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FOREWORD, Dennis Brophy

In the decade since the completion and release of the first version of the IEEE SystemVerilog
standard, the use of assertions in verification has taken center stage.   In as much as design and
verification teams have been able to use assertions during functional verification tests, they have
proven even more valuable to open the world of formal verification to more users to perform
exhaustive block-level and interface tests.

We know debug of electronic systems is an ever increasing challenge given the relentless increase
in design complexity and protocols engineers must use in their designs.  Many design issues are
buried deep in a system and can be difficult to reach or detect in a timely fashion even with

reuse paradigm that allows design teams to pull predesigned blocks into their design has led to the
creation of the Verification Intellectual Property (VIP) business.  The various protocols and
blocks that now come together to comprise a design come with VIP that will include assertions to
detect illegal use and conditions that might otherwise be difficult to detect.  VIP also lessens the
need for design and verification teams to have deeper protocol expertise and knowledge.  All this
is enabled with assertions.

In 2010, research showed use of SystemVerilog was up more than 233% over prior years with
more than 7 out of 10 design and verification engineers using it.  Even more telling was the use of
the SystemVerilog Assertions (SVA) part of the standard.  Research showed that assertions
enjoyed the same high level of use with 7 out of 10 design and verification engineers adopting
SVA.

Assertion based verification (ABV) methodologies has been found to address design and
verification challenges and the market use reflects it.  The assertions portion of the IEEE
SystemVerilog standard has also been enhanced over these years to extend and improve what can
be done with them based on the cumulative experiences of the design and verification community
to date.

This edition to the SystemVerilog Assertions Handbook comes at a time when the IEEE updates
its popular SystemVerilog standard and at a time when the FPGA community is increasing its
adoption of SystemVerilog assertions as well.  Design and verification engineers will find the
handbook useful not just as a resource to begin to adopt assertions, but to apply the latest
additions and updates found in the IEEE standard to the ever pressing design and verification
challenges.

Dennis Brophy
Director of Strategic Business Development
Design Verification Technology Division
Mentor Graphics Corporation
http://www.mentor.com/
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FOREWORD, Sven Beyer

In 2005, SystemVerilog assertions became part of the IEEE 1800 standard. Now, 7 years later,
there is no longer any doubt about the fact that Assertion-Based Verification has become a
mainstream technology: according to the 2010 Wilson Research Group Functional Verification
Study, assertions are used in roughly two thirds of all projects from rather simple automatically
generated assertions to capturing complex bus transactions in assertions. Interestingly, the usage
of formal ABV has also increased by 50% from 2007 to 2010, with a projected further increase in
the coming years. Nowadays, companies that have not yet adopted assertions feel a strong need to
do so in order to catch up with their competition. Finally, SVA is the dominant assertion

In addition to the growing acceptance and tool support of SVA over the last 7 years, the standard
itself has been very much alive with two updates in 2009 and now in 2012, enhancing many
existing features and adding numerous new ones. So in summary, more and more engineers are
exposed to SVA while at the same time, the standard quickly evolves, trying to address the
growing needs of those engineers for more productivity. This definitely calls for a first class
reference documentation and this book, SystemVerilog Assertions Handbook by Ben Cohen,
Srinivasan Venkataramanan, Ajeetha Kumari, and Lisa Piper, provides such a comprehensive
reference manual that is suited for both SVA power users and novices. It introduces assertion
methodologies and gives a clear idea on what assertions are good for, addressing both coverage
and the complementary strengths of dynamic and formal verification. It carefully lays out the
numerous SVA language constructs one by one in a way that really gets across to the typical
engineer, emphasizing the intended usage, adding telling examples, and listing the counter-
intuitive pitfalls that may cost an engineer precious time in debugging. Therefore, this book is
sure to find its place on the bookshelf of numerous engineers all over the world, and since it is the
first comprehensive reference manual to also address the IEEE 1800-2012 standard, for example
with its numerous enhancements to the checker construct, it is sure to remain on this shelf and be
extensively used for quite some time.

Sven Beyer
Product Manager Design Verification
OneSpin Solutions
http://www.onespin-solutions.com/
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FOREWORD, Stuart Sutherland

The fact that you picked up this book means that you are most likely already aware of the benefits
of using temporal assertions to verify hardware functionality in hardware design models. These
benefits include, but are not limited to, proving that actual design functionality matches (or does
not match) the intent of a design specification, localizing design bugs in large, complex models,
and significantly reducing the amount of verification code required to gain confidence that a
design is functionally correct.

