Component Design by Example; Real Chip Design and Verification Using
Verilog and VHDL; Using PSL/SUGAR with Verilog and VHDL (first edition, also translated to
Japanese); Using PSL/Sugar for Formal and Dynamic Verification, 2nd Edition; SystemVerilog
Assertions Handbook (first edition, also translated into Japanese); SystemVerilog Assertions
Handbook (2nd and 3rd editions); and A Pragmatic Approach to VMM Adoption.

He was one of the pilot team members of the VHDL Synthesis Interoperability Working Group of
the Design Automation Standards Committee who authored the IEEE P1076.6 Standard for
VHDL Register Transfer Level Synthesis. He was a member of the VHDL and Verilog Synthesis
Interoperability Working Group of the Design Automation Standards Committees, and Accellera
OVL and PSL standardization working groups. He participated in the working group for the
development of the new IEEE 1800-2009 LRM for SystemVerilog assertions. He also was a
member of the SV-AC assertions group for the development of IEEE P1800-2012 Standard for
SystemVerilog. He taught several VHDL, PSL, and SVA training classes. He has presented
many papers at events such as DVCon and SNUG, including an assertion tutorial on SVA and
PSL and VMM.

VhdlCohen Publishing
ben@SystemVerilog.us http://SystemVerilog.us

xxviii SystemVerilog Assertions Handbook, 4th Edition

Srinivasan Venkataramanan Srinivasan Venkataramanan is Chief Technology
Officer (CTO) at CVC Pvt Ltd, a high-end Design-Verification consulting firm based in
Bangalore - India.

as SystemVerilog, UVM, OVM, VMM, Assertion-Based Verification, formal verification etc. As
part of CVC, he provides support to leading edge semiconductor design companies on their
verification methodologies and challenges. CVC has launched Unleashing UVM (TM) solution
during mid 2012. Under this, he offers solutions such as our various training sessions,
solve complex customer problems, such as time-to-debug, qualifying verification effectiveness,
choosing the right technology for a given problem etc.

In his previous employment at Synopsys, India Private Ltd., Bangalore, he was a Senior
Staff Verification Solutions Engineer where he deployed advanced Verification solutions to
many customers across AsiaPac region including Taiwan, China, India and also Israel. He
assisted customers in variety of areas, such as evaluating SystemVerilog; optimizing regressions
using multi-core technologies; and showcasing value of VCS verification platform to specific
domains, such as Image processing, Networking, DSP etc. Prior to joining Synopsys, he worked
at Intel, Philips Semiconductors, and RealChip communications in the areas of front-end design
and verification of ASICs (leading edge high-speed, multi-million gates ASIC designs) with
several HDLs and HVLs, including VHDL, Verilog, Specman, and Vera. He successfully
developed complex verification environments using advanced methodologies, such as Coverage-
Driven Verification and Constrained-
etc. Srini holds a Masters Degree from the prestigious Indian Institute of Technology (IIT), Delhi
in VLSI Design, and Bachelors degree in Electrical engineering from TCE, Madurai. Srini has
co-authored the following books: A Pragmatic Approach to VMM Adoption; Using PSL/Sugar,
2nd Edition; and SystemVerilog Assertions Handbook 1st, 2nd, and 3rd Editions.

He presented several papers at conferences and forums such as DesignCon, DVCon, SNUG
etc. He has been delivering training sessions on SVA, SVTB, OVM & VMM to customers for
more than 5 years.

CVC Pvt.Ltd.,
Bangalore, India
http://www.cvcblr.com/ srini@cvcblr.com

Preface xxix

Ajeetha Kumari Ajeetha Kumari is the founder and CEO and Managing Director of
CVC Pvt Ltd, a high-end Design-Verification consulting firm based in Bangalore - India. At
CVC she leads a team of elite, seasoned Verification professionals focused on next generation
verification automation and productivity techniques. As CEO, her focus is on business
development, new strategic partnerships and exploring new ventures for CVC. More recently she
was instrumental in rolling out CVC's various functional verification offerings under a new logo
UnleashingUVM (TM). She has been providing consultancy to leading-edge semiconductor
houses on various verification challenges for over half-a-decade.

Ajeetha is very well networked and known for close interaction with Design-
Verification community on various online forums and events. She runs a popular blog
at www.cvcblr.com/blog along with contributions from many others. She presented many papers,
tutorials at events such as DVCon, SNUG, CDNLive etc. She has experience with several HDLs
and HVLs including Verilog, VHDL, SystemVerilog, PSL, SystemVerilog Assertions, E and
Vera. She co-authored the following books: A Pragmatic Approach to VMM Adoption; Using
PSL/Sugar, 2nd Edition; and SystemVerilog Assertions Handbook 1st, 2nd, and 3rd Editions.

She received her M.S. in Electrical engineering from the prestigious Indian Institute
of Technology (IIT), Madras.

CEO & Managing Director
http://www.cvcblr.com/ akumari@cvcblr.com

Lisa Piper currently works for Real Intent Inc as a senior technical marketing manager for
advanced verification products. Her primary focus is applying structural analysis, simulation, and
formal techniques as appropriate, to tackle issues caused by X-propagation. Lisa worked for
Cadence Design Systems for 10 years where she was involved with using assertions in
simulation-based verification, adapting OVL assertions for use in acceleration, and formal
verification (a.k.a. model checking). Product definition, training, assertion methodology, and new
product introduction were key areas of focus. This also included active participation in IEEE
1800-2009 SVA standardization work.

Prior to that, Lisa spent 10 years managing the definition and applications support teams for
Telecom IC's, LAN IC's, and ATM IC's at Lucent Microelectronics. This built upon previous
experience at AT&T Bell Labs co-developing the first ISDN S/T Interface chip and designing one
of the first ISDN U-Interface phones.

Lisa holds an MSEE from Ohio State University and a BSEE from Purdue University. She
co-authored the book SystemVerilogAssertions Handbook, 2nd and 3rd Editions. Lisa presented
many papers at events such as DVCon, including an assertion tutorial on SVA and PSL.

lisa_piper@systemverilog.us

