
Advanced Topics for Properties and Sequences 169

cp_req_rdy: cover property(
 $rose(req) ##[1:5] rdy);
cq_req_rdy: cover sequence (
 $rose(req) ##[1:5] rdy);

Applicable when any match of the

sequence is sufficient for verification.

cq_req1_rdy: cover sequence ($rose(req) ##1 rdy);
cq_req2_rdy: cover sequence ($rose(req) ##2 rdy);
cq_req3_rdy: cover sequence ($rose(req) ##3 rdy);
cq_req4_rdy: cover sequence ($rose(req) ##4 rdy);
cq_req5_rdy: cover sequence ($rose(req) ##5 rdy);

Applicable when all matches of the

sequence are needed for verification;

thus all threads need to be checked for

their occurrences.

Note: For the cq_req_rdy sequence coverage, a tool will identify number of times attempted and

the number of times matched, but it will not identify which sequence matched or did not match.

This is why it is necessary to write (or generate) a coverage for each delay. This can be done with

the generate statement, as shown below, instead of the individual cover sequence statements.
 generate for (genvar i=1; i<=5; i++)
 cq_aib: cover sequence ($rose(req) ##i rdy);
 endgenerate

4.5.1.4.2 Using covergroup for data coverage
An alternative to measuring the input sequences is to use the covergroup with bins. This

methodology is fairly tedious and is demonstrated in file ch4/4.5/bining.sv, bining.jpg. Consider

the following property that has range delays:
 property l2_cache(N,M);
 int v_a;
 @(posedge clk) (c_miss, v_a = c_a) |-> (##[N:M] mm_rd && m_a==v_a);
 endproperty
 cp_l2_cache: cover property (l2_cache(2,10));

In this subsystem, a cache miss (c_miss) at the cache address (c_a) must be followed in N to M

cycles by a memory read (mm_rd) at the memory address (m_a) that corresponds to the initial

cache miss address (i.e., the original c_a). The cp_l2_cache cover property described above does

what is intended. However, the coverage result would only identify how many times that property

was covered, but it would not identify how many of the ranges 2 to 10 were covered. To provide

more details, binning of that range using a cover property can be used. The key elements of this

methodology include:

1. The declaration of an integer-like variable to be used for coverpoint:
bit[3:0] l2_cache_miss_delay;

2. Definition of a sequence that updates the value of the coverpoint variable based on the

number of cycles necessary to complete the sequence:

sequence event_after_range_shift_bin_sample(N,M,e); // ch4/4.5/bining.sv
 int m_delay = 0;
 @(posedge clk) ##N (!(e) , ++m_delay) [*0:M-N]
 ##1 (e , temp_bin_sample(N+m_delay));

 endsequence

Function call to update the

covergroup variable

(l2_cache_miss_delay) and then

sampling of this covergoup (t_cg).

170 SystemVerilog Assertions Handbook, 4th Edition

 // -------------------- cover with temporal binning applied -----
 property l2_cache_bin_sample(N,M);
 int v_a;
 @(posedge clk) (c_miss, v_a = c_a)
 |->
 event_after_range_shift_bin_sample(N,M,(mm_rd && m_a==v_a));
 endproperty
 cp_cache: cover property (l2_cache_bin_sample(2,10));

3. Declaration and instantiation of a covergroup and the sampling for the covergroup.
covergroup temp_cg;

 type_option.merge_instances = 0;
 option.per_instance = 1;
 option.get_inst_coverage = 1;
 coverpoint l2_cache_miss_delay;

 endgroup

 temp_cg t_cg = new; // instantiation of covergroup
 function void temp_bin_sample(int M);

 l2_cache_miss_delay = M; // update of covergroup variable

 t_cg.sample(); // Sampling of covergoup
 endfunction

% Guideline: If it is necessary to ensure that coverage of separate threads are performed in a

simulation write separate cover sequence statements for those sequences; a generate statement

may be useful (Section 4.5.1.4.1). Relying on a property or cover statement of a multi-threaded

property can lead to misleading coverage reporting, as explained above. Another option is to use a

covergroup to measure the various covered delays, but this approach requires more supporting

code and might be labor and simulation intensive.

4.5.1.5 Expect construct
& Rule: The expect construct is not part of the “verification layer” because it does not make a

statement about what should be done with a property in terms of verification. However, the

expect statement makes use of a property. Specifically, [1] The expect statement can appear

anywhere a wait statement can appear (e.g., always procedure, task (but not in classes!!!)). The

expect statement is a procedural blocking statement that allows waiting on a property evaluation.

The expect statement accepts the same syntax used to assert a property.
 expect_property_statement ::=
 expect (property_spec) action_block

An expect statement causes the executing process to block until the given property succeeds or

fails. The statement following the expect is scheduled to execute after processing the Observed

region in which the property completes its evaluation.

When the property succeeds or fails, the process unblocks, and the property stops being evaluated

(i.e., no property evaluation is started until that expect statement is executed again). When

executed, the expect statement starts a single thread of evaluation for the given property on the

subsequent clocking event, that is, the first evaluation shall take place on the next clocking event.

If the property fails at its clocking event, the optional else clause of the action block is executed. If

the property succeeds, the optional pass statement of the action block is executed. The execution of

pass and fail statements can be controlled by using assertion action control tasks.

Thus, the expect statement is a blocking statement that includes inline a property, and an action is

executed based on the result of the evaluation of the property. Because it is a blocking statement,

the property can refer to automatic as well as static variables. For example, the task below waits

between 1 and 10 clock ticks for the variable data to equal a particular value, which is specified