As one who has been teaching and consulting on Verilog and SystemVerilog for many years, I
can attest first-hand to those benefits. On one project, I was contracted late in the design cycle to
help create a more robust verification environment. As is often the case, many of the engineers
working on the project wore two hats. Early in the project they worked on modeling the RTL
code. As the design progressed, they transitioned to verifying the RTL models and the post-
synthesis gate-level models. The RTL modeling of design was complete when I arrived on the
scene, and the engineering team felt the RTL models that made up the design had been
thoroughly tested and worked correctly. As I reviewed the verification process, I noted that no
assertions had been used, and saw several places where simple assertions often just one-line of
functional code could easily be added. I wrote about 20 SystemVerilog temporal assertions,
and immediately found several places where the design functionality did not match the design
specification. The same verification stimulus was used, but these few temporal assertions detected

The assertions also identified
just where in the full design the problem first showed up. There was no need to spend hours
tracing back in both logic and time from an incorrect output value to try to troubleshoot the cause
of a problem. SystemVerilog Assertions did an excellent job of saying something has gone
wrong, and the problem is right here! The benefits of assertion based verification are very real.

The complexity of the design we need to verify requires that an assertions language has a robust
set of features and capabilities.  The SystemVerilog Assertions (SVA) language meets that
rigorous requirement.  The robustness of SVA also means that it can be challenging to learn to
use SVA -- and to use it correctly.  The SystemVerilog Assertions Handbook is an essential
resource for overcoming that challenge.  The book examines the use of SVA in the context of
verifying true-to-life designs.  Thorough explanations of each feature of SVA show the where and
how to use SVA correctly, as well as point out pitfalls to avoid.  At my company, we feel this
book is so essential for understanding and properly using SVA, that we include a copy of the

Stuart Sutherland
SystemVerilog Training and Consulting Wizard
Sutherland HDL, Inc.
http://www.sutherland-hdl.com
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FOREWORD, Cristian Amitroaie

As usual, Ben keeps up with the latest trends in our industry. This time he focuses on the new
SystemVerilog assertion capabilities in the IEEE 1800-2012 standard update, including the
checker construct.

The first benefit this book brings is a systematic and clearly organized perspective on SVA, from
planning to terminology, from how assertions work and how to debug them, to coverage driven
and formal verification using assertions.  This includes the language clearly identified rules, and
many tables and figures annotated with comments.

Second it offers many concrete examples. Examples are fresh air for engineers when diving into
complex topics and this book has plenty, including the mapping between natural language and the
corresponding SVA implementation.

Third, it contains guidelines on what to use and what to avoid, based on experience with both
SVA and UVM. Knowing and following best practices are essential to engineers these days,
when work pressure doesn't leave much time to carefully digest all the implications of the highly
sophisticated means we use on a daily basis.

This is a book every engineer should keep handy!

Cristian Amitroaie
CEO
Amiq.com
http://www.dvteclipse.com
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ik Seligman,
Chair of the IEEE p1800 Special Subcommittee on Checkers

PREFACE

new?
SystemVerilog Assertions Handbook, 4th Edition is a follow-up book to the popular and highly
recommended third edition, published in 2013. This 4th Edition is updated to include:

1. A new section on verifying assertions, including the use of constrained-randomization,
along with an explanation of how constraints operate, and with a definition of the most
commonly used constraints for verifying assertions.

2. More assertion examples and comments that were derived from users' experiences and
difficulties in using assertions; many of these issues were reported in newsgroups, such
as the verificationAcademy.com and the verificationGuild.com.

3. Links to new papers on the use of assertions, such as in a UVM environment.

4. Expected updates on assertions in the upcoming IEEE 1800-2018 Standard for
SystemVerilog Unified Hardware Design, Specification, and Verification Language. The
SVA goals for this 1800-2018 were to maintain stability and not introduce substantial
new features. However, a few minor enhancements were identified and are expected to be
approved. The 3rd Edition of this book was based on the IEEE 1800-2012.1

The 2012 LRM changes included several enhancements for properties and sequences,
particularly in the area of immediate assertions, data type support, argument passing,
vacuity definitions, global clock resolution, and inferred clocking in sequences.
Enhancements were also made in vector-analysis system functions, assertion-control
system tasks, newer assertion statements, and in the usage and restrictions of property
and sequence local variables.  There were also changes in the interpretation of some
operators.  The checker, as an encapsulation for SVA, was introduced in 2009 and many
significant enhancements were made in the 2012 LRM including module-like
programming features with some restrictions.  The 2012 update includes details on all
these new changes to the LRM as well as improvements to the organization and content
of the previous release based on feedback received from our customers.

1 http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
The 3rd edition was based on P1800/D6, 2012 DRAFT STANDARD FOR SYSTEMVERILOG,
which reflects the latest version frozen to further technical changes.
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The creators

This SVA 4th Edition evolved from many years of practical experiences, training, and studies in
the processes / design / verification / and language worlds. This book is an excellent reference in
the process and application of SVA. It was created by four authors who came from very strong
technical backgrounds, thus putting a lot of synergy in the creation of this book. Ben has many
years of design, synthesis, and verification of digital designs; he authored 12 books on VHDL,
Verilog, design processes, VMM, PSL, and SVA, and has taught several classes in these fields.
Srini worked at Intel as a verification engineer, and at Synopsys as an application and verification
field engineer; he is now CTO of CVC Pvt Ltd, a high-end design-verification consulting
company, and provides training in SV, SVA, VMM, OVM/UVM, VHDL, consulting for
companies, and sales representation for many EDA products. Ajeetha has many years of
experience in design and verification using VHDL, SV, SVA, VMM, OVM/UVM; she is the
founder, CEO and Managing Director of CVC.  She has also been consultant for many EDA
companies and verification turnkey projects across India, Israel & Taiwan. Lisa worked at
Cadence as a methodology and product engineer supporting assertions in simulation, formal
verification, and emulation. She participated in the SVA standardization work for the IEEE 1800-
2009 release.  She also managed an organization that was responsible for the definition,
verification, and support of Telecom IC's, LAN IC's, and ATM IC's at Lucent Microelectronics.
She now is a technical marketing manager at Real Intent.

How this book addresses SVA
This book is unique in the application and understanding of SVA for verification.  This is because
it addresses the assertion language from several viewpoints:

1. The process of using assertions in the design of a chip.  This includes using assertions
throughout the requirements, design, and verification phases, as demonstrated by
examples we deem critical, and was
incorporated in Component Design by Example book.

2. SystemVerilog as a language for engineers.  The book presents many complete and
simulatable examples that make use of best coding practices and advanced
SystemVerilog constructs, including associative arrays, queues, and classes.  It also
addresses the use of SystemVerilog with VHDL. Our VHDL experiences and
books on VHDL and Verilog made us more sensitive to the issues a VHDL user may
encounter in using SystemVerilog.

3. Assertions as a language, and the deep understanding of how assertions are processed.
This includes the concepts of attempts / threads / clock flow / end points / automatic
variables / scheduling semantics and their relationships on coding styles and efficiency
and verification outputs.

4. Assertions for real designs. What is reflected in many examples and code
writing methodologies and approaches is our vast work experience along with books on
PSL, SVA and VMM, and presentation of several papers for DvCon and SNUG, and
interactions with customers

5. Style and coding guidelines. Again, our experiences are reflected in our explanation of
the constructs to use and to avoid, and why. The goal is to be able to write assertions that
express the intended behavior, and to write them in a style that is efficient for simulation
and formal verification.
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6. Verifying assertions.  Verifying assertions for sanity and accuracy can quickly be done
via simulation.  We explain how to quickly built a very simple testbench using
constrained randomization targeted to the requirements of the assertions.

7. Verification and interaction with UVM. Using our deep understanding of verification
techniques and frameworks (wrote book A Pragmatic Approach to VMM Adoption) we
provide techniques and styles in the verification of assertions; these approaches include
quick-and-dirty simple randomization to constrained-random testing using a UVM-like
penchant.  In addition,  we added a tie-in of SVA with UVM notifications.  We also
explain the interactions of SVA with class-based UVM code in the area of using
assertions as a substitute to UVM monitors and scoreboards for verification, and using
the error messaging of assertions and in the modification of variable values for use by the
class-based control tasks.

8. Coverage. Coverage is a key element in the verification process.  We demonstrate data
oriented and control oriented coverage in the many complete examples addressing those
topics.

9. Formal verification. Our understanding and appreciation of formal verification is
demonstrated through the complete analysis of a design case.

10. Dictionary of models. We felt a need to demonstrate how English requirements can be
translated into SVA models. We achieved that by selecting a set of requirements based
on documents, our work experience, and inquiries posted by users in several online
technical forums. This dictionary was expanded in this version.

11. Dictionary of terms relating to SystemVerilog assertions. As authors of several books,
we felt a need to explain the technical terms used in the field of design and verification
and assertions.  A dictionary of terms, with explanations and references is presented as an
appendix.

12. What will be new in 1800'2018. Expected updates to the next version of 1800 as they
relate to assertions are presented, along with solutions that can be implemented with
1800'2012.

More about the creation of this book
Our goal is to make SystemVerilog Assertions Handbook, 4th Edition an excellent reference
manual on the application of SystemVerilog assertions during the design and verification
processes. We explain the concepts, coding rules, and guidelines via text/tables/diagrams,
images, annotations, complete models, and simulation results.

We validated the many complete examples and test verification code with major EDA tools to
insure accuracy and IEEE compliance with the currently supported features of SystemVerilog
The simulation results included in the book are courtesy of Mentor Graphics who provided us
with access to QuestaSim for the simulation of SVA code (mentor.com).

In addition, the models used in formal verification were verified with
Product Family of formal verification tools, and the graphical results are also provided on the
distribution files (onespin-solutions.com/).

The construction of the many examples was greatly facilitated by the use of the Design and
Verification Tools platform (DVT, dvteclipse.com), which is a powerful programming
environment for the e language, SystemVerilog and VHDL with support for UVM, OVM, and
VMM.
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How to read this book
When a child learns a language, he/she first learns, by dense exposure to the words and through
multiple passes, concepts, basic vocabulary, and overview before learning the alphabet and the
grammar of the language.  SystemVerilog is a language, and the assertions aspect is another
outbreak of that language.  In presenting the material for SVA, we took a similar approach to the
learning process of a language.  We started with an overview and exposure of the basic concepts,
with many examples, without getting into the details of the grammar and rules.  We then focused
on the details of the sequences and properties, and then moved on to advanced topics with more
examples. We followed that by addressing the process of using assertions in all phases of the
design and verification cycles, including the requirements, design, and verification phases.   We
added the application of formal verification with two complete models.  We then followed that
with coding and usage guidelines, and then a dictionary of models and a dictionary of terms.

When addressing each of those topics, we decided to present applications and information that
dealt with the topic at hand (e.g., local variables) but with certain advanced topics presented in
later sections (e.g., first_match operator)). We clearly identified the language rules and
guidelines addressing the individual topics during their contexts. We annotated the rules and
code examples with comments and callout boxes. In reading this book, many users may find it
easier to first take a look at the annotated code examples and grasp the concepts and style prior to
digging deeper into the text that explains the rules. Once a good understanding of the language
rules and guidelines is achieved, users may frequently refer to the tables that summarize (with
examples) the syntax of the language (e.g., Section 2.1, 2.2, 2.3, 3.1, 3.9, 4.2.3, 4.2.4, 4.5).

Throughout the book we indicated the forward / backward referencing of critical topics.   Thus,
we envision the reading of this book as a multi-pass process, with appropriate jumps to forwarded
material if the reader needs more information on that topic. We believe that this process will help
the reader grasp the various concepts, applications, and grammar of the language.

The coding and usage guidelines presented throughout this book emerged from years of doing
design and verification, and of using / teaching HDLs and assertion languages and framework
libraries. We envision that in near future EDA tools will emerge to enforce these guidelines as
sort of lint checks for SVA.

We also strongly recommend doing the exercises at the end of Chapter 3 and verifying the
answers to those exercises in Appendix A; those answers provide additional information and
recommendations about the critical concepts.

The intent
One of the reasons that we decided to write this handbook on SystemVerilog Assertions is the
positive impact Assertion-based Verification (ABV) is providing in the design & verification of
complex chips.  We believe that SystemVerilog is setting up a viable and effective standard in the
design and verification processes. We also felt that the assertion
needed special emphasis.  Thus, we maintain the focus of this book on SystemVerilog Assertions,
with usage of many of the new features that SystemVerilog provides. We are assuming that the
users are familiar with SystemVerilog, and have access to books that address SystemVerilog
language.2 Assertion-Based Verification is changing the traditional design process because that

2 * SystemVerilog Language Reference Manual http://www.systemverilog.org/



Preface xxi

methodology helps to formally characterize the design intent and expected operations.3 ABV
also quickens the verification task because it provides feedback at the white-box level.4 As a
formal property specification language, SystemVerilog Assertions facilitate automation of
common verification tasks that can be exploited across various verification technologies.

As designers and consultants/trainers, we experienced many designs that were weakly specified
and documented. The RTL modeling lacked information about properties and design
characteristics, and that led to difficulties and/or ambiguities in the maintenance and verification
processes.  A design specification is helpful in defining requirements.  However, specifications
are generally defined in an informal language, like English.  They lack a standard machine
executable representation and cannot be dynamically simulated and/or statically processed by a
formal verification tool to ensure compliance to requirement. Adding SVA to the process fills
that gap at least partly for control dominated feature specifications.

Book Organization
Chapter 1 provides an introduction to Assertion-Based Verification and serves as an introduction
to SystemVerilog Assertions (SVA) concepts with emphasis on properties and assertions,
immediate and concurrent. It also addresses the topic of states of an assertion. It prepares the

Chapter 2 delves into the understanding and application of sequences that represent the real base
for the definition of temporal assertions. That chapter extends from chapter 1 the concepts of
attempts / threads of assertions; the definition of the sequence operators; and the rules of local
variables.

Chapter 3 delves into understanding properties, along with the property operators.

Chapter 4 provides a deeper appreciation of SystemVerilog Assertions by addressing advanced
topics for properties and sequences, including assertion-based functions; clocked sequences and
assertions across multiple-clock domains; the SystemVerilog scheduling mechanism used in
assertions; the assertion directives; the immediate assertions; and binding of verification entities
to modules.

Chapter 5 introduces the checker, an entity similar to a module but specifically designed for
verification using assertions. That chapter includes the motivation behind this relatively new
entity, the syntax, its contents, the use model, the rules, and its applications by examples.

Chapter 6 addresses the methodologies in using properties / sequences / assertions during the
requirement and verification planning phases, in addition to the RTL and testbench levels. It first
explains the process, and then demonstrates an application of assertions in the requirements
specification and verification plan using a synchronous First-In First-Out (FIFO) as an

* SystemVerilog for Verification: A Guide to Learning the Testbench Language Features, Chris
Spear and

Greg Tumbush (Feb 14, 2012)
* SystemVerilog For Design A Guide to Using SystemVerilog for Hardware Design and

Modeling
Stuart Sutherland, Simon Davidmann, Peter Flake, KAP, June 2003, ISBN 1-4020-7530-8

3 Assertion-Based Design, Second Edition, Harry D. Foster, Adam C. Krolnik, David J. Lacey
June 2004, ISBN 1-4020-8027-1,
The SystemVerilog Verification Methodology Manual (VMM), 2005 Springeronline.com

4 Writing Testbenches: Functional Verification of HDL Models, Janick Bergeron, Kluwer
Academic Publishers



xxii SystemVerilog Assertions Handbook, 4th Edition

Intellectual Property. SystemVerilog packages, interfaces, modules, and bindings are also
demonstrated.

Chapter 7 addresses the formal verification aspects of SystemVerilog Assertions, and introduces
the global clocking functions, typically used in formal verification.  Chapter 7 focuses on Formal
Verification (FV) methodologies for functional verification of RTL designs.  It provides a test
case study verified with of formal verification tools.

Chapter 8 provides a set of guidelines in using SystemVerilog Assertions. These guidelines
emerged from experience with usage of Assertion-

Chapter 9 addresses the methodologies and techniques to verify assertions, including the quick
modeling for verifying assertions using constrained randomization. Typical SystemVerilog
constraints are explained and demonstrated.

Chapter 10 es that translate English
descriptions of properties to SystemVerilog properties.
Chapter 11 presents the expected 1800'2018 updates, along with solutions that can be
implemented with the current version of 1800.

Appendix A provides the answers to the exercises asked at the end of Chapter 3.

Appendix B is a summary of terms and definitions used within this book.

Appendix C is a list of the system tasks and system functions.
Reserved words are listed in this section.

Index provides a page lookup for information available in this book.

DISCLAIMER

Every attempt was made to ensure accuracy in the specifications and implementation of the
languages (HDLs and SystemVerilog Assertions) and models.  However, all code provided in this
book and in the accompanied website is distributed with *ABSOLUTELY NO SUPPORT* and
*NO WARRANTY* from the authors.  Neither the authors nor any supporting vendors shall be
liable for damage in connection with, or arising out of, the furnishing, performance or use of the
models provided in the book and website.

Without permission, use or reproduction of the information provided in this book and on the
linked website for commercial gain is strictly prohibited.
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